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A study on buckling analysis of Marine sandwich panels for interior partition walls with 

multilayer graphene nanoplatelet (GPL)/polymer composite facesheets is presented in 

this paper. Three different shapes of square, honeycomb, and re-entrant cellular shape 

with negative poison ratio are considered for the core layer. It is assumed that facesheets 

be composed of a polymer matrix reinforced by graphene nanoplatelet (GPL). Halpin-

Tsai's micromechanical approach is used to determine the effective Young’s modulus of 

the top and bottom layers and the rule of mixture for effective Poisson’s ratio and mass 

density. The wall sandwich plate is modeled based on a new fifth-order shear deformation 

theory. Hamilton principle is employed to obtain the governing differential equations of 

motions of plates. The accuracy of the proposed formula and results are verified and 

proven accurate by the high agreement with the available results in the literature. Based 

on our results, we indicated the effect of cell configurations of the cellular core on the 

critical buckling load of marine interior wall sandwich plates. Moreover, the effect of 

thickness, aspect ratios, graphene nanoplatelet weight fraction, and geometrical 

parameters on the critical buckling load by the use of Galerkin’s method is illustrated. The 

findings of this research may be beneficial in creating more efficient engineering 

applications, especially in the marine and ship industries. 

 

1. Introduction 

There is a continuous demand in using 
sandwich structures due to the need for low-
weight, high-performance structures in the 
industry[1, 2]. There has been a rapid increase in 
the use of sandwich structures in an array of 
applications, including ships, automobiles, 
aircraft, satellites, and wind energy systems[3-7]. 
The rising demand in the shipbuilding industry is 
because the use of sandwich structures may lead 
to substantially lower production costs, relatively 
shorter product delivery times, improved ship 
performance owing to a lower structural weight, 
and improved fatigue and corrosion 
characteristics [8]. In theory and experiment, it 
has been shown that adding even a very small 
amount of graphene to a pure polymer matrix 
improves its mechanical properties 

dramatically[9-13]. Nanofillers, such as carbon 
nanotubes (CNTs)[14-16] and graphene platelets 
(GPLs)[17], have been introduced to reinforced 
structures for engineering purposes (i.e., keeping 
a relatively high stiffness while losing weight). in 
a new methodology for structure comparison and 
design, Palomba et al.[18] suggested the use of 
aluminum honeycomb sandwich structures 
(AHS) in place of common marine structures, 
owing to their lightweight and environmental 
friendliness. Honeycombs have been used 
successfully in sandwich construction since the 
middle of the 1940s[19].  A finite element method 
can be used for modeling and analyzing 
honeycomb sandwich panels, but the method 
requires many computations because it is 
difficult to mesh a whole structure[20].  In the 
present study, we used a method that simulates 
the sandwich cores with a solid orthogonal plate 
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to simplify the modeling of honeycomb, re-
entrant, and rectangular core layers. 

The buckling behavior of engineering 
structures made of the advanced materials 
mentioned above has been investigated by many 
researchers. The Chebyshev-Ritz method was 
used by Yang et al. [21] to determine the uniaxial, 
biaxial, and shear buckling loads of FG-GPLRC 
plates. Kiani [22] used the TSDT to study the 
thermal buckling and post-buckling behavior of 
FG-GPLRC plates. An isogeometric analysis was 
used to study the static buckling of porous plates 
FG-GPLRC by Li et al. [23].  Ji and Waas [24] 
introduced a finite element formulation for 
buckling analysis of thick sandwich panels. The 
study by Song et al. [25, 26] examines bending 
and buckling analyses for FG graphene-
reinforced polymer plates by using the FSDT and 
Navier solutions. Modeling and analysis of the 
post-buckling behavior of graphene-reinforced 
composite (GRC) laminated plates are presented 
by Shen et al. [27]. Shahverdi et al.[28] 
investigated the post-buckling analysis of 
geometrically perfect/imperfect honeycomb core 
sandwich panels having graphene platelet (GPL) 
reinforced face sheets based on a general higher-
order plate model. Thermal buckling analysis of 
annular/circular microplates, which are made 
from functionally graded Graphene nanoplatelets 
(GNPs) reinforced porous nanocomposite is 
presented by Arshid et al.[29]. 

In this study, the buckling analysis of 
sandwich walls in the interior portion of ships 
and switchboard rooms in marine applications 
with a three-shape Models core, including 
positive, zero, and negative Poisson's ratio, 
surrounded by reinforced composite faces are 
investigated. It is assumed that facesheets be 
composed of an epoxy matrix reinforced by GPLs. 
The effect of geometric parameters of the core 
layer, besides the aspect ratio, length-to-
thickness ratio, and core-thickness-to-total-
thickness ratio on critical buckling load for all 
models in research is conducted. In this regard, 
the Halpin-Tsai micromechanical approach and 
rule of a mixture are used to determine the 
effective mechanical properties of composite 
layers, and a new fifth-order shear deformation 
theory was employed to derive the governing 
equation of the marine sandwich walls. The 
Galerkin method is used to solve the equations 
and the accuracy of the formulation and 
introduced theory is assessed by comparing 
available results in the literature with the 
calculated critical buckling loads. The findings of 
this research may be beneficial in creating more 
efficient engineering applications, especially the 
wall structure of ship engine control rooms (ECR) 
and switchboard rooms (SBR). 

2. Materials Properties Problem 
Formulation 

The ship structures panel with length a, width 
b, and thickness h are considered. The core layer 
is covered by multilayer GPL/polymer 
nanocomposite facesheets in the paper. The 
composite material has uniform distribution 
(UD) pattern of graphene sheets through the 
thickness in the facesheets of the wall panels. The 
facesheets with the UD pattern consist of layers 
of the same GPL weight fraction, as shown in 
Figure 1. Considering the Halpin-Tsai model, the 
effective Young's moduli of the facesheets will be 
defined as follows[30]: 

(1) E𝑡,𝑏 = (
3

8

1+𝑉𝐺𝑃𝐿ζ𝐿𝜂L

1−ζ𝐿𝜂L
+

5

8

1+𝑉𝐺𝑃𝐿ζ𝑇𝜂T

1−ζ𝑇𝜂T
)𝐸𝑚  

(2) ζ𝐿 = 2
𝑙𝐺𝑃𝐿

ℎ𝐺𝑃𝐿

 

(3) ζ𝑇 = 2
𝑤𝐺𝑃𝐿

ℎ𝐺𝑃𝐿

 

(4) 휂L =
𝐸𝐺𝑃𝐿/𝐸𝑚 − 1

𝐸𝐺𝑃𝐿/𝐸𝑚 + ζ𝐿

 

(5) 휂T =
𝐸𝐺𝑃𝐿/𝐸𝑚 − 1

𝐸𝐺𝑃𝐿/𝐸𝑚 + ζ𝑇

 

where𝐸𝑚 , 𝐸𝐺𝑃𝐿 , 𝑉𝐺𝑃𝐿 , ζ𝐿 and ζ𝑇 are Young’s 
modulus of the polymer matrix, Young’s modulus 
of the GPLs, GPL volume fraction, and the 
parameters characterizing both the geometry 
and size of GPL nanofillers, respectively. Besides, 
𝑤𝐺𝑃𝐿 , ℎ𝐺𝑃𝐿  and 𝑙𝐺𝑃𝐿  In ζ formulations are the 
average width, thickness, and length of the GPLs. 
The volume fraction of GPLs is defined as: 

(6) 𝑉𝐺𝑃𝐿 =
𝘨𝐺𝑃𝐿

𝘨𝐺𝑃𝐿 + (
𝜌𝐺𝑃𝐿

𝜌𝑚
)(1 − 𝘨𝐺𝑃𝐿)

 

where 𝜌𝐺𝑃𝐿  and 𝜌𝑚 are the mass densities of GPLs 
and polymer matrix, and 𝘨𝐺𝑃𝐿  is GPL weight 
fraction in the nanocomposite facesheets. The 
effective Poisson's ratio (𝜈𝑐) and Mass density 
(𝜌𝑐) of GPL/ polymer nanocomposite can be 
calculated by applying the rule of mixture: 

(7) 𝜈𝑐
𝑡,𝑏 = 𝑉𝐺𝑃𝐿𝜈𝐺𝑃𝐿 + 𝑉𝑚𝜈𝑚 

(8) 𝜌𝑐
𝑡,𝑏 = 𝑉𝐺𝑃𝐿𝜌𝐺𝑃𝐿 + 𝑉𝑚𝜌𝑚 

where V and 𝜈 are the volume fraction and 
Poisson's ratio, respectively. The mass fraction of 
GNPs for UD pattern can be expressed as follows: 

(9) 𝘨𝐺𝑃𝐿(z) =  𝘨𝐺𝑃𝐿
∗            

Three different types of wall sandwich plates 
are considered: rectangular core cell plates (Type 
A), honeycomb core plates (Type B), and re-
entrant core cell plates (Type C). The sandwich 
plate of Type A has an aluminum rectangular core 
cell, as shown in Figure 2. In all Types, hc is the 
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thickness of the core, and h is the total thickness 
of the sandwich wall. In sandwich plate Type A, 
the Poisson's ratio of the core layer is equal to 
zero[31]. 

 

 

Fig. 1. Sandwich plate Type A with rectangular core cell 

The Young’s modulus (E), the shear elastic 
modulus )G(, Poisson’s ratios)ν(, and density)ρ( 
of the rectangular core cell can be calculated 
from[31]: 

(10) E11
c = Es

γ3
3γ1

1 + γ3
2γ1

 

(11) E22
c = Es

γ3
3

γ1 + γ3
2γ1

 

(12) G12
c = Es

γ3
3

γ1(1 + 2γ1)
 

(13) G23
c = Gs

γ3

γ1

 

(14) G31
c = Gs

γ3

2
[

γ1

1 + 2γ1

+
1

2
] 

(15) ν12
c = ν21

c = 0 

(16) ρc = ρs

γ3(γ1 + 2)

2(γ1)
 

where γ1 =
L2

L1
, γ2 =

t2

t1
 and γ3 =

t1

L1
 and 

superscript “c” represents core material. In the 
figures, L1 is the length of the inclined cell rib, L2 
is the length of the vertical cell rib, and t is the rib 
thickness. Type B sandwich plates have an 
aluminum honeycomb core (Figure 2) that 
possesses a positive Poisson's ratio. The 
mechanical properties of the honeycomb core are 
defined in Eqs. 17-24. 

(17) E11
c = Es

4γ3
3(1 + 2γ1)

√3[3 + (1 + 4γ1)γ3
2]

 

(18) E22
c = Es

4√3γ3
3

(2γ1 + 1)(1 + 3γ3
2)

 

(19) G12
c = Es

2γ3
3

γ1√3(1 + 2γ1)
 

(20) G23
c = Gs

γ3√3

2γ1 + 1
 

(21) G31
c = Gs

γ3

√3
 

(22) ν12
c = −

(γ3
2 − 1)(2γ1 + 1)

3 + (1 + 4γ1)γ3
2  

(23) ν21
c = −

3(γ3
2 − 1)

(1 + 3γ3
2)(2γ1 + 1)

 

(24) ρc = ρs

γ3(γ1 + 2)

√3(γ1 + 0.5)
 

 

 

Fig. 2. Sandwich plate Type B with honeycomb core cell 

Figure 3 indicates wall sandwich plate Type C, 
where the middle layer of this type is made of 
metamaterial re-entrant cells with negative 
Poisson's ratio. The mechanical properties of the 
core of Type C are described in Eqs. (25-32): 

 

 

Fig. 3. Sandwich plate Type C with re-entrant core cell 
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(25) E11
c = Es

2γ3
3(−1 + √2γ1)

1 + (1 + 2γ1)γ3
2  

(26) 
E22

c = Es

√2γ3
3

(γ1 −
√2
2

) (1 + γ3
2)

 

(27) G12
c = Es

√2γ3
3

γ1(1 + 2γ1)
 

(28) G23
c = Gs

√2γ3

√2−2γ1

 

(29) 

G31
c

= Gs

γ3(−2 + (−3 + 2√2)γ1 − 4γ1
2)

√2(√2 − 2γ1)(1 + 2γ1)
 

(30) ν12
c = −

(√2 − 2γ1)(γ3
2 − 1)

√2(1 + (1 + 2γ1)γ3
2)

 

(31) ν21
c = −

√2(γ3
2 − 1)

(1 + γ3
2)(√2 − 2γ1)

 

(32) ρc = ρs

√2γ3(γ1 + 2)

√2 − 2γ1

 

In all types, the Cartesian coordinate system 
(x,y,z) is assumed at the corner of the mid-plane 
of the panel. 

3. Governing Equation 

The constitutive equations of the marine 
sandwich panels can be written based on Hook’s 
law as [32]: 

(33) 
[

𝜎𝑥

𝜎𝑦

𝜎𝑥𝑦

] = [

𝑄11
(𝑘)

𝑄12
(𝑘)

0

𝑄21
(𝑘)

𝑄22
(𝑘)

0

0 0 𝑄66
(𝑘)

] [

휀𝑥𝑥

휀𝑦𝑦

𝛾𝑥𝑦

],  

[
𝜎𝑦𝑧

𝜎𝑥𝑧
] = [

𝑄44
(𝑘)

0

0 𝑄55
(𝑘)

] [
𝛾𝑦𝑧

𝛾𝑥𝑧
] 

(34) 

𝑄11
(𝑘)

=
𝐸11

(𝑘)

1−𝜈12
(𝑘)

𝜈21
(𝑘),    𝑄12

(𝑘)
=

𝜈12𝐸11
(𝑘)

1−𝜈12
(𝑘)

𝜈21
(𝑘), 

𝑄22
(𝑘)

=
𝐸22

(𝑘)

1−𝜈12
(𝑘)

𝜈21
(𝑘),    𝑄66

(𝑘)
= 𝐺12

(𝑘)
, 

𝑄55
(𝑘)

= 𝐺13
(𝑘)

,            𝑄44
(𝑘)

= 𝐺23
(𝑘)

 

In equations 33 and 34, stress)σ( is related to 
the strain)ε, 𝛾) with stiffness coefficients(Q). 
Superscript (k) refers to the layer of the sandwich 
plate. k=t,c, and b denote the top layer, core layer, 
and bottom layer, respectively. The displacement 
field of wall sandwich plates based on a new fifth-
order shear deformation theory is represented 
as: 

(35) 
𝑈(𝑥,𝑦,𝑧,𝑡) = 

𝑢(𝑥,𝑦,𝑡) + 𝐺(𝑧)
𝜕𝑤(𝑥,𝑦,𝑡)

𝜕𝑥
+ 𝐹(𝑧)𝜉(𝑥, 𝑦, 𝑡)  

(36) 
𝑉(𝑥,𝑦,𝑧,𝑡) = 𝑣(𝑥,𝑦,𝑡) + 𝐺(𝑧)

𝜕𝑤(𝑥,𝑦,𝑡)

𝜕𝑥
+

𝐹(𝑧)𝜓(𝑥, 𝑦, 𝑡)  

(37) 𝑊(𝑥,𝑦,𝑧,𝑡) = 𝑤(𝑥, 𝑦, 𝑡) 

where u(x,y,t), v(x,y,t) and w(x, y, t) are mid-
plane displacement in the x, y, and z 
directions, ξ(x, y, t) and ψ(x, y, t) are denoted for 
rotation of the mid-surface around the x and y 
axes, respectively[33]. In addition, 𝐺(z) and 𝐹(z) 

are G(z) = −𝑧 , F(z) = (
19z

22
−

9z3

4h2 +
29z5

11h4).Linear 

strain-displacement relations are given by: 

(38) 휀𝑥 =
𝜕𝑢

𝜕𝑥
+ 𝐺(𝑧)

𝜕2𝑤

𝜕𝑥2
+ 𝐹(𝑧)

𝜕𝜉

𝜕𝑥
 

(39) 휀𝑦 =
𝜕𝑣

𝜕𝑦
+ 𝐺(𝑧)

𝜕2𝑤

𝜕𝑦2
+ 𝐹(𝑧)

𝜕𝜓

𝜕𝑦
 

(40) 
𝛾𝑥𝑦 = (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) + 2𝐺(𝑧)

𝜕2𝑤

𝜕𝑥𝜕𝑦
+

𝐹(𝑧) (
𝜕𝜉

𝜕𝑦
+

𝜕𝜓

𝜕𝑥
)  

(41) 𝛾𝑥𝑧 =
𝜕𝐺(𝑧)

𝜕𝑧

𝜕𝑤

𝜕𝑥
+ 𝜉

𝜕𝐹(𝑧)

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
 

(42) 𝛾𝑦𝑧 =
𝜕𝐺(𝑧)

𝜕𝑧

𝜕𝑤

𝜕𝑦
+ 𝜓

𝜕𝐹(𝑧)

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
 

The distribution of transverse shear stress 
along the thickness of the structure for 
Trigonometric theory(TSDPT)[34], Hyperbolic 
theory(HSDPT)[35, 36], Parabolic 
theory(PSDPT)[37], and the present introduced 
theory is illustrated in Fig 4. The modified shear 
deformation theory satisfies free stress 
conditions at z = -h/2 and the z = h/2 surfaces of 
the plate. The governing equations are extracted 
based on Hamilton's principle [38, 39]: 

 
Fig. 4. A comparison of transverse shear stress 

distributions of the plate  based on various theories 

(43) ∫ (𝛿𝑇 − 𝛿𝑈𝑠 + 𝛿𝑊) ⅆ𝑡
𝑡

0

= 0 

where Us, T, and W refer to strain, kinetic, and 
work done by external non-conservative forces. 
Also, δ and t are the variation operator and time. 
The variation of strain energy of the wall 
sandwich plates with GPL-RC facesheets is 
calculated as follows[40]: 
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(44) 
𝑈𝑠 =

1

2
∫ 𝜎𝑖𝑗휀𝑖𝑗ⅆ𝑉

𝑉
=

1

2
∫ (𝜎𝑥휀𝑥 + 𝜎𝑦휀𝑦 +

𝑉

𝜎𝑥𝑦𝛾𝑥𝑦+𝜎𝑥𝑧𝛾𝑥𝑧 + 𝜎𝑦𝑧𝛾𝑦𝑧)ⅆ𝑉   

(45) 

𝛿𝑈𝑠 =
1

2
∫ [(−𝛿𝑢 (

𝜕𝑁𝑥𝑥

𝜕𝑥
+

𝜕𝑁𝑥𝑦

𝜕𝑦
) −

𝑆

𝛿𝑣 (
𝜕𝑁𝑦𝑦

𝜕𝑦
+

𝜕𝑁𝑥𝑦

𝜕𝑥
) − 𝛿𝜉 (

𝜕𝑃𝑥𝑥

𝜕𝑥
+

𝜕𝑃𝑥𝑦

𝜕𝑦
−

𝑄𝑥𝑧) + 𝛿𝑤  (
𝜕2𝑀𝑥𝑥

𝜕𝑥2 + 2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑀𝑦𝑦

𝜕𝑦2 −

𝜕𝑇𝑦𝑧

𝜕𝑦
−

𝜕𝑇𝑥𝑧

𝜕𝑥
) −𝛿𝜓 (

𝜕𝑃𝑥𝑦

𝜕𝑥
+

𝜕𝑃𝑦𝑦

𝜕𝑦
−

𝑄𝑦𝑧)] ⅆ𝑠   

where 

(46) 

(𝑁𝑥𝑥 , 𝑁𝑦𝑦 , 𝑁𝑥𝑦) =

∫ (𝜎𝑥
𝑏 , 𝜎𝑦

𝑏 , 𝜎𝑥𝑦
𝑏 )ⅆ𝑧

−
ℎ𝑐
2

−(ℎ𝑏+
ℎ𝑐
2

)
 +

∫ (𝜎𝑥
𝑐 , 𝜎𝑦

𝑐, 𝜎𝑥𝑦
𝑐 )ⅆ𝑧

ℎ𝑐
2

−
ℎ𝑐
2

+

∫ (𝜎𝑥
𝑡, 𝜎𝑦

𝑡 , 𝜎𝑥𝑦
𝑡 )ⅆ𝑧

ℎ𝑡
ℎ𝑐
2

+ℎ𝑡
   

(47) 

(𝑀𝑥𝑥 , 𝑀𝑦𝑦, 𝑀𝑥𝑦) =

∫ (𝜎𝑥
𝑏 , 𝜎𝑦

𝑏 , 𝜎𝑥𝑦
𝑏 )𝐺(𝑧)ⅆ𝑧

−
ℎ𝑐
2

−(ℎ𝑏+
ℎ𝑐
2

)
+

∫ (𝜎𝑥
𝑐 , 𝜎𝑦

𝑐, 𝜎𝑥𝑦
𝑐 )𝐺(𝑧)ⅆ𝑧

ℎ𝑐
2

−
ℎ𝑐
2

+

∫ (𝜎𝑥
𝑡, 𝜎𝑦

𝑡 , 𝜎𝑥𝑦
𝑡 )𝐺(𝑧)ⅆ𝑧

ℎ𝑡
ℎ𝑐
2

+ℎ𝑡
  

(48) 

(𝑃𝑥𝑥 , 𝑃𝑦𝑦 , 𝑃𝑥𝑦) =

∫ (𝜎𝑥
𝑏 , 𝜎𝑦

𝑏 , 𝜎𝑥𝑦
𝑏 )𝐹(𝑧)ⅆ𝑧

−
ℎ𝑐
2

−(ℎ𝑏+
ℎ𝑐
2

)
+

∫ (𝜎𝑥
𝑐 , 𝜎𝑦

𝑐, 𝜎𝑥𝑦
𝑐 )𝐹(𝑧)ⅆ𝑧

ℎ𝑐
2

−
ℎ𝑐
2

+

∫ (𝜎𝑥
𝑡, 𝜎𝑦

𝑡 , 𝜎𝑥𝑦
𝑡 )𝐹(𝑧)ⅆ𝑧

ℎ𝑡
ℎ𝑐
2

+ℎ𝑡
  

(49) 

(𝑄𝑥𝑧 , 𝑄𝑦𝑧) =

∫ (𝜎𝑥𝑧
𝑏 , 𝜎𝑦𝑧

𝑏 )
𝜕𝐹(𝑧)

𝜕𝑧
ⅆ𝑧

−
ℎ𝑐
2

−(ℎ𝑏+
ℎ𝑐
2

)
+

∫ (𝜎𝑥𝑧
𝑐 , 𝜎𝑦𝑧

𝑐 )
𝜕𝐹(𝑧)

𝜕𝑧
ⅆ𝑧

ℎ𝑐
2

−
ℎ𝑐
2

+

∫ (𝜎𝑥𝑧
𝑡 , 𝜎𝑦𝑧

𝑡 )
𝜕𝐹(𝑧)

𝜕𝑧
ⅆ𝑧

ℎ𝑡
ℎ𝑐
2

+ℎ𝑡
  

(50) 

(𝑇𝑥𝑧 , 𝑇𝑦𝑧) = ∫ (𝜎𝑥𝑧
𝑏 , 𝜎𝑦𝑧

𝑏 ) (
𝜕𝐺(𝑧)

𝜕𝑧
+

−
ℎ𝑐
2

−(ℎ𝑏+
ℎ𝑐
2

)

1) ⅆ𝑧 + ∫ (𝜎𝑥𝑧
𝑐 , 𝜎𝑦𝑧

𝑐 ) (
𝜕𝐺(𝑧)

𝜕𝑧
+ 1) ⅆ𝑧

ℎ𝑐
2

−
ℎ𝑐
2

+

∫ (𝜎𝑥𝑧
𝑡 , 𝜎𝑦𝑧

𝑡 ) (
𝜕𝐺(𝑧)

𝜕𝑧
+ 1) ⅆ𝑧

ℎ𝑡
ℎ𝑐
2

+ℎ𝑡
  

the total variation in kinetic energy is 
calculated as follows [41, 42]: 

(51) 𝑇 =
1

2
∫[�̇�2 + �̇�2 + �̇�2]𝜌ⅆ𝑉

𝑉

 

(52) 

𝛿𝑇 =
1

2
∫ [−𝛿𝑢 (�̈�𝐼1 + 𝐼5𝜉̈ + 𝐼4

𝜕�̈�

𝜕𝑥
) −

𝑆

𝛿𝑣 (𝐼1�̈� (𝐼1�̈� + 𝐼5�̈� + 𝐼4
𝜕�̈�

𝜕𝑦
) +

𝛿𝑤 (−𝐼1�̈� + 𝐼2
𝜕2�̈�

𝜕𝑦2 +𝐼2
𝜕2�̈�

𝜕𝑥2 + 𝐼4
𝜕�̈�

𝜕𝑥
+

𝐼4
𝜕�̈�

𝜕𝑦
+ 𝐼6

𝜕�̈�

𝜕𝑦
+ 𝐼6

𝜕�̈�

𝜕𝑥
) − 𝛿𝜉 (𝐼3𝜉̈ + 𝐼5�̈� +

𝐼6
𝜕�̈�

𝜕𝑥
) − 𝛿𝜓(𝐼3�̈� + 𝐼5�̈� +𝐼6

𝜕�̈�

𝜕𝑦
)] ⅆ𝑠  

where I1, I2, I3, I4, I5, and I6 are the inertia 
coefficients calculated from: 

(53) 
𝐼𝑗 = ∫ 𝜌𝑏𝐽𝑗ⅆ𝑧

−
ℎ𝑐
2

−(ℎ𝑏+
ℎ𝑐
2

)
+ ∫ 𝜌𝑐𝐽𝑗ⅆ𝑧

ℎ𝑐
2

−
ℎ𝑐
2

+

∫ 𝜌𝑡𝐽𝑗ⅆ𝑧
ℎ𝑡

ℎ𝑐
2

+ℎ𝑡
  

(54) 

𝐽𝑗

= (1,  (𝐺(𝑧))
2

   ,  (𝐹(𝑧))
2

 , 𝐺(𝑧)  , 𝐹(𝑧) 

 , 𝐹(𝑧). 𝐺(𝑧)) 

where ρ is the mass density of each layer. 
Employing Hamilton’s principle, the equations of 
motion for the three-layer wall sandwich plate 
can be written as: 

(55) 𝛿𝑢:        
𝜕𝑁𝑥𝑥

𝜕𝑥
+

𝜕𝑁𝑥𝑦

𝜕𝑦
= �̈�𝐼1 + 𝐼5𝜉̈ + 𝐼4

𝜕�̈�

𝜕𝑥
  

(56) 𝛿𝑣:         
𝜕𝑁𝑦𝑦

𝜕𝑦
+

𝜕𝑁𝑥𝑦

𝜕𝑥
= 𝐼1�̈� + 𝐼5�̈� + 𝐼4

𝜕�̈�

𝜕𝑦
  

(57) 

𝛿𝑤:        
𝜕T𝑦𝑧

𝜕𝑦
+

𝜕T𝑥𝑧

𝜕𝑥
−  

𝜕2S𝑥𝑥

𝜕𝑥2 − 2
𝜕2S𝑥𝑦

𝜕𝑥𝜕𝑦
−

𝜕2S𝑦𝑦

𝜕𝑦2 = 𝐼1�̈� − 𝐼2(
𝜕2�̈�

𝜕𝑦2 +
𝜕2�̈�

𝜕𝑥2 ) − 𝐼4(
𝜕�̈�

𝜕𝑥
+

𝜕�̈�

𝜕𝑦
) −𝐼6 (

𝜕�̈�

𝜕𝑦
+

𝜕�̈�

𝜕𝑥
)  

(58) 
𝛿ξ:         

𝜕P𝑥𝑥

𝜕𝑥
+

𝜕P𝑥𝑦

𝜕𝑦
− Q𝑥𝑧 = 𝐼3𝜉̈ + 𝐼5�̈� +

𝐼6
𝜕�̈�

𝜕𝑥
  

(59) 
𝛿ψ:       

𝜕P𝑥𝑦

𝜕𝑥
+

𝜕P𝑦𝑦

𝜕𝑦
− Q𝑦𝑧 = 𝐼3�̈� +

𝐼5�̈� + 𝐼6
𝜕�̈�

𝜕𝑦
  

3.1. Analytical Solution 

In this section for achieving the critical 
buckling load of Sandwich plates used on marine 
interior walls, the Galerkin method is 
implemented. The following admissible functions 
which satisfy the simply supported boundary 
conditions are used to approximate the 
displacement field [43]. 

(60) 

𝑢 = 

∑ ∑ 𝑢𝑚,𝑛

𝑁

𝑛=1

𝐶𝑜𝑠(
𝑛𝜋𝑥

𝑎
)𝑆𝑖𝑛(

𝑚𝜋𝑦

𝑏
)𝑒𝑖𝜔𝑡

𝑀

𝑚=1

 

(61) 

𝑣 = 

∑ ∑ 𝑣𝑚,𝑛𝑆𝑖𝑛(
𝑛𝜋𝑥

𝑎
)𝐶𝑜𝑠(

𝑚𝜋𝑦

𝑏
)𝑒𝑖𝜔𝑡

𝑁

𝑛=1

𝑀

𝑚=1

 



Shabani and Khorshidi / Mechanics of Advanced Composite Structures 10 (2023) 1-10 

6 

(62) 

𝑤 = 

∑ ∑ 𝑤𝑚,𝑛𝑆𝑖𝑛(
𝑛𝜋𝑥

𝑎
)𝑆𝑖𝑛(

𝑚𝜋𝑦

𝑏
)𝑒𝑖𝜔𝑡

𝑁

𝑛=1

𝑀

𝑚=1

 

(63) 

𝜉 = 

∑ ∑ 𝜉𝑚,𝑛𝐶𝑜𝑠(
𝑛𝜋𝑥

𝑎
)𝑆𝑖𝑛(

𝑚𝜋𝑦

𝑏
)𝑒𝑖𝜔𝑡

𝑁

𝑛=1

𝑀

𝑚=1

 

(64) 

𝜓 = 

∑ ∑ 𝜓𝑚,𝑛𝑆𝑖𝑛(
𝑛𝜋𝑥

𝑎
)𝐶𝑜𝑠(

𝑚𝜋𝑦

𝑏
)𝑒𝑖𝜔𝑡

𝑁

𝑛=1

𝑀

𝑚=1

 

In Eqs.(60-64( , um,n, vm,n, wm,n, ζm,n, and 
ψm,n are unknown coefficients, m and n are the 
numbers of half-waves of mode shapes in the x 
and y directions. By multiplying governing 
equations by trial functions and integrating over 
the domains and using equation 65, the critical 
buckling load can be reached. 

(65) ([𝐾] − 𝑁𝑐𝑟[𝑀]){𝛤} = 0 

where [K] and [M] refer to the stiffness and 
buckling matrix, respectively, {Γ} is the vector of 
unknown coefficients and 𝑁𝑐𝑟  is the buckling 
parameter for the sandwich plate in the marine 
structure. 

4. Results and Discussion 

In this section, numerical results are 
presented to examine the effect of various 
parameters on the critical buckling load of the 
GPLRC. Material properties of facesheets are 
considered as 𝐸𝑀 = 3.0 (GPa), ν𝑚 = 0.34, and 
ρ𝑚 = 1.2(g/cm3) for epoxy and 𝐸𝐺𝑃𝐿 =
3.0 (GPa),  ν𝐺𝑃𝐿 = 0.34, and ρ𝐺𝑃𝐿 = 1.2(g/cm3) 
for GPLs. To verify the accuracy of the presented 
solution consider a simply supported GPLRC 
plate of b=0.4 (m), h/b=0.1, and a/b=1 reinforced 
with GPLs of w𝐺𝑃𝐿 = 1.5 (μm), l𝐺𝑃𝐿 = 2.5 (μm), 
and h𝐺𝑃𝐿 = 1.5 (μm). For different GPL weight 
fraction 𝘨𝐺𝑃𝐿

∗  dimensionless critical buckling 
)Ncr( load plates under uniaxial )β1 = -1, β2 = 0( 
and equal biaxial )β1 = -1, β2 = -1) compressions 
is presented in Table 1. 

The dimensionless definition is considered as 

N̅cr =
𝑁𝑐𝑟

E𝑚𝑎
  in table 1 and the percentage below 

each value represents the difference with the 
critical buckling load of pure epoxy. As you can 
see in Table 1, a good agreement for different 
𝘨𝐺𝑃𝐿

∗  is observed between the present work and 
the obtained results by Song et al [26]. 

Parametric studies have been conducted on 
the effects of the wall sandwich plate aspect ratio 
(a/b), plate thickness-to-width ratio (H/b), and 
GPL weight fraction (𝘨𝐺𝑃𝐿

∗ ) on the dimensionless 

critical buckling load. The effects of these 
parameters were investigated for three Types of 
ship partition wall sandwich plates: rectangular 
core cell plates (Type A), Honeycomb core plates 
(Type B), and re-entrant core cell plates (Type C). 
The geometric parameters are chosen as follows, 
the lengths a=b, t1=t2, t1=0.001 m, h=0.02 m. The 
core of the sandwich plate is made of aluminum, 
and its modulus is Es = 69GPa, the shear modulus 
is Gs = 26GPa, Poisson's ratio is νs=0.33, and 
density ρs = 2700 kg/m3 and dimensionless 
definition of critical buckling load is assumed as 

N̅cr =
𝑁𝑐𝑟𝑎2

E𝑚𝐻3. Figure 5. shows the effect of cellular 

parameters on dimensionless critical buckling 
load of wall sandwich plates with hc/H=0.6 in 
three cases: rectangular core cell plates (Type A), 
honeycomb core plates (Type B), and re-entrant 
core cell plates (Type C). 

 
Fig. 5. The effect of vertical to inclined cell rib length 

on the dimensionless critical buckling load of  
sandwich ship partition 

The results show that the lower ratio of L2/L1 
decreases the dimensionless critical buckling 
load of the plates with honeycomb (Type B) and 
Auxetic (Type C) cores. On the contrary, in Type 
A with a rectangular core by changing the length 
of the vertical to inclined cell rib ratio (l2/L1) 
dimensionless critical buckling load increases. As 
shown in Figure 5, the dimensionless critical 
buckling load of plates Types A and C around 
L2/L1=3 are the same. It means it is possible to 
reach a similar critical buckling load by changing 
the core cellular shape. 

In Figure 6, the effects of the aspect ratio (a/b) 
on the dimensionless critical buckling load of all 
three types are shown )γ1=2, hc/H=0.6). It is 
shown that with an increase in the aspect ratio 
(a/b), the dimensionless critical buckling load 
decreases. It is illustrated that in general, there 
aren't many differences between them but in low 
aspect ratios the dimensionless critical buckling 
load of plates with re-entrant cell shape core is 
higher than those of the other two types, and in 
low ratios, it is the opposite. 
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Fig. 6. The effects of the aspect ratio(a/b)  

on the dimensionless critical buckling 
load of sandwich ship walls 

Figure 7 compares the dimensionless critical 
buckling load, N̅cr, versus length-to-thickness 
ratio, a/H; which shows that with an increase in 
the length-to-thickness ratio (constant length 
and thickness decrease), the dimensionless 
critical buckling load increases. Figure 7 also 
shows that at a low length-to-thickness ratio 
(a/H), the critical buckling load of Type C is 
greater than that of Type A As the length-to-
thickness ratio (a/H) increases, the critical 
buckling load of plates types B and C rises more 
than for plates types A. 

 
Fig. 7. The effects of the length-to-thickness ratios(a/H) 

on the dimensionless critical buckling 
load of sandwich ship walls 

In Figure 8, the length-to-thickness ratio is 

assumed as h/b=0.02, 𝘨𝐺𝑃𝐿
∗ = 0.6% , 

ℎ𝐺𝑃𝐿

𝑙𝐺𝑃𝐿
=

𝑤𝐺𝑃𝐿

𝑙𝐺𝑃𝐿
= 6 × 10−4, γ1 = 2 and hc indicates the 

thickness of the core layer. The dimensionless 
critical buckling loads of all Types at the 
beginning of the graph are close to each other 
because the facesheets are more effective than 
the core at low hc/h ratios. In both Figures 8 and 
9 according to the assumption, the dimensionless 
critical buckling load of panel type C is less than 

type A, and Type A less than Type B. the 
dimensionless critical buckling load of panel type 
B is higher than others due to the effect of the 
honeycomb core. It can also be seen in Figure 8 
that values of the critical buckling load in uni-
axial loading are higher than corresponding ones 
of biaxial loading which is an evident conclusion. 
The effect of the width and thickness of the GNPs 
on the critical buckling load of sandwich ship 
walls is illustrated in Figure 9. In figure 9, similar 
to figure 8, panel type B has a higher 
dimensionless critical buckling load than the two 
other types due to its core properties. The 
average length of GPL nanofillers lGPL is kept 
constant and other assumptions for the plates are 
similar to figure 8. Figure 9 displays that an 
increase in the width of GNPs leads to a rise in the 
values of the critical buckling load. Furthermore, 
the figure demonstrates that increasing the 
thickness of GNPs lowers the values of critical 
buckling load. Therefore, in order to have better 
reinforcing effects, it will be necessary to use 
graphene nanoparticles with a higher surface 
area and fewer monolayer graphene sheets. 

 
Fig. 8. The effects of the core thickness to total thickness 

ratios(hc/H) on the dimensionless critical biaxial and 
uniaxial buckling load of sandwich ship walls 

 
Fig.9. The effects of GPL length-to-thickness and length-

to-width ratios on the dimensionless critical buckling 
load of sandwich ship walls 
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Table 1. Comparisons of dimensionless critical buckling loads of GPL/epoxy plates under uniaxial and equal biaxial compressions 

  
Pure 
Epoxy 

𝘨𝐺𝑃𝐿
∗ = 

0.2٪ 

𝘨𝐺𝑃𝐿
∗ = 

0.4٪ 

𝘨𝐺𝑃𝐿
∗ = 

0.6٪ 

𝘨𝐺𝑃𝐿
∗ = 

0.8٪ 

𝘨𝐺𝑃𝐿
∗ = 

1٪ 

𝘨𝐺𝑃𝐿
∗ = 

1.2٪ 

Uniaxial 
compression 
(× 104) 

Present 35.1 58.4 81.8 105.1 128.4 151.7 175 

  166.3% 233% 299.4% 365.8% 432.1% 498.5% 

Song et 
al.[26] 

35 58 82 105 128 152 175 

 165.7% 234.3% 300% 365.7% 434.3% 500% 

Biaxial 
compression 
(× 104) 

Present 17.5 29.2 40.9 52.5 64.2 75.8 87.5 

  166.8% 233.7% 300% 366.8 433.1 500% 

Song et 
al.[26] 

18 29 41 53 64 76 88 

 161.1% 227.8% 294.4% 355.6% 422.2% 488.9% 

 

5. Conclusions 

In this paper, the Buckling behavior of three 
interior marine sandwich wall structure Types 
with rectangular, honeycomb, and re-entrant 
metamaterial cores was investigated based on a 
new fifth-order shear deformation theory. The 
effect of all three core shapes is established 
critical buckling loads as covered with multilayer 
graphene nanoplatelet (GPL)/polymer 
composite facesheets. The Halpin-Tsai model and 
the rule of the mixture were employed to achieve 
the effective material properties of facesheets. 
The Galerkin method was implemented to solve 
the governing equations of the sandwich walls 
that were derived using Hamilton’s principle. The 
accurate results show that the presented fifth-
order shear deformation theory is efficient in 
predicting the Buckling of sandwich wall 
structures. Numerical results have shown a 
significant increase in the critical buckling load 
with an increase in the mass fraction of GNPs. 
With constant 𝑙𝐺𝑃𝐿 , decreasing the ℎ𝐺𝑃𝐿  will 
increase the dimensionless critical buckling load, 
while increasing the 𝑤𝐺𝑃𝐿  will decrease it. 
Generally, the value of the dimensionless critical 
buckling load of sandwich wall Type B is higher 
than that of the other Types with different core 
shapes. It is possible to increase the 
dimensionless critical buckling load of plate Type 
C by increasing the length of the vertical to 
inclined cell rib ratio )γ1( in the core layer, while 
it is the opposite in the other two types. When a 
very small amount of GPLs is added to the 
polymer matrix, the critical buckling load can be 
increased significantly. The critical buckling load 
in all types is increased when the length-to-
thickness ratio (a/H) is increased and it is 
increased at low values of the aspect ratio (a/b). 

Nomenclature 

a Length of plate 

b Width of plate 

H Total thickness 

hc Thickness of the core layer 

𝑉𝐺𝑃𝐿  GPL volume fraction 

휁𝑇  size parameter of GPL nanofillers 

ζ𝐿 
geometry parameter of GPL 
nanofillers 

𝐸𝐺𝑃𝐿  Young’s modulus of the GPLs 

𝐸𝑚  
Young’s modulus of the polymer 
matrix 

𝑤𝐺𝑃𝐿  average width of the GPLs 

ℎ𝐺𝑃𝐿  average Thickness of the GPLs 

𝑙𝐺𝑃𝐿  average length of the GPLs 

𝜈𝑐  
effective Poisson's ratio of 
facesheets 

𝜌𝑐  Mass density 

γ1 Length ratio of cell ribs 

γ2 Thickness ratio of cell ribs 

γ3 Length to Thickness of cell ribs 

𝐼𝑗  Plate inertias 

휀𝑖𝑗  Normal strains 

𝜎𝑖𝑗  Normal stresses 

U,V,W Displacement components 

t1, t2 Thickness of ribs of auxetic’s cell 

L1, L2 Length of ribs of auxetic’s cell 

N̅cr Dimensionless critical buckling load 
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