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Composite shells find extensive application in modern civil, aerospace, and marine 

structures. In order to avoid resonance, such load-carrying shells need to be optimized 

from a frequency perspective. Composite shell structures often include cutouts for 

different functional requirements. Obtaining the best combination of design variables like 

degree of orthotropy, ply orientation, shallowness of the shell, and eccentricity of cutout 

of laminated shells leads to a problem of combinatorial optimization. This article attempts 

a numerical study of the free vibration response of composite stiffened hypar shells with 

cutout using finite element procedure and optimization of different parametric 

combinations based on the Taguchi approach. Numerical investigations are carried out 

following the L27 Taguchi design with four design factors, viz., fiber orientation, 

width/thickness factor of shell, degree of orthotropy, and position of the cutout for 

different edge constraints. For different shell boundaries considered here, the 

width/thickness factor emerges as the most influencing factor followed by a degree of 

orthotropy. The optimum parametric combination for the maximum fundamental 

frequency of cutout borne stiffened hypar shell is obtained from the analysis. 

 

1. Introduction 

Competitive demands like lightweight, 
reduced cost, environment-safe, sustainability, 
dimensional stability, etc. have led to the 
development of laminated composites. 
Composites find extensive use in different 
structural applications of mechanical, aerospace, 
and civil engineering. Fibre-reinforced 
composites help in the reduction of noise 
transmission and vibration of structures due to 
high internal damping. Accordingly, laminated 
composite is a material of choice for structural 
designers. Among various shell forms, 
aesthetically appealing skewed hypar shells are 
widely used in roof structures demanding large 
column-free areas. Examples include hangers, 
auditoriums, exhibition halls, railway stations, 
etc. Shell boundaries are quite often kept free to 
meet practical requirements. Thin-walled shell 
structures do perform better when provided with 
stiffeners, particularly when cutouts are present 
on the shell surface. Cutouts become a necessity 

in structural roofs for several requirements like 
the passage of light, accessibility to different 
parts, venting, alteration of resonant frequency, 
etc. The vibration frequencies of laminated 
panels depend on laminations, edge conditions, 
shell dimensions (thickness, length), and cutout 
(size and position) [1-3]. Therefore, for cutout 
borne stiffened hypar shells with various 
material systems and geometric shapes, 
obtaining an appropriate combination of 
lamination angle, thickness, cutout position, and 
end conditions for maximization of the 
fundamental frequency becomes an interesting 
problem. This is more so because fundamental 
frequency needs to be higher to skip any 
resonance effect occurring from ground 
vibrations and other natural disturbances. 
However, there has not been much activity in this 
respect perhaps due to the complexities involving 
so many shell parameters and complicated 
algorithm flow as well.  

Design of stacking sequence for optimization 
of vibration frequency of laminated structures is 
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a common approach [4-6]. Discrete material 
optimization [7] using a finite element approach 
has also been attempted for the optimization of 
fiber angle and material. A genetic algorithm is 
employed for the optimization of composite 
structures with respect to vibration and buckling 
[8-10]. A modified feasible direction technique 
was utilized [11, 12] to maximize the 
fundamental frequency for varying thickness 
ratios and aspect ratios of shells. Other modern 
advanced heuristic algorithms [13-21] were also 
utilized for the stacking sequence design of 
composites. However, features of most heuristic 
algorithms are random in the search process. 
Accordingly, local optimum or pre-convergence 
may occur if initial parameters are unsuitable. 
Reliable optimization results depend only on the 
designers’ experience. Also, the computational 
cost of heuristic algorithms is relatively high. 
Thus, researchers are in the search of alternative 
ways of optimization [22]. Shahgholian-
Ghahfarokhi and Rahimi [23] recently used the 
Taguchi approach [24] to consider a sensitivity 
study of the vibration of composite sandwich 
cylindrical shells having grid cores. The dynamic 
behavior of plates and shells made of different 
types of materials has been analyzed [25-27]. 
Galerkin method coupled with higher order shear 
deformation theory has been used for analyzing 
the stability and vibration behavior of the such 
structure under different types of loadings [28-
33]. 

Despite a good number of studies on the 
maximization of fundamental frequency by 
appropriate design of stacking sequence, 
extensive scrutiny of the literature reveals a 
paucity of reports on optimization of the fiber 
orientation, dimension, thickness, material 
orthotropy, and position of the cutout for 
different edge constraints leading to the 
maximum fundamental frequency of laminated 
shells.  

This study of stiffened hypar shells considers 
the application of the Taguchi method [24] along 

with an efficient finite element formulation to 
determine the suitable combination of multi-
parametric design optimization to yield the 
maximum frequency of cutout borne shell. 
Taguchi orthogonal design is applied with four 
design factors namely, fiber orientation, width-
to-thickness, level of orthotropy of the composite, 
and position of the cutout as independent 
variables. Taguchi analysis is performed to obtain 
the suitable combination of factors that results in 
maximum fundamental frequency. A 
confirmation analysis verified the optimal 
parametric combination obtained from the 
Taguchi approach. Analysis of variance (ANOVA) 
was performed to get the significant design 
factors and the level of significance of their 
interactions. 

2. Taguchi Method 

Taguchi method [24, 34] employs orthogonal 
array (OA) based experiments that help in 
reducing the variance with the optimum 
combination of control factors. For achieving the 
same, it integrates the design of experiments 
(DOE) technique with the optimization of control 
factors. For performance analysis, traditional 
experimental designs use the average of 
characteristics while the Taguchi method is 
based on the effect of variation of the 
characteristics. In essence, the performance of 
the system becomes insensitive to the variation 
of noise factors. Standard OA helps to evaluate 
the ability of design parameters in controlling the 
variability of a particular characteristic by 
performing the least number of tests. 

Thus, the Taguchi method considers the total 
design space using a reduced number of 
experiments to evaluate all of the design factors 
and interactions. The optimal setting of the 
design factors for maximizing the objective 
function is thus obtained. The factor trends and 
noise sensitivities are also obtained. The 
flowchart in Taguchi design is shown in Fig. 1. 

 
Fig. 1. Flow chart in Taguchi design 
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Taguchi optimization uses signal-to-noise 
(S/N) ratio as the objective function. The S/N 
ratio considers the mean (signal) as well as the 
variability (noise). It depends on the type of 
design. Three types of S/N ratios are defined: 
Type LB: lower is better, Type HB: higher is 
better, and Type NB: nominal is best. The 
combination of factor levels that yields the 
maximum value of the S/N ratio is the optimal 
condition. For the current study, fundamental 
frequency needs to be maximized, thus HB 
characteristic is to be used. Moreover, ANOVA 
[35] is performed to obtain the significant factors. 
S/N ratio analysis and ANOVA together yield the 
suitable setting of the design factors that 
optimizes the objective function. Finally, the 
confirmatory run verifies the optimal setting of 
factors obtained from the analysis. 

The main advantage of the Taguchi method is 
that it considers a mean performance 
characteristic value close to the target rather 
than a value within specified limits. The Taguchi 
method is simple and easy to apply. Thus it is a 
powerful yet simple tool for optimization without 
the requirement for a large amount of 
experimentation. Hence it is cost-effective and 
less time-consuming. On the other hand, the main 
demerit of the method is that the results obtained 
are only relative and do not exactly point out 
which parameter has the highest effect on the 
performance characteristic. Moreover, since 
orthogonal arrays do not test all variable 
combinations, this method is not recommended if 
relationships between all variables are sought. 
Also, the Taguchi method fails to account for all 
interactions between parameters. The other 
demerit of the method is its offline nature. Thus it 
can not be applied for dynamically varying 
situations. Since the Taguchi approach deals with 
designing quality rather than correcting for poor 

quality, it is most effective and also 
recommended for early stages of process 
development only. Accordingly, in the present 
study, Taguchi methodology is applied to 
determine the combination of parameters that 
yield the maximum fundamental frequency of 
composite stiffened hypar shell in presence of 
perforations in the form of the cutout. 

3. Finite Element Approach 

A hypar shell with a twist radius of curvature 
Rxy is shown in Fig. 2. Here, a and b are the length 
and width in the plan while c is the rise of the 
shell, a/ and b/ are the length and width of the 
cutout. 1st order shear deformation theory is 
followed here and accordingly, the displacements 
are given as: 

( ) ( )yxzyxuu x ,,0 +=  

( ) ( )yxzyxvv y ,,0 +=    (1) 

( )yxww ,=  

Here u, v, and w denote the displacements in 
three axial (x, y, z) directions; x  and 

y  denote 

the rotations of the transverse normal about the 
y- and x-axes respectively. The laminated hypar 
shell is modeled using eight-noded isoparametric 
shell elements. Five degrees of freedom are 
considered for each node.  

The element stiffness matrix is formulated 
using the reduced integration rule and minimum 
energy principle. Now, for composite materials, 
the constitutive matrices at the elementary level 
need to be obtained prior to the formulation of  
the stiffness matrices from the element to the 
global level. Here, each lamina is considered to be 
an orthotropic layer (Fig. 3).  

 
Fig. 2. Geometry of cutout borne stiffened hypar shell 
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Fig. 3. Coordinate systems of laminated shell 

For an element, the stress-strain relationship 
in the material coordinates (1, 2, 3) is written as: 
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Here,  / ,  / ,  /  and  /  are the stress 

and strain components (in-plane stress, shear 
stress, in-plane strain, and shear strain 
respectively) for a lamina in the material 
coordinates (1, 2, 3). 21 and denote shear 

correction factors. E11 and E22 denote elastic 
moduli, while G12, G13, and G23 denote shear 
moduli of a lamina with respect to axes 1, 2, and 
3. 12, 21 denote Poisson’s ratios. 

The constitutive equations applicable for the 
lamina expressed in the element coordinates  
(x, y, z) are given as: 

     1Q= ;      /

1 1 11

T
Q T Q T =   ,        (4) 

     2Q= ;      /

2 2 22

T
Q T Q T =  

,        (5) 

 
















−−

−=







22

22

22

1

sincoscossin2cossin2

cossincossin

cossinsincos

T

 

2

cos sin

sin cos
T

 

 

 
    

 
=

−
          (6) 

Here, θ is taken anti-clockwise about the z-
axis measuring from the x-axis to 1-axis. It may be 
noted here that the local coordinate system  
(x, y, z) for the element is a curvilinear one (Fig. 
3) and is separate from the global coordinates  
(X, Y, Z) of the structure. 

The strain-displacement relationship, 
constitutive equations, and formulation of 
stiffness and mass matrices have been provided 
elsewhere [25]. The modeling of the cutout with 
stiffeners is also presented [36, 37]. For 
stiffeners, the shear correction factor is usually 

considered as 5/6. The effect of the eccentricity 
of stiffeners is included by calculating the 
sectional parameters at the mid-surface of the 
shell. The connectivity matrix helps in matching 
the nodes of the stiffener and those of the shell. 
The assembly of element stiffness matrices yields 
the global matrices. The summation of the 
appropriate matrices of the shell and that of the 
stiffeners matched at respective nodes yield the 
shell mass matrix. Then assembling the element 
mass matrices yield the global matrices. 

The position of the cutout along with its size is 
incorporated as input in the finite element code 
that generates non-uniform mesh on the shell 
surface. The element size is suitably controlled to 
decrease gradually near the cutout margins. 
Convergence analysis is considered for all the 
shell problems taken up here. 

Assembly of all the mass matrices and 
stiffness matrices of individual elements yields a 
global mass matrix  0M and global stiffness 

matrix  0K  respectively. The equation of motion 

of the shell is then written as : 

      0
2

0 MK =           (7) 

Here,  is the natural frequency of the shell 
under consideration and   is the displacement. 

Now, the boundary conditions are 
incorporated in Eqn. (7). Then it is solved by the 
subspace iteration technique to obtain . Non-
dimensional frequency is then obtained as 

 ( ) 2/12
22

2 / hEa = where  is material 

density and h is the shell thickness. 

4. Design of Experiments 

DOE helps in analyzing the effect of design 
factors on the response characteristics. Here, the 
response is the fundamental frequency of the 
shell which is an unknown function of design 
factors. A large number of factors may influence 
the fundamental frequency. However, existing 
literature reveals that the fundamental frequency 
of laminated shells is mostly influenced by the 
lamination angle (A), width/thickness factor of 
the shell (B), and degree of orthotropy of the 
material (C). The shell material considered here 
is orthotropic and the degree of orthotropy is 
defined as the ratio of longitudinal to transverse 
Young’s modulus ( 2211 / EE ). Thus these are 
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taken as design factors along with their 
interaction. Also, it is well documented in the 
literature that the position of cutout (D) 
influences the fundamental frequency of cutout 
borne shells. Thus, the position of cutout (D) is 
taken as the fourth design factor. Table 1 exhibits 
the levels of design factors within the operating 
range of the factors. The purpose of choosing 
three levels is to consider the curvature or non-
linearity effects. This study is employed to 
consider the free vibration of laminated hypars 
with stiffeners and cutouts. The response 
variable here is the fundamental frequency. The 
design factors are optimized with the aim to have 
the maximum fundamental frequency of the shell. 

According to Taguchi's philosophy, the choice 
of suitable OA is governed by consideration of 
degrees of freedom (DOFs). The DOF of chosen 
OA needs to be larger than or at least equal to the 
total DOFs needed for the analysis. In the present 
study, there are four design factors and each 
factor has three levels. For this three-level run, 
each main factor has (3-1) DOF. Thus, the DOF of 
four main factors is 4x(3-1), i.e., 8. The DOF for 

three two-way interactions (AxB, AxC, BxC) is 3x 
(3-1) x(3-1), i.e., 12. Hence, the total DOFs 
required for the analysis is 20. Accordingly, an 
L27 OA is chosen as It has 26 degrees of freedom 
(DOF). It contains 27 rows, each row corresponds 
to a test run. There are a total of 13 columns (all 
are not shown here in Table 2 for brevity). 1st 
column is alloted to lamination angle (A), 2nd 
column is alloted to the b/h ratio (B), the 5th 
column is alloted to material orthotropy (C), and 
the 9th column is alloted to the position of cutout 
(D). Six columns (3rd, 4th, 6th, 7th, 8th, 9th, and 11th) 
are considered for two-way interactions, and the 
rest three columns (10th, 12th, and 13th) are 
considered for error terms. The trial run is 
governed by the combination of the design 
factors and the same is shown in Table 2. It may 
be noted that for a full factorial design that 
considers four factors at three levels, the number 
of trial run required is 3x3x3x3 =81. On the other 
hand, L27 OA needs only 27 runs, i.e., a part of the 
full factorial design. Moreover, the array is 
orthogonal; and thus factor levels carry equal 
weights throughout the design space. 

Table 1. Design factors along with level settings 

Design factors Notation in OA 
Levels 

1 2 3 

Lamination angle (  degree) A 30 45 60 

Width/thickness factor, b/h  B 20 50 100 

Degree of orthotropy, 2211 / EE  C 10 25 40 

Position of cutout ),( yx  D (0.2, 0.2) (0.3, 0.3) (0.4, 0.4) 

Table 2. Experimental layout based on L27 OA 

Trial No. 
Lamination angle 
(A) 

Width/thickness factor of 
the shell (B) 

Degree of 
orthotropy (C) 

Position of 
cutout (D) 

1 1 1 1 1 
2 1 1 2 2 
3 1 1 3 3 
4 1 2 1 2 
5 1 2 2 3 
6 1 2 3 1 
7 1 3 1 3 
8 1 3 2 1 
9 1 3 3 2 
10 2 1 1 2 
11 2 1 2 3 
12 2 1 3 1 
13 2 2 1 3 
14 2 2 2 1 
15 2 2 3 2 
16 2 3 1 1 
17 2 3 2 2 
18 2 3 3 3 
19 3 1 1 3 
20 3 1 2 1 
21 3 1 3 2 
22 3 2 1 1 
23 3 2 2 2 
24 3 2 3 3 
25 3 3 1 2 
26 3 3 2 3 
27 3 3 3 1 
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5. Numerical Analysis 

In this section, laminated stiffened hypars 
with the cutout are considered with eight types of 
end conditions, viz.,  SSSS, CCCC, CSCS, CSSC, 
FCCF, FCFC, FSFS, and FSSF. However, for brevity, 
the results of the SSSS boundary condition are 
explained in detail. The support conditions at 
edges are denoted by using the support as 
clamped support (C), simply supported (S), and 
free end (F) taken in an anti-clockwise order from 
the boundary x=0. This follows that a shell with 
FSFS boundary is free along the edge x=0, simply 
supported along the edge y=0 and free along the 
edge x=a and simply supported along the edge 
y=b. The shells are taken in square plan form 
(a=b) as well as the cutouts (a/=b/). The stiffeners 
are arranged along the cutout edge and spread up 
to the edge of the shell. The laminate layups of the 
shells are [(θ/-θ)10], i.e., a twenty-layer anti-
symmetric angle ply laminate is selected for 
analysis. The non-dimensional coordinates of the 
cutout centre are denoted by (𝑥̅ = 𝑥/𝑎, 𝑦̅= y/a,). 
In order to validate the stiffener formulation, the 
natural frequency of a centrally stiffened clamped 
square plate (length = width = 0.2032 m, 
thickness = 0.0013716 m, depth of stiffener = 
0.0127 m, width of stiffener = 0.00635 m, 
stiffener is placed eccentric at bottom, plate 
material: E = 6.87x1010 N/m2,  = 0.29,  = 2823 
kg/m3) is obtained by the present approach. The 
results in Table 3 show good agreement between 
the present approach and with literature results 
[38, 39]. For validation of cutout formulation, the 
free vibration problem of the hypar shell with 
(0/90)4 lamination with the cutout is taken up. 
Shell dimensions are taken as: a/b=1, a/h=100, 
a//b/=1, c/a=0.2; while material properties are 
chosen as: E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 
0.5E22, 12 =21 =0.25. Table 4 provides the 
fundamental frequencies of cutout borne shell 
and the present method compares well with 
literature results [40]. Thus both stiffener 
formulation and cutout formulation for the 
present code is validated with benchmark results. 

Next, the fundamental frequency of stiffened 
hypars with the cutout is obtained as the trial run 
mentioned in L27 OA based on the combination 
of design factors. The same is then subjected to 
S/N ratio analysis, ANOVA analysis, and 
validation study. S/N ratio analysis of test data is 
done using Minitab [41]. As fundamental 
frequency needs to be maximized, the higher is 
better (HB) criterion of S/N ratio analysis is 
chosen here. S/N ratios of data (fundamental 
frequency) are calculated by the following 
relation (n is the number of observations, iy  is 

examined data): 
















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Table 3. Fundamental frequency (Hz) of a clamped plate 

Ref. [38] 
Ref. [39] Present 

method N8 (FEM) N9 (FEM) 

711.8 725.2 725.1 733 

Table 4. Fundamental frequencies ( ) of cutout 

borne shell 

a//a 

Simply supported 
shell 

Clamped shell 

Ref. [40] 
Present  
model 

Ref. [40] 
Present  
model 

0.0 50.829 50.825 111.600 111.612 

0.1 50.769 50.779 110.166 110.233 

0.2 50.434 50.400 105.464 105.443 

0.3 49.165 49.178 101.350 101.490 

0.4 47.244 47.141 97.987 97.991 

6. Results and Discussion 

Table 5 shows the fundamental frequency for 
the SSSS shell obtained from finite element 
analysis following sequential trials as per L27 OA 
and the corresponding S/N ratios. DOE being 
orthogonal, the effect of each parameter can 
easily be separated at different levels. Thus, the 
mean S/N ratio for factor A at level 1 is obtained 
by taking the average of S/N ratios for 
experiments 1-9 and so on. The mean S/N ratio 
for all levels of each factor A-D is presented in the 
response table (Table 6). The total mean of the 
S/N ratio is obtained as 24.08 for the SSSS shell. 
Table 6 also includes the delta value of every 
design factor. Depending on the delta value, 
design factors are given ranks that help to decide 
the impact of factors on the fundamental 
frequency. Table 6 shows that depending on delta 
value, width/thickness parameter (B) gets the 
rank 1, Degree of orthotropy (C) gets the rank 2, 
lamination angle (A) gets the rank 3 and cut-out 
location (D) gets the rank 4. Thus, B has the 
maximum influence in determining the 
fundamental frequency for the SSSS shell. 

The main effect plot helps to observe the 
effect of design factors on the fundamental 
frequency of the concerned structure. It also 
identifies the optimal parametric combination 
that yields the maximum frequency. Figure 4 
shows the main effect plot for the SSSS shell. The 
type of the plots explains the significance of the 
factors and their level of significance. If the 
inclination of the plot of a factor is the highest, 
then that factor has greater influence while the 
gentle slope of a factor means less influence. 
Figure 4 shows that the plot of factor B yields the 
highest inclination while that of factors C, A, and 
D are in decreasing order. Hence factor B is the 
most influencing one and other factors have little 
influence. It is evident from Fig. 4 that B has the 
highest S/N ratio at the lowest level whereas 
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factor C has the highest S/N ratio at its highest 
level, factor A contains the highest S/N ratio at 
the middle level, and factor D yields the highest 
S/N ratio value at its highest level. 

Table 5. Non-dimensional fundamental frequencies and 
 S/N ratios for SSSS shell 

Trial No. Fundamental frequency S/N Ratio 

1 18.037 25.12 

2 25.804 28.23 

3 31.116 29.85 

4 10.211 20.18 

5 14.667 23.32 

6 16.453 24.32 

7 8.535 18.62 

8 10.624 20.52 

9 14.269 23.08 

10 21.563 26.67 

11 30.612 29.71 

12 36.373 31.21 

13 11.609 21.29 

14 15.778 23.96 

15 19.746 25.90 

16 8.35 18.43 

17 12.806 22.14 

18 15.747 23.94 

19 18.516 25.35 

20 25.184 28.02 

21 31.301 29.91 

22 9.74 19.77 

23 14.508 23.23 

24 17.858 25.03 

25 8.458 18.54 

26 12.157 21.69 

27 12.587 21.99 

The optimal parametric combination is the 
one where the S/N ratio achieves the maximum 
value. Accordingly, the optimal combination for 
highest fundamental frequency is A2B1C3D3, i.e., 
450 lamination angle, width/thickness value 20, 

2211 / EE  ratio 40 and cut-out location (0.4, 0.4). 

Figure 5 represents the two-way interaction plot 
for SSSS shells. In an interaction graph, non-
parallelism between lines means the occurrence 
of some level of interaction while intersecting 
lines indicate the occurrence of a significant 
interaction. In Fig. 5, non-parallel lines are 
obtained for (A×B) and (A×C) which implies that 
interaction is present for SSSS shells. 

Table 6. Response table for SSSS shell 

Level A B C D 

1 23.7 28.23 21.56 23.71 

2 24.81 23 24.54 24.21 

3 23.73 21 26.14 24.32 

Delta 1.11 7.23 4.59 0.61 

Rank 3 1 2 4 

ANOVA provides the significant design factors 
and interactions which mostly impact the total 
variance of obtained data. The results of ANOVA 
for SSSS shells are included in Table 7. Along with 
F-ratio and P-value, the ANOVA table includes the 
% contribution of design factors. F-ratio justifies 
whether a factor or interaction is significant or 
not. A factor having a Higher F-ratio value for a 
factor indicates that the factor has a higher 
impact. For SSSS shells, B receives the highest F-
ratio value. Factors C and A follow the same. 

 
Fig. 4. Main effects plot of S/N ratios for SSSS shell 
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Fig. 5. Interaction plot of S/N ratios for SSSS shell 

This implies that the width-to-thickness 
factor (B) is the most dominating factor while the 
degree of orthotropy (C) and lamination angle (A) 
have some significance. Among the interaction 
parameters, (A×B) and (A×C) have some 
significance. P-values of all the factors (except D) 
are below 0.005, which indicates that A, B, and C 
all are significant factors in controlling the 
fundamental frequency of SSSS shells. Table 7 
also includes the percentage contribution of each 
factor and interaction. Here B has 69.91% 
contribution and C has 27.16% contribution 
whereas other factors and interactions 
contribute little. 

The coefficient of determination value for the 
present analysis of SSSS shells is 99.87%. The 

normal probability plot in Fig. 6 verifies that the 
model is adequate. It correlates the predicted 
values with the data obtained from numerical 
analysis (finite element procedure). Figure. 6 
reveals that all these data approximately lie on a 
straight line. Thus it establishes the adequacy of 
the analysis. The residual versus the fitted value 
of frequency is plotted in Fig. 6 and it can be seen 
that fitted values do not form any definite 
pattern, in other words, these are scattered. Thus 
adequacy of the model is confirmed by this. The 
data independency is checked by plotting 
residuals against test order, as included in Fig. 6. 
The residuals plot justified that no predictive 
pattern can be seen and all the residuals are 
scattered within allowable limits.  

 
Fig. 6. Residual plots for SSSS shell 
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Table 7. ANOVA result for SSSS shell 

Source DF Seq SS Adj SS MS F P % 

A 2 7.226 7.226 3.613 46.77 0 2.01 

B 2 251.091 251.091 125.545 1625.25 0 69.91 

C 2 97.571 97.571 48.786 631.56 0 27.16 

D 2 1.908 1.908 0.954 12.35 0.007 0.53 

A*B 4 0.481 0.481 0.12 1.56 0.299 0.13 

A*C 4 0.353 0.353 0.088 1.14 0.42 0.09 

B*C 4 0.045 0.045 0.011 0.15 0.958 0.01 

Error 6 0.463 0.463 0.077    

Total 26 359.139      

S=0.277933 R-Sq=99.87% R-Sq (adj.)=96.64%  

 

Lastly, a confirmatory test compares the 
initial factor setting with the optimal factor 
setting. It helps in obtaining the improvement in 
the final optimal result. The optimal setting of 
design factors is obtained using the following 
equation: 

( )
=

−+=

o

i

mim

1

          (9) 

Here, m represents the total mean of data, i

denotes the mean of data at optimal combination, 
while o denotes the number of design factors 
with significant influence on the fundamental 
frequency. Table 8 provides the results of the 
confirmation test for SSSS shells. The S/N ratio 
gets improved by 7.04 dB (29.03%) compared to 
the initial condition. Thus, significant 
improvement is obtained through this procedure. 

For other boundary conditions (CCCC, CSCS, 
CSSC, FCCF, FCFC, FSFS, and FSSF), a similar 
analysis is performed, however, details are 
omitted for brevity. Instead, salient observations 
are mentioned here. From ANOVA analysis 
results for all these boundary conditions, a 

summary of the contribution of the design factors 
on the fundamental frequency of shells is shown 
in Table 9. It is seen from the present study that 
in general with a number of boundary constraints 
play a pivotal role in controlling the fundamental 
frequency. Width/thickness factor (B) is the most 
dominating factor for deciding the frequency of 
all shell boundary conditions except CCCC shells. 
In the CCCC shell, the degree of orthotropy (C) is 
the most effective one. As the number of edge 
constraints is maximum in the CCCC shell, the 
stiffness of the shell is also maximum. So for 
shells with an increased number of e constraints, 
the rate of change of stiffness due to change in 
material orthotropy is higher than the rate of 
change of stiffness with lamination thickness. It is 
also found from the present study that the 
arrangement of boundary constraints has a 
significant influence on the fundamental 
frequency. 

For CCCC shells, contributions of B and C are 
39.58% and 57.45%. For CSCS shells, the same 
contributions are 64.81% and 28.44% while for 
CSSC shells these are 66.31% and 32.22% 
respectively. 

Table 8. Confirmation table for SSSS shell 

 Initial setting Predicted setting FE Analysis 

Level A2B2C2D2 A2B1C3D3 A2B1C3D3 

Fundamental frequency 16.305  36.698 

S/N ratio (dB) 24.25 29.8 31.29 

Table 9. Summary of contribution (%) of design factors for different shell boundaries 

Shell 
boundaries 

Lamination 
angle (A) 

Width/thickness 
factor (B) 

Degree of orthotropy 
(C) 

Position of 
cutout (D) 

CCCC 1.29 39.58 57.45 0.21 

CSCS 5.67 64.81 28.44 0.33 

CSSC 0.44 66.31 32.22 0.02 

SSSS 2.01 69.91 27.17 0.53 

FCCF 0.13 69.41 29.81 0.11 

FCFC 18.99 53.45 25.71 0.51 

FSFS 0.24 77.80 21.27 0.03 

FSSF 0.16 72.12 27.45 0.02 
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Similarly for FCCF shells, contributions of B 
and C are 69.41% and 29.81%; for FCFC shells, 
contributions of A, B and C are 18.99%, 53.45% 
and 25.71% respectively. For FSFS shells, 
contributions of B and C are 77.80% and 21.27% 
and for FSSF shells, these are 72.12% and 27.45% 
respectively. It is interesting to note here that 
when two opposite boundaries are clamped and 
the other two are free (FCFC shell), the 
lamination angle significantly influences the 
fundamental frequency. This is because, with 
variation in lamination angle, the direction of 
fiber lay changes. Accordingly, the stiffness of the 
shell is high when the fibers are laid in the 
direction of clamped edges, compared to the case 
when the fibers are laid in the direction of free 
edges. Regarding interactions, it is found from the 
present analysis that shells with boundary 
conditions like CCCC, CSCS, CSSC, FCCF, FCFC, 
FSFS and FSSF have interaction at (A×B) and 
(A×C), while FCFC shells have also some 
interaction at (B×C). 

For different edge supports, the optimal 
conditions for maximum fundamental frequency 
are tabulated in Table 10. As already discussed 
earlier, the optimal condition for SSSS shells is 
A2B1C3D3. Similarly for shells with CCCC, CSCS, 
CSSC, FCCF, FCFC, FSFS and FSSF boundary 
conditions, the optimal predictions are 
A2B1C3D3, A3B1C3D2, A3B1C3D3, A1B1C3D3, 
A1B1C3D3, A2B1C3D1 and A3B1C3D3 
respectively. Thus, it is observed that maximum 
fundamental frequency is obtained at the lowest 
level of width/thickness ratio of a shell  
(i.e., at b/h =20) and the highest level of degree of 
orthotropy (i.e., at 2211 / EE =40) for all the shell 

boundaries considered here. 

Table 10. The optimal condition for different shell 
boundaries 

Shell boundaries Optimal condition 

CCCC A2B1C3D3 

CSCS A3B1C3D2 

CSSC A3B1C3D3 

SSSS A2B1C3D3 

FCCF A1B1C3D3 

FCFC A1B1C3D3 

FSFS A2B1C3D1 

FSSF A3B1C3D3 

The present approach of using the Taguchi-
based DOE method in the design optimization of 
structural response is new of its kind in the 
literature. Though similar methodology is well 
established in the process optimization of 
machining methods and tribology of materials 
[42-50]. It is believed that the present analysis 
will greatly help the structural engineers who 
design and analyze shell structures made of 
laminated composite materials. In the current 

study, the dynamic response is taken up for 
optimization. However, future studies may be 
attempted considering other structural issues 
like bending, buckling, post-buckling, etc. 
adopting a similar approach. 

7. Conclusion 

In this study, the fundamental frequency of 
cutout borne stiffened hypars made of laminated 
composites is obtained by numerical approach 
(finite element method). Taguchi technique is 
used for optimizing shell attributes like 
lamination angle, width/thickness, degree of 
orthotropy, and cutout location in order to have 
the maximum fundamental frequency. Significant 
shell parameters are obtained by performing an 
analysis of variance (ANOVA). Residual analyses 
testify the adequacy of the model. A confirmatory 
test is conducted for comparison of the initial 
combination with an optimal combination of 
factors in order to determine the improvement in 
the final optimal result. From this design of 
experiment analysis, the following conclusions 
are made: 

1) For SSSS shell, optimum combination for 
highest fundamental frequency is 
A2B1C3D3, i.e., 450 lamination angle, 
width/thickness factor 20, 2211 / EE ratio 

40 and cut-out location (0.4, 0.4). 
2) Similarly for CCCC, CSCS, CSSC, FCCF, FCFC, 

FSFS and FSSF boundary conditions, the 
optimal predictions are A2B1C3D3, 
A3B1C3D2, A3B1C3D3, A1B1C3D3, 
A1B1C3D3, A2B1C3D1 and A3B1C3D3 
respectively. 

3) For the SSSS shell, interaction (A×B) and 
(A×C) have some significance. Similarly, 
other shells with boundary conditions like 
CCCC, CSCS, CSSC, FCCF, FCFC, FSFS and 
FSSF have interaction at (A×B) and (A×C). 
FCFC shell has some interaction at (B×C). 

4) For different shell boundaries considered 
here, the width/thickness factor (B) is the 
most dominating factor followed by a 
degree of orthotropy (C). Only in the case 
of CCCC shells, the degree of orthotropy 
(C) is the most dominating factor followed 
by the width/thickness factor of a shell (B). 
Lamination angle (A) plays a significant 
contribution in the case of FCFC shells. 

5) The position of a cutout has very little 
impact on all the shell boundaries 
considered here. 

6) The maximum fundamental frequency is 
obtained at the lowest level of 
width/thickness factor (i.e., at b/h =20) 
and the highest level of degree of 
orthotropy (i.e., at 2211 / EE =40) for all the 

shell boundaries considered here.  
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