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The behavior of various CNT distributions with agglomeration effects on FG plates is 

investigated in this paper under static loading. Here, to model the FG plate third-order 

shear deformation theory has been used and a FEM code has been developed. In the 

current higher-order shear deformation theory, transverse shear stresses are represented 

by quadratic variation along the thickness direction, resulting in no need for a shear 

correction factor. The properties of randomly oriented nano-inclusions are estimated 

using the two-parameter agglomeration model of Eshelby-Mori Tanaka. Next, the present 

approach is implemented with the FEM by employing a C0 continuous isoparametric 

Lagrangian FE model with seven nodal unknowns per node. The static response of CNT 

reinforced composite plate with the influence of inclusions is explored by altering the 

agglomeration parameters and through-thickness CNT distribution pattern. The obtained 

results suggest that ignoring the agglomeration effect on CNT may result in erroneous 

results for various static responses. Since the author could not find any results in the static 

response of CNT-reinforced plates with the agglomeration effect, the proposed model is 

validated with the results corresponding to the isotropic plate. The impact of several 

agglomeration phases on the static behavior of a square plate is then studied 

parametrically. 

 

1. Introduction 

The carbon nanotubes were first discovered 
by Radushkevich et. al. in 1952 [1] and were used 
later by Iijima in 1991, which sparked a flurry of 
study into their possible industrial uses [2]. CNTs 
have been considered nano-scale reinforcement 
elements, which have shown promising results in 
improving a wide range of properties for 
engineering problems. Because of their 
exceptional strength, low density, and high 
Young's Modulus, CNTs are considered the ideal 
reinforcements of various composites. 
Outstanding thermal, mechanical, and electrical 
properties of CNT have been demonstrated in 
several types of research. These experiments 
thus created the concept of utilizing these 
inclusions as a reinforcement phase in some 
composite materials, to enhance their properties, 
especially mechanical ones. The term 
"nanocomposite structures" was coined as a 

consequence of this idea. To pinpoint the precise 
impact of CNTs on the mechanical behavior of 
nanocomposite structures, numerous techniques 
and approaches have been devised.  A carbon 
nanotube-reinforced composite structure is 
investigated using the theory of mixtures, which 
is the approach that is most typically employed to 
study its overall properties. The theory of mixing 
provides a simple yet effective method for 
determining the mechanical properties of these 
nanostructures. In other words, this approach 
has been used in many papers dealing with 
various structural problems. The static response 
using the theory of mixture has been studied in 
[3], whereas other behaviors of CNT-reinforced 
composites have been investigated in [4]. 

It should be noted that the theory of mixture 
is quite limited because it does not consider 
several details that relate to the micromechanics 
of the nanoparticles. While the popular Mori-
Tanaka method is based on assumption that 
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there exist only two-phase (matrix and 
reinforcement), and they are perfectly bonded to 
each other. The Mori-Tanaka method has been 
used extensively in the literature to estimate the 
global properties of composites with great 
precision when the reinforcements are 
micrometer-scale or larger. Taking into account 
the occurrence of two phases appears to be 
reasonable at larger scales. It has been proven, 
however, that nanometer-sized reinforcement 
strongly perturbs the molecular structure of the 
polymer matrix at the reinforcement/polymer 
contact, and that this perturbed region has the 
same length scale as the nanometer-sized 
reinforcement. Therefore, a simple two-phase 
description of the reinforcement and neighboring 
polymer region fails at the nanoscale scale. Thus, 
the Mori–Tanaka model is not expected to 
perform well for nanostructured reinforcements 
[29]. In particular, CNTs are aggregated in 
particular areas of polymer composites used in 
strengthening, and this has been well captured 
and investigated by Shi et. al. [5], which obtained 
expressions that are analytical to calculate the 
Carbon nanotube’s efficient mechanical 
properties, to take into consideration the 
agglomeration effect and the use of an equivalent 
continuum model founded on Eshelby-Mori-
Tanaka approach [6].  This technique requires 
nanoparticles to represent their constitutive 
relationships according to the Hills elastic 
module. The micromechanical model that has 
recently been established is the beginning point 
for the current investigation to examine the static 
response in the agglomeration phase CNT-
strengthened nanocomposite plate. Tornabene 
et. al. [7] proposed the use of the Generalized 
Differential Quadrature (GDQ) technique to 
analyze agglomerated CNT-reinforced 
nanocomposite plates and shells. The 
modification of agglomeration characteristics, as 
well as the through-the-thickness carbon 
nanotube pattern that reflects the CNT volume %, 
are investigated in the research to see how the 
reinforcing phase affects the flexural behavior of 
these plates reinforced by nanofillers. However, 
they used a hybrid plate model in this study. 
Ansari et. al. [17,18] studied the static and 
dynamic response of functionally graded carbon 
nanotube (FG-CNT)-reinforced rhombic 
laminates using a cubic variation of thickness 
coordinate in the displacement field in terms of 
Taylor’s series expansion, which represents the 
higher-order transverse cross-sectional 
deformation modes. The final material properties 
of FG-CNT-reinforced rhombic laminates are 
estimated using the rule of mixture. The obtained 
numerical results were compared with the 
results available in the literature to verify the 
reliability of the present model. Finally, this study 

investigates the effect of CNT distribution, 
loading pattern, volume fraction, and various 
combinations of boundary constraints by 
developing a finite element code in FORTRAN. 
Md. Irfan Ansari and A. Kumar [19] studied the 
functionally graded carbon nanotube (CNT)-
reinforced doubly curved singly ruled composite 
truncated cone. In this study, the developed 
mathematical model contains the expansion of 
Taylor’s series up to the third degree of thickness 
coordinate and normal curvatures in in-plane 
displacement fields. In the developed model the 
condition of zero-transverse shear strain at the 
upper and lower surface of the truncated cone is 
applied. The advancement in the present 
mathematical model was the simultaneous 
inclusion of normal curvatures in the 
deformation field and twist curvature in strain-
displacement equations. After validation, a large 
number of flexural problems were presented by 
varying different boundary conditions, volume 
fractions, loading patterns, and geometric 
parameters, and the developed results show good 
agreement with experimental results. Ansari and 
A. Kumar [20] investigated the bending behavior 
of functionally graded carbon nanotube (CNT) 
reinforced doubly curved singly ruled truncated 
rhombic cone. For the analysis, a simple C0 
isoparametric finite element formulation based 
on third-order shear deformation theory was 
used. Finally, the proposed model was validated 
with analytical, experimental, and finite element 
results from the literature with good agreement. 
R. Kumar and A. Kumar [21] did a free vibration 
analysis of multiscale functionally graded plates, 
reinforced with a carbon nanotube using 
modified third-order shear deformation theory 
with a variation in transverse displacement. In 
the analysis, a rectangular nine-noded element 
containing 117 nodal unknowns at each element 
was considered. The top and bottom transverse 
shear stresses of the plate were considered zero. 
The effective elastic properties of the multiscale 
composite plate are estimated by the 
combination of the Halpin–Tsai equation and the 
homogenization scheme. After that various 
parametric study was done. Zghal et. al. [22-24, 
27-28] investigated the linear static, Free 
vibration, Nonlinear and large deflection based 
on the geometric nonlinearity behavior of 
functionally graded carbon nanotube-reinforced 
plates and shells. In the study five types of CNT 
distributions were considered, that is, uniform 
and four kinds of functionally graded 
distributions along the thickness of shell 
structures. The governing equations were 
developed based on a discrete double directors 
shell finite element. Finally, the overall structure 
behavior was studied with the effects of carbon 
nanotube volume fraction, length-to-thickness 
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ratio, boundary conditions, and other 
geometrical parameters. Frikha et. al [25-26] 
studied the dynamic behavior of functionally 
graded carbon nanotubes-reinforced plate and 
shell structures using a double directors finite 
shell element. The researchers also contributed 
to the field of functionally graded carbon 
nanotubes-reinforced thin composite shells using 
Finite rotation three and four nodes shell 
elements and, in the end, the predicted behavior 
of such structures was examined with good 
agreement. 

It may be observed from the above literature 
review that very few works are based on a 
thorough examination of functionally graded 
plates with the inclusion of agglomerated carbon 
nanotubes by applying higher-order shear 
deformation theory. This paper has, therefore, 
tried to develop a FEM based on a theory of HSDT, 
including the impact of the parameter above. A C0 
finite element model with seven nodal unknowns 
per node is used to conduct the analysis. Various 
CNT distributions through the thickness of the 
plate such as UD (uniformly distributed CNT) and 
FG-V (unsymmetrically distributed CNT) through 
the plate thickness with the effect of 
agglomeration are considered in the present 
analysis. The FGM property, which covers 
Young's Modulus (E) and Poisson Ratios (v), is 
represented by Eshelby–Mori–Tanaka approach 
of the two-parameter model of agglomeration of 
nano-Inclusions that are randomly dispersed [5]. 
The effects of agglomeration parameters ξ & ζ 
with three different types of CNT’s volume 
fraction distributions were considered in this 
research to get the static response of the simply 
supported square FG plate. Many parametric 
studies are conducted to generate new 
benchmark results. 

2. Material Modelling 

For any structural analysis, Material modeling 
is very important. The application of CNT-
reinforced composite structures demands to 
development of detailed modeling of the effective 
material properties of a such composite at the 
macroscopic level. Because molecular dynamics 
or other atomistic models are computationally 
intensive, micromechanical methods are used to 
describe the behavior of these materials in this 
work. Material modeling of FG-CNTRC is 
presented using the Mori-Tanaka method 
considering the effect of agglomeration of CNT for 
various types of CNT distributions. 

2.1. Material Modelling of FG-CNTRC 

The FG-CNTRC material is considered to be 
made up of an isotropic matrix (e.g., epoxy resin) 
and fiber (CNTs), with material qualities graded 

along the direction of thickness of the plate as per 
linear distribution (UD and FG-V) of the fraction 
of volume of CNTs (Fig.1). 

The volume fractions (Vcnt) of CNTs in two 
types of functionally graded carbon nanotube 
plates are stated as: 

*

*

( 1) ( )
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z
V Type V FG V CNT

h
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− = − −  
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V
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 
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(2) 

where, cntw  represents the CNT mass fraction 

and cntρ and mρ represent the densities of carbon 

nanotube and matrix, respectively. The material 
properties can be determined for this linear 
material property fluctuation by putting the 

value 
*

cntV into Eq. (1) for linear material 

property variation. 

 
(a) 

 
(b) 

Fig. 1. (a) Uniformly distributed CNT nanocomposite plate, 
(b) V-Shape distributed CNT nanocomposite plate. 

2.2. Modeling of Nanocomposite Material: 

For predicting the properties of the material 
of CNT-reinforced composites, several 
micromechanical models have been proposed. In 
this research, the Mori–Tanaka technique is used 
to estimate the elastic properties of the 
equivalent fiber/polymer material. The 
equivalent inclusion average stress technique, 
commonly known as the Eshelby–Mori–Tanaka 
method, is based on Eshelby's [8] equivalent 
elastic inclusion notion and Mori-Tanaka’s [6] 
concept of average stress inside the matrix. 
Benveniste's [9] revision of the effective modulus 
of elasticity tensor C of CNT-reinforced 
composites is as follows: 

( ) ( )
1

cnt r m m cnt r m
C V C C A V I V A C

−

= − + +  (3) 
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The symbol I is denoted as a fourth-order unit 
tensor. The matrix stiffness tensors are Cm, while 
the equivalent fiber stiffness tensors are Cr (CNT). 
The angle brackets in their overall configuration 
represent an average of all conceivable 
orientations for the inclusions Ar is the tensor of 
the concentration of dilute mechanical strain, and 
it can be calculated as follows: 

( )
1

1
( )

r r m m
A I S C C C

−
−

= + −    (4) 

Here symbol S represents the Eshelby tensor 
of the fourth order, as defined by Mura and 
Eshelby [8,10].  

Here, a single-walled carbon nanotube having 
a solid cylinder of 1.424 nm diameter with 
(10,10) chirality index [11] is used for the 
analysis.  

2.2.1. Randomly Oriented CNT-Reinforced 
Composites: 

Straight carbon nanotube orientation is 
shown by two Euler angles α and β, denoted by 
the arrows in Fig. 2. As a result, the base vectors 

ie of the global 
1 2 3

(0 )x x x−  coordinate system 

and the base vectors 
'

i
e of 

' ' '

1 2 3
(0 )x x x−  the local 

coordinate system are produced, which are 
related through the transformation matrix g, as 
follows: 

r

i ie ge=  (5) 

where g is given as: 

cos sin cos sin sin

sin cos cos cos sin

0 sin cos

g

    

    

 

−

= −

 
 
 
  

 (6) 

It is possible to characterize the orientation 
distribution of carbon nanotubes in composites 
by the function of probability density p (α, β) that 
meets the normalizing condition. 

2 / 2

0 0

( , ) sin 1p d d
 

     =   (7) 

Considering the random CNT orientation, the 
function of density for this case is, 

1
( , )

2
p  


=  (8) 

 
Fig. 2. Representative volume element (RVE) Composed 

of Randomly oriented, straight [12] 

Calculation of Hill's elastic moduli for the 
reinforcing phase was accomplished by analyzing 
the equivalence of the two matrices that are 
presented below.[13]: 
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(9) 

the terms kr, lr, mr, nr, and pr in Eq. (9) represent 
Hill’s elastic moduli for the reinforcing phase 
(CNTs) of the composite calculated by the inverse 
of the compliance matrix of the equivalent fiber. 
The values used for Hill’s elastic moduli in this 
study are given in Table 1 [16]. 

As for the composite's properties EL, ET, EZ, GLT, 
GTZ, GTZ, and νLT, which may be established using 
the rule of mixture technique, the first step is to 
determine the properties of the composite by 
performing a multiscale finite element analysis or 
molecular dynamics simulation analysis [14] on 
the composite. 

Here, the composite is considered isotropic 
when the carbon nanotubes are orientated 
randomly in nature in the matrix. For this the 
bulk modulus K and shear modulus G are 
calculated as follows: 

( )

( )

3

3

cnt r m r

NC m

m cnt r

V K
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−
=

+
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2
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

−
=

+
+  (11) 

The term Km and Gm are used for bulk and 
shear moduli of the matrix respectively. 
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(15) 

Finally, the modulus of elasticity and Poison 
ratio of a CNT-based nanocomposite material are 
as follows: 

9

3
NC

KG
E

G K
=

+
 (16) 

3 2

2( 3 )

K G
v

G K

−
=

+
 (17) 

Additionally, Vcnt and Vm represent the volume 
fractions of the carbon nanotubes and matrix, 
respectively, which fulfill the expression 
Vcnt + Vm = 1. Similarly, the mass density ρ is 
determined as follows: 

cnt cnt m m
V V  = +  (18) 

where 
m

  and 
cnt

  represents the mass density 

of matrix and carbon nanotubes, respectively. 

2.2.2. Agglomeration of Carbon Nanotubes 

A large proportion of carbon nanotubes in 
carbon nanotube-reinforced composites has 
been found to be concentrated in agglomerates. 
Nanotubes agglomerate into bundles due to van 
der Waals’s attractive interactions between 
them. After determining the material properties 
of FG-CNTRC without taking into account the CNT 
agglomeration effect, a new micromechanics 
model is developed and applied to a random-
oriented, agglomerated CNT-reinforced polymer 
composite to determine the effective properties 
of the material of a single-walled CNT reinforced 
polymer composite while taking into account the 
CNTs bundling effect. The influence of 
agglomeration on the elastic characteristics of 
CNT-reinforced composites having random 
orientation is investigated in the present study, 
which uses a two-parameter micromechanics 
agglomeration model to do this.  

As per Fig. 3, it can be seen that the elastic 
characteristics of the surrounding material are 
distinct from the areas where inclusions have 
concentrated nanotubes. 

2.2.2.1. Two Parameter Agglomeration Model 

In polymer matrix, the major cause of 
agglomeration of carbon nanotubes is a small 
diameter, due to which the elastic modulus gets 

reduced and the aspect ratio increases in the 
radial direction and hence produces low bending 
strength. Carbon nanotubes must be dispersed 
uniformly inside the matrix to achieve the 
desired features of CNT-reinforced composites. 
Here, a micromechanical model has been built to 
check the CNTs agglomeration effect on the 
effectiveness of carbon nanotube-enhanced 
elastic modules. 

Shi et. al. [5] found that a substantial number 
of CNTs are concentrated in aggregates in the 7.5 
% concentration sample. Carbon nanotubes are 
found to be unevenly distributed in the substrate, 
with a few areas having CNT concentrations 
larger than the average volume fraction. As 
illustrated in Fig. 3, these areas containing 
concentrated carbon nanotubes are considered 
spherical in this section and are referred to as 
'inclusions' having a mix of varying elasticity 
characteristics from the surrounding material.  

 
Fig. 3. Agglomeration of carbon nanotubes (CNTs) within the 

representative volume element (RVE) 

The total volume Vr of CNTs in the RVE may be 
separated into two parts:  

inclusion m

r r r
V V V= +  (19) 

where 
m

rV  and inclusion

rV are represented as the 

CNTs volume dispersed in the matrix and the 
inclusions (concentrated regions). 

To understand clearly the effect of carbon 
nanotube agglomeration, two parameters are 

introduced as   and  . 

,
inclusioninclusion

r

r

VV

V V
 = =  (20) 

where 
inclusion

rV  represents the volume of the 

RVE's sphere inclusions. In this case,   

represents the volume of the inclusion fraction 

related to the RVE's total volume V. Whenever  

is equal to one, CNTs are assumed to be 
distributed uniformly in the matrix, and as the 

value of decreases, the degree of agglomeration 

of carbon nanotubes becomes more severe (Fig. 5 

& Fig. 6). The symbol denotes the nanotubes 

volume ratio distributed in the inclusions to the 

total volume of the CNTs. When the value  is 1, 
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all of the nanotubes are concentrated in the 
sphere regions. This is true if all nanotubes are 

dispersed evenly (i.e.,  = ) throughout the 

matrix (Fig. 4). As the value   increases 

(i.e.,   ), the CNT’s spatial distribution 

becomes more. The average carbon nanotube 
volume fraction in the composite is denoted by 
Vcnt.  

r
cnt

V
V

V
=  (21) 

The carbon nanotube’s volume fractions in 
the inclusions and the matrix are calculated using 
Eqs. (19)-(21), and they are expressed as 

inclision

r

cntinclusion

V
V

V




=  (22) 

(1 )

1

m

cntr

inclusion

VV

V V





−
=

−−
 (23) 

 
Fig. 4. 1= =   (Without agglomeration) 

 
Fig. 5. 1,=     (Complete agglomeration) 

 
Fig. 6. ,      (Partial agglomeration) 

As a result, the Composite reinforced with 
carbon nanotubes is viewed as a system made up 
of sphere-shaped inclusions embedded in a 
hybrid matrix. CNTs can be found in both the 
matrix as well as in the inclusions also. Hence to 
compute the composite system's overall property 
first we have to estimate the inclusion’s effective 
elastic stiffness and then the matrix. 

Different micromechanics methods can be 
used to calculate the effective modulus of 
elasticity of the hybrid inclusions and matrix. 
Assuming that all CNT orientations are 

completely random and the nanotubes are 
transversely isotropic, the Mori-Tanaka scheme 
is used to estimate the hybrid matrix's elastic 
moduli, as described in the previous section. The 
carbon nanotubes are assumed to be oriented 
randomly within the inclusions, and thus the 
inclusions are isotropic. The term Kin and Kout 
represent the effective bulk moduli and Gin and 
Gout represent the effective shear moduli of the 
inclusions and matrix, respectively given as: 
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Following that, the composite's effective bulk 
modulus K and effective shear modulus G are 
computed using the method of Mori-Tanaka as 
follows: 
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where 

3 2
,

2(3
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,

3(1 ) (15 15 )
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K G
v

K G

v v

v v
 

−
=

+

+ −
= =

− −

 
 
 

 (30) 

Finally, the CNT-reinforced composite’s 
young modulus is calculated using Eq. (16). 

The mathematical formulations used in the 
next section are based on the following 
assumptions: 

a. The midplane of the plate is taken as the 
reference plane. 

b. The thickness of the plate is constant. 
c. The kinematics field may have a cubic 

variation of thickness term in the in-plane 
part and a constant variation of thickness 
in the transverse displacement. 

d. The interfaces are considered perfect. 
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3. Formulation  

3.1. In-Plane Displacement Fields and Strains 

The FGM plate's geometry used in this 
analysis is shown in Fig. 7. The plate's length and 
width are denoted by a and b, respectively, and 
its thickness is represented by h. The center of the 
FGCNT plate serves as the origin for material 
coordinates (x, y, and z). Plates are simply 
supported along their four edges, for the square 
plate. The aspect ratio considered is h/a = 0.1. 

The in-plane displacement variation of u, v, 
and displacement in transverse direction w 
across the plate thickness may be described as 
using Reddy's theory of higher-order shear 
deformation [15]. 

3

0 2

3

0 2
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4
( , , )

3

4
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( , )
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y y
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u x y z u z
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(31) 

where 
0

u , 0
v  and

0
w  signify the displacement of a 

point along the (x, y, z) coordinates located at 

mid-plane, respectively, x
  and y

  denotes the 

bending rotations in the y and x directions, 

respectively, and x  & y  denotes the shear 

rotations assumed in the x, y directions. 
The relationship between the strain 

component and the strain displacement is 
defined as follows: 

 

3

0

2

3

0

2

3 3

0 0

2 2

3

0

2

2

0

2

4

3

4

3

4 4

3 3

4

4

x x

y x

yx x x
m

x x

y y

u zu z
x x xhx

v zv
z

y y yhy

u v u vz z
z z

y x y x x y y yh h

u w w z

z x x h
v w w z
z y y h

 

 

  


 

 

     + −
    
 

   + −
    
 

      
+= = + − + + −  

        
   

+  + −
   

   +  + −   


 
 
 
 
 
  


 
 
 
 
 
 
  

 

(32) 

The overall strain may be represented as 
mechanical strains for plate analysis. 

   m =  (33) 

where 
m  represents the mechanical strain. 

Again, in terms of total strain, the mechanical 
strain may be represented as 

    
m

H =  (34) 

while  H  is the thickness coordinates-z function, 

and    is the function of x and y. 

 
Fig. 7. Geometry of the FGCNT Plate 

This describes the overall strain as, 

    H =  (35) 

3.2. Constitutive Relationship 

The relation between stress and strain for 
FGM is as follows: 

    Q =  (36) 

where constitutive matrix 

 
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 (37) 

In Eq. (37) the term Qij is derived from the FG 
material properties, depending on the plate's 
thickness (z) as shown below in Eq. (38). 
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Q Q
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Q Q
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= = =
+

 

(38) 

3.3. Virtual Work in FGCNT Plate 

The FGM plate’s virtual work may be 
represented as 

   
T

U dx dy dz  =   (39) 

With the help of Eq. (36), Eq. (39) can be 
rewritten as 

    
T

U Q dxdydz  =   (40) 

The following equation can be extended 
further using Eq. (35) as follows: 

       
TT

U H Q H dxdydz  =   (41) 

In Eq. (41) the matrix [Q] represents the 
constitutive matrix with elasticity derived from 
the constituent’s elastic properties as given in Eq. 
(37). While [H] represents the 5 x 15 order matrix 
and includes the terms z and h as described 
below: 
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(42) 

Finally, we can rewrite Eq. (41) as: 

    
T

U D dxdy  =   (43) 

where matrix represents the rigidity matrix 
vector. For which the corresponding expression 
is given in Eq. (44) shown below. 

       
2

2

h

T

h

D H Q H dz
−

= 
 

(44) 

4. Finite Element Formulation 

4.1. Element Description 

Fig. 8 illustrates the isoparametric Lagrangian 
element's geometry with nine nodes used in the 
analysis. In this element, there is a total of sixty-
three degrees of freedom (DoF) because each 

node has seven degrees of freedom (u, v, w, x
 , 

y
 , x  and y ). In the x-y plane coordinate 

system, this element has a rectangular geometry 
that is completely arbitrary. The element is 
transferred to  −  plane in order to get a 

rectangular geometry.  

 
Fig. 8. Nine Node Iso-parametric Element with node 

numbering 

The relationship between strain and 
displacement can be established using the nine 
shape functions as per node numbering given in 
Fig. 8. The vector of a strain can be expressed in 
the following way: 

    B X =  (45) 

In Eq. (45) matrix [B] represents the strain-
displacement matrix and matrix [X] represents 
the vector of nodal displacement for the element 
chosen and both matrices can be represented as 
follows: 

   
1 2 3 4 5 6 7 8 9

B B B B B B B B B B= , 

   
1 2 3 4 5 6 7 8 9

X X X X X X X X X X=  
(46) 

4.2. Governing Equations used for Static 
Analysis 

For the bending analysis of the FGCNT plate, 
the following equation is used to obtain the 
governing equation. The variation of the strain 
vector can be expressed as follows using Eq. (46). 

    B X =  (47) 

By combining Eqs. (43) & (47), the following 
expression can be obtained. 

       ( ) 
TT

U X B D B dx dy X =  
 

 (48) 

The vector of stiffness can be represented in 
the following manner using Eq (49). 

      
T

K B D B dx dy=   (49) 

5. Numerical results & discussion 

In this section, the static analysis of the FG 
plate with different distributions of carbon 
nanotube (Fig. 1) has been done by considering 
various agglomeration states as shown in Fig. 
(4)–(6). This section is separated into two 
distinct sections. The first phase involves a 
convergence study and validation of the current 
formulation for isotropic plates with varying 
aspect ratios, as no solution exists for the current 
problem. The conclusion is reported solely for the 
situation of uniformly distributed load. After 
confirming the effectiveness of the current 
formulation, the second step investigates the 
impacts of various agglomeration states on the 
central deflections and axial stresses of the FG 
plate. 

Table 1. Hill’s elastic moduli for several Single-Walled Carbon Nanotubes (SWCNT) [16]. 

Carbon nanotubes [GPa]rk  [GPa]rl  [GPa]rm  [GPa]rn  [GPa]rp  

SWCNT (10,10) 271 88 17 1089 442 
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5.1. Isotropic Plate Subjected to UDL Load Of 
Intensity q: Convergence and Validation 
Study: 

The dimension of the isotropic plate for 
analysis is taken as a = b. The coordinate 
system's origins (x, y, and z) are set to the plate's 
mid-plane (i.e., z = 0). For isotropic plates having 
E = 10.92 x 106 N/m2 and υ = 0.3 the 
Convergence study and validation study for 
displacement-associated parameters are carried 
out as shown in Table 2. Several values of aspect 
ratio h/a = 0.1, 0.01 are considered with simply 
supported boundary conditions. According to 
the results of the convergence investigation, a 16 
x 16 mesh is sufficient for flexural analysis when 
using the current isoparametric Lagrangian 
element with nine nodes. As a result, for all 
subsequent examples involving agglomerated 
functionally graded plates, a 16 x 16 mesh is 
used. The non-dimensional parameters for 
deflection at the center point, vertically applied 
load, and considered thickness coordinates (z) 

are: = /w w h , =
4

/
o m

q q E h , = /z z h . The results are 

compared with those represented by Sheikh et. 
al. which are based on a new plate-bending 
element based on higher-order theory, studied 
in the framework of the finite element method. 
For a thin plate ratio of h/a = 0.01, the present 
results are compared and very close agreements 
are noted between the results obtained from the 
two approaches. 

For the displacement field given in Eq. (31), 
the following types of boundary conditions are 
used in the analysis. 

Simply supported (SSSS): 

0
y y

v w  = = = = at x = 0, a  

0
x x

u w  = = = =  at y = 0, b 

Clamped (CCCC): 

0
x y y x

u v w    = = = = == =  at x = 0, a and y = 

0, b. 

Table 2. Central Deflection 4

100 /wD qa  square plate (SSSS) 

under the applied uniform load of intensity 
qo = 0.1 MPa. 

No. of Element 
Ref. [7]  
(h/a =0.01) 

Present 
(h/a=0.01) 

2 x 2 0.4264 0.1669 

3 x 3 0.4095 0.1297 

4 x 4 0.4089 0.2094 

6 x 6 0.4074 0.3355 

8 x 8 0.4071 0.3805 

12 x 12 0.4067 0.4009 

16 x 16 0.4066 0.4046 

After verification of the present model, the 
main aim of this study was to see the effect of 
agglomeration with various CNT distributions 
(Fig. 1) on a deflection at the center point of a 
simply supported square plate. These are 
presented in the next section. 

5.2. Flexural Behavior of CNT Reinforced 
Functionally Graded Simply Supported 
Square Plate with Three Different Stages 
of Agglomeration: 

In the following subsections, the flexural 
behavior of the square plate (Fig. 7) is evaluated 
using nine noded isoparametric Lagrangian 
elements with 16 x 16 mesh division, and further 
results are discussed in detail in Sections 5.2.1, 
5.2.2 & 5.2.3 with various agglomeration 
schemes namely, (i). square plate without 
agglomeration effect  = =( 1)  , (ii). Square plate 

with complete agglomeration effect   = ( 1, ) , 

(iii) square plate with partial agglomeration 
effect     ( , )  . The matrix material used in 

the study possesses the following elastic 
properties: Em=2.1 GPa, υm=0.34, and the 
properties of SWCNT (10,10) are listed in Table 

1. A value of *

cnt
V  is considered with a 

concentration value of 7.5 %, which indicates the 
presence of a large number of CNTs [2]. In all the 
above states, the influence of different boundary 
conditions (SSSS and CCCC) with two different 
CNT distribution (UD & FG-V) patterns is 
considered for the analysis. 

5.2.1. Square Plate Without the Agglomeration 
Effect: 

This study does not consider an 
agglomerated state, as ζ = ξ and its results serve 
as a reference for the next two agglomeration 
states as given in Sections 5.2.2 & 5.2.3.  It is 
understood that when compared to the other 
two distributions, the FG-V provides the best 
flexural behavior since its deflection assumes 
lesser values. This behavior is attained because 
the CNTs are in higher concentrations 
distributed to higher stress regions.  

Figure 9 shows the axial stress distribution 
across the plate thickness for the UD and FG-V 
distribution of CNTs without the agglomeration 
effect, noting that stresses are well distributed in 
the case of UD and FG-V distribution. One can see 
the stress distribution pattern in the case of UD 
follows a similar value of tensile and 
compressive stress above and below the 
midplane. While in the case of FG-V distribution 
there is gradual stress drop occurs because of 
CNT’ss fraction decrement below the midplane 
forming a V-type distribution pattern. 
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From Table 3 one can observe that the 
deflection values for no agglomeration case 
show intermediate behavior as compared to the 
other two states of agglomeration. From all the 
above parametric studies we can conclude that 
better flexural behavior is observed in case of no 
agglomeration as compared to complete and 
partial stages of agglomeration. 

Table. 3 Non-dimensional Central Deflection (w/h) for 

aspect ratio (h/a = 0.1) & *
0.075cntV =  
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Fig. 9. Variation of axial stress (σxx) through-the-thickness 
for square plate subjected to a normal pressure qo = -0.1 

MPa on the top surface without agglomeration case. 
ζ= 0.25 & ξ= 0.25. 

5.2.2. Square Plate with Complete 
Agglomeration Effect: 

This study comprehends a complete state of 
agglomeration, when ζ = 1 for three different 
values of   = [0.15, 0.45, 0.75] (i.e., complete 

agglomeration). It is assumed that in these 
agglomerated states, all CNTs are bundled into 
spherically shaped inclusions.  

From the three cases of complete 
agglomerations considered here, it may be 
observed that the worst flexural behavior occurs 
when   = 0.15, the CNT distribution is most 

diverse and aggregation is most severe. These 
three developed cases under a complete 
agglomeration state reveal that the bigger the 
difference between the values of agglomeration 
parameters, the more its elastic properties 
would be affected by the agglomeration of CNTs. 

In Table 4 it can be seen as  increases, the 

deflection values of UD and FG-V distributed 
CNT reinforced composite plate decrease. For 
the complete agglomeration case, the stiffness of 
the FG-V type distribution is less as compared to 
the UD distribution. Simultaneously the 
variation of non-dimensional axial stress (σxx) at 
the plate center for two boundary conditions 

(SSSS and CCCC) and aspect ratio (h/a) 0.1 and 
0.01 is also plotted as shown in Fig. 12 to clearly 
understand the behavior of UD and FG-V 
distributed CNT including nanocomposite plate 

for *

cnt
V = 0.075. From the stress diagram, it could 

be understood that stress variation across the 
thickness in the third case of the complete 
agglomeration state shows similar behavior to 
the other two states of agglomeration.  

The results presented in Table 4 itself show 
that for all cases of complete agglomerations, the 
FG-V CNT distribution has the worst flexural 
behavior when compared with the same state of 
agglomeration for UD distribution. Here to 
visualize the complete agglomeration behaviour 
one can see, for other higher values of parameter 
ζ, when the parameter   is taken as 0.15 

corresponding to ζ=1 (i.e., the most 
heterogeneous distribution of CNTs), shows a 
more severe level of agglomeration effect both 
for UD and FG-V type (Fig. 10 & 11). 

Table. 4. Non-dimensional Central Deflection (w/h) for 

aspect ratio (h/a = 0.1) & *
0.075

cnt
V = . 
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CNTRC 

FG-V 
CNTRC 

UD-
CNTRC 

FG-V 
CNTRC 

SSSS CCCC 

C
o

m
p

le
te

 
A

gg
lo

m
er

at
io

n
  ζ = 1,  

ξ=0.15 
0.01724 0.01788 0.00609 0.00631 

ζ =1,  
ξ=0.45 

0.01436 0.01514 0.00511 0.00536 

ζ = 1,  
ξ=0.75 

0.01290 0.01368 0.00464 0.00487 

0.2 0.4 0.6 0.8 1.0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

 V
*

cnt
=0.05

 V
*

cnt
=0.075

 V
*

cnt
=0.1

 V
*

cnt
=0.2

 V
*

cnt
=0.3

 V
*

cnt
=0.4

 V
*

cnt
=0.5

N
on

-d
im

en
si

on
al

 C
en

tr
al

 D
ef

le
ct

io
n 

(w
/h

)

  
(a) 

0.2 0.4 0.6 0.8 1.0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

N
on

-d
im

en
si

on
al

 c
en

tr
al

 d
ef

le
ct

io
n 

(w
/h

)



 V
cnt

=0.05

 V
cnt

=0.075

 V
cnt

=0.1

 V
cnt

=0.2

 V
cnt

=0.3

 V
cnt

=0.4

 V
cnt

=0.5

 
(b) 

Fig. 10. Non-dimensional central deflection of plate vs   

[(a) SSSS case, (b) CCCC Case] for Complete Agglomeration 

case ( 1, =  ) with UD distribution of CNT across the 

thickness direction of the plate. 
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Fig. 11. Non-dimensional central deflection of plate vs   

[(a) SSSS case, (b) CCCC Case] for Complete Agglomeration 

case ( 1, =  ) with unsymmetrical distribution 

 of CNT (FG-V Type). 
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Fig. 12. Variation of axial stress (σxx) through the thickness 
of square plate subjected to UDL of intensity qo = -0.1 MPa 
on the top surface for complete agglomeration case. (a) ζ=1 

& ξ= 0.15, (b) ζ=1 & ξ= 0.45, (c) ζ=1 & ξ= 0.75.  

Globally, one can say that for a completely 
agglomerated case, the more heterogenous the 
distribution, the higher the deflection values will be as 
compared to the UD distribution studied. It is also 
possible to conclude that besides the level of 
agglomeration, the UD distribution shows a better 
flexural behavior due to its even distribution of CNTs 
even in higher bending stress areas. 

5.2.3. Square Plate with Partial Agglomeration 
Effect: 

In this study the third possibility assumes 
that this case is distinct from the no 
agglomerated state or completely agglomerated 
state, hence being very important to achieve a 
plausible description of the level of 
agglomeration through the parameters ζ and ξ. 
Here, to investigate the flexural behavior of 
square plate for two assumed CNT distribution 
patterns (UD & FG-V), two different partially 
agglomerated situations were developed and 
evaluated as given in Table 5.  

Table. 5 Non-dimensional Central Deflection (w/h) for 

aspect ratio (h/a = 0.1) & *
0.075

cnt
V =  

Agglomeration 
Stage 

UD- 
CNTRC 

FG-V 
CNTRC 

UD- 
CNTRC 

FG-V 
CNTRC 

SSSS CCCC 

P
ar

ti
al

  
A

gg
lo

m
er

at
io

n
 

ζ=0.25, 
ξ=0.4 

0.0123 0.0129 0.0043 0.0046 

ζ=0.75, 
ξ=0.4 

0.01235 0.01306 0.0045 0.0047 

From Table 5, when comparing the two cases 
of partial agglomeration state, the best flexural 
behavior is achieved with ζ=0.25 and ξ=0.4, 
which corresponds to a case where there is less 
volume fraction of CNTs in agglomerated 
inclusions, as compared to the second case 
where ζ=0.75 and ξ=0.4.  
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It was also observed that deflection values 
remained unchanged despite the agglomeration 
effect compared to the results obtained for the 
no agglomeration state. Similarly, the conclusion 
can be drawn from the stress distribution 
diagram (Fig. 13) for this particular state that the 
stress distribution pattern and values are almost 
close to no agglomeration state for both types of 
CNT distributions (UD & FG-V). 

-0.04

-0.02

0.00

0.02

0.04

-4x10
6

-3x10
6

-2x10
6

-1x10
6 0 1x10

6
2x10

6
3x10

6
xx

th
ic

k
n

e
s

s
 o

f 
p

la
te

 (
h

)

 UD (SSSS)

 UD (CCCC)

 USFG (SSSS)

 USFG (CCCC)

 
(a) 

-0.04

-0.02

0.00

0.02

0.04

-4x10
6

-3x10
6

-2x10
6

-1x10
6 0 1x10

6
2x10

6
3x10

6
xx

th
ic

k
n

e
s

s
 o

f 
p

la
te

 (
h

)

 UD (SSSS)

 UD (CCCC)

 USFG (SSSS)

 USFG (CCCC)

 

(b) 

Fig. 13. Variation of axial stress (σxx) through-the-thickness 
for square plate subjected to a normal pressure qo = -0.1 

MPa on the top surface for partial agglomeration case 
(a)ζ=0.25 & ξ= 0.4, (a)ζ=0.75 & ξ= 0.4.  
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Fig. 14. Effect of agglomeration parameter ( , )   on non-

dimensional central deflection [(a) SSSS case, (b) CCCC 
Case] of uniformly distributed CNT reinforced 

square (a = b =1) nanocomposite plate. 

From Fig. 14, it can be observed that 
agglomeration reduces the stiffness, which if not 
considered gives overestimated values. For this 
Fig. 14 is plotted between non-dimensional 

central deflection and various values of 
*

cnt
V . 

6. Conclusions 

Under mechanical loading, the behavior of 
FGCNT plates with an agglomeration effect is 
investigated using an efficient C0 FE model using 
the theory of HSDT. It is possible to compute the 
effective material properties of agglomerated 
carbon nanotube reinforced plate by utilizing a 
two-parameter agglomeration model based on 
the Eshelby–Mori–Tanaka scheme for dispersed 
nano-inclusions oriented randomly in nature, 
which is again briefed from the Eshelby–Mori–
Tanaka technique. The study's key findings are 
outlined below. Because carbon nanotubes tend 
to agglomerate at very little CNT volume 
fractions, an important conclusion can be drawn:  

• Failing to account for the effect of CNT 
agglomeration may result in an 
overestimation of the elastic properties 
of CNT-reinforced nanocomposite, 
resulting in a less accurate prediction of 
structural behavior. 

• The non-dimensional central deflection 
increases for a lesser value of   & ζ=1 in 

case of complete agglomeration. 

• The non-dimensional central deflection 
without agglomeration (ζ= ) shows 

better flexural behavior as compared to 
the complete and partial state of 
agglomeration. 
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• The flexural behavior in the case of the 
partial agglomeration state is 
approximately close to that without the 
agglomeration state. 

• The UD distribution shows better 
flexural behavior in all three stages of 
agglomeration as compared to FG-V type 
CNT distribution through the thickness. 

• In the present study, a new model has 
been proposed that considered the effect 
of agglomeration in CNT-reinforced 
plates using the HOST theory. Finally, 
new results are generated which should 
be useful for future studies. 

Nomenclature 

CNT Carbon nanotube 

FG Functionally Graded Materials 

H Thickness 

UD Uniformly Distributed 
*

cnt
V  Carbon nanotube volume fraction 

SSSS All four edges simply supported 

CCCC All four edges clamped 

FG-V 
V-Type CNT distribution pattern along the 
thickness direction 

 , ζ Agglomeration parameter 

Ni Shape function 
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