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This paper is investigated vibration of magneto-electro-elastic (MEE) composite 

conical shell on a nonlinear elastic foundation and under electric or magnetic potential 

while the influence of geometrical nonlinearity is taken into account. The conical shell 

is modeled based on the von Karman approach while the influences of shear 

deformation and rotary inertia are heeded. Coupled relations of MEE material are 

utilized to derive the vectors of stress, electric displacement as well as magnetic 

induction.  Quasi-static Maxwell equations, Gauss' laws as well as thin shell 

assumptions are used to determine electric and magnetic fields. The nonlinear ordinary 

differential equation of the shell is derived through the Lagrange approach. Lindstedt-

Poincare method and modal analysis are hired in order to obtain nonlinear vibration 

responses of the MEE composite conical shell. For validation intention, some results of 

the literature are compared with some results of this study. The effects of several 

parameters including nonlinear and linear constants of foundation, electric and 

magnetic potentials, thickness as well as length on the values of fundamental linear 

frequency, nonlinear parameter, and the curves of nonlinear frequency ratio versus 

amplitude parameter are investigated. The results show that the increase of the 

nonlinear constant of elastic foundation or thickness causes the increase of the 

nonlinear frequency ratio. On the other hand, the nonlinear frequency ratio gets smaller 

values with an increase in the linear constants of the elastic foundation or length. 

 

1. Introduction 

Structural mechanics is one of the interesting 
topics considered in numerous researches [1-11].  
In addition, several studies considered nano-
scale structures [12-15]. Furthermore, an 
example of a study on the micro-scale is the study 
that was done by Ouakad and ŻUR [16]. The focus 
of this study is on the vibration of conical shell 
structures on an elastic foundation composed of 
magneto-electro-elastic (MEE) material. 
Magneto-electro-elastic composite materials are 
smart materials that have the ability to convert 
magnetic, electrical, and mechanical energies to 
each other [17]. These materials can be used for 
actuators, sensors, and also vibration control 
purposes [17]. There are several works in 
literature that take attention to the study of 
structures containing magneto-electro-elastic 

materials. Bhangale and Ganesan [18] studied the 
vibration of functionally graded magneto-
electro-elastic cylindrical shells via a finite 
element model. Annigeri et al. [19] investigated 
the vibration behavior of a magneto-electro-
elastic cylindrical shell subjected to simply 
supported boundary conditions using a series 
solution and finite element model. Tsai and Wu 
[20] presented three-dimensional free vibration 
responses of simply supported doubly curved 
shells composed of functionally graded magneto-
electro-elastic material with open-circuit surface 
conditions via an asymptotic method. Kumaravel 
et al. [21] adopted the finite element method to 
study the vibration and buckling of magneto-
electro-elastic cylinders under clamped-clamped 
boundary conditions. Lang and Xuewu [22] 
accomplished a study about the vibration and 
buckling of cylindrical shells from functionally 
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graded magneto-electro-thermo-elastic material 
by means of higher-order shear deformation 
theory. Razavi and Shooshtari [17] carried out an 
investigation about the free vibration of simply 
supported thin magneto-electro-elastic doubly-
curved shells surrounded by a foundation with 
the help of Donnell theory. Shooshtari and Razavi 
[23] carried out the large amplitude vibration 
study of simply-supported magneto-electro-
elastic curved panels on the basis of the Donnell 
shell theory and the Galerkin approach. 
Shooshtari and Razavi [24] hired the Galerkin 
method and Lindstedt-Poincare perturbation 
approach to investigate linear and nonlinear 
vibration of magneto-electro-elastic laminated 
doubly-curved thin shell resting on an elastic 
foundation. Mohammadimehr et al. [25] utilized 
first-order shear deformation theory, energy 
method, and Hamilton principle to research the 
free vibration of magneto-electro-elastic 
composite cylindrical panels reinforced by 
carbon nanotubes considering closed and open 
circuit boundary conditions. Vinyas and 
Harursampath [26] investigated nonlinear 
vibration of higher order shear deformable 
Carbon nanotube reinforced magneto-electro-
elastic doubly curved shells on the basis of the 
Donnell shell theory and von-Karman nonlinear 
approach. Rostami and Mohammadimehr [27] 
dealt with the vibration control of a sandwich 
rotating cylindrical shell containing a 
nanocomposite face sheet and porous core and 
integrated with functionally graded magneto-
electro-elastic layers applying differential 
quadrature method and first-order shear 
deformation theory of shells. Ye et al. [28] studied 
transient dynamic and free vibration of 
composite magneto-electro-elastic cylindrical 
shells via the scaled boundary finite element 
method. Rostami et al. [29] researched the 
vibration control of the sandwich rotating 
cylindrical shell which had functionally graded 
core and functionally graded magneto-electro-
elastic layers on the basis of the first-order shear 
deformation theory of shells and differential 
quadrature method. Ni et al. [30] employed a 
Hamiltonian system to study the vibration of 
porous magneto-electro-thermo-elastic 
functionally graded cylindrical shells under 
magneto-electro-thermal loadings. Zhou et al. 
[31] obtained the time-dependent responses of 
MEE structures in a hygrothermal environment 
using the cell-based smoothed finite element 
technique in conjunction with the modified 
Newmark procedure. Farajpour et al. [32] studied 
large amplitude vibration of magneto-
electromechanical mass nanosensors. The 
nanomechanical sensor utilized vibrating MEE 
nanoplates with numerous locations in order to 
trap nanoparticles [32]. It is obvious that 

references [17] to [32] are not about the study of 
conical shells. 

Conical shells are from engineering structures 
that have a lot of applications including piping, 
pressure vessels, and ship structures [33]. An 
investigation of the free vibration of magneto-
electro-elastic conical shells under clamped-free, 
simply supported and clamped-clamped 
boundary conditions based on the finite element 
method was done by Srikantamurthy et al. [34]. 
In addition, Srikantamurthy and  Annigeri [35] 
studied the free vibration of multiphase 
MagnetoElectro-Elastic uniform thickness 
conical shells under Clamped-Free boundary 
conditions. References [34] and [35] considered 
the vibration of MEE conical shells, but they did 
not study the vibration of MEE conical shells on 
elastic foundations.  

Vibration characteristics of conical structures 
on linear elastic foundations were studied by 
many researchers [36-50]. It is necessary to 
mention that the behavior of the foundation is 
generally nonlinear [51]. The author found that 
there are limited papers in the literature about 
the vibration of conical structures on nonlinear 
elastic foundations. Zhu et al. [52] accomplished 
the smart control of large amplitude vibration of 
porous piezoelectric sandwich conical panels 
surrounded by nonlinear elastic foundation via 
first-order shear deformation theory, von 
Kármán nonlinear approach, and harmonic 
balance method. The considered conical panel 
contained a viscoelastic core as well as two 
porous piezoelectric layers [52]. Molla-Alipour et 
al. [53] studied free vibration of the bidirectional 
functionally graded cylindrical and conical shells 
as well as annular plates on nonlinear elastic 
foundations. References [52] and [53] 
investigated the vibration of conical structures on 
a nonlinear elastic foundation, but the conical 
structures are not from MEE material. 

To the best of the author's knowledge, there is 
not any study in the literature which considers 
nonlinear vibration of simply supported MEE 
composite conical shells surrounded by the 
nonlinear elastic foundation. This study 
considers the nonlinear vibration responses of 
simply supported MEE composite conical shells 
on nonlinear elastic foundations subjected to 
electric or magnetic potential. The nonlinearity of 
the system is due to the geometric nonlinearity 
modeled via the von Karman approach as well as 
foundation nonlinearity. The effects of shear 
deformation as well as rotary inertia are taken 
into account in the process of shell modeling.  

Unfortunately, it is not possible to obtain an 
exact solution for a great number of 
mathematical problems. Numerical methods are 
effective methods that are extremely used for the 
solution of mathematical problems. For example, 
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https://www.sciencedirect.com/topics/engineering/finite-element-method


Mohammadrezazadeh / Mechanics of Advanced Composite Structures 10 (2023) 85-102 

87 

the discrete singular convolution method which 
is a numerical method is used in several 
researches such as [54-56]. Regardless of the 
advantages of the numerical methods, analytical 
methods are used in order to have parametric 
studies, consider the physics of problems and 
validate the numerical results [57-58]. In 
reference [59], a semi-analytical method was 
employed in order to solve equations. Because of 
the advantages of approximate analytical 
methods, in this study, the Lagrange method as an 
approximate analytical method is handled to 
convert the partial differential equations of the 
conical shell to an ordinary differential equation. 
Lindstedt-Poincare method and modal analysis 
are employed to obtain the nonlinear response of 
the system. Several results from published 
literature are compared with the results of this 
study for validation purposes. In the next step, 
the effects of several parameters including 
nonlinear and linear constants of elastic 
foundation, electric and magnetic potentials, 
thickness, and length on the fundamental linear 
frequency as well as nonlinear vibration 
responses are illustrated.  

2. Modeling of the Shell 

2.1. Strain Relations 

Figure 1 shows the coordinate system and 
schematic of the considered MEE composite 
conical shell. In addition, a schematic of the 
conical shell on a nonlinear elastic foundation is 
depicted in Figure 2. 

The longitudinal, circumferential, and normal 
directions of the coordinate system are shown 

with x ,  and z , respectively. The variable L  

depicts the length, h is the thickness,   implies 

a semi-vertex angle and 1R and 2R  are 

respectively the radii of small and large edges on 
the middle surface of the shell. The radius of each 
point on the middle surface of the shell is denoted 
by 1( ) sinR x R x = + . 

Equation (1) indicates the relations of strains 
( , ,x x    ) with membrane strains  

(
0 0 0, ,x x    ) as well as curvatures ( , ,x xk k k  ) 

[61]: 

0 0 0, ,x x x x x xzk zk zk          = + = + = +  (1) 

Considering the von Karman approach for 
geometrical nonlinearity and shear deformation 
leads to equations (2) and (3) for membrane 
strains and curvatures, respectively [61-62]. In 
addition, shear strains in the middle surface of 
the conical shell are extracted through equation 
(4) [61]: 
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Fig. 1. Image of the schematic of the MEE composite conical shell and coordinate system [60] 

 
Fig. 2. Image of schematic of the conical shell on the nonlinear elastic foundation [39] 
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It should be mentioned that 0u  , 0v and 0w

denote the displacements of an arbitrary point on 
the middle surface of the conical shell located at 
point ( , ,0x  ) [61]. In addition, x and  refer 

to the total angular rotations of the line normal to 
the middle surface about   and x  axes, 

respectively [61]. 

2.2. Stress-strain Relations 

The coupled constitutive relations for the 
MEE shell can be expressed as following [63, 64 
quoted from 65-68]:  
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(7) 

while  , , , ,
T

x z xz x       , 

 , , , ,
T

x z xz x       ,  , ,
T

x zE E E=E and 

 , ,
T

x zH H H=H  refer to stress, strain, electric 

field, and magnetic field vectors, respectively 

[64]. Besides,  , ,
T

x zD D D  and  , ,
T

x zB B B  

denote electric displacement and magnetic 
induction vectors, respectively [63-64]. In 

addition, ijc    , ije   and ijs   imply matrices of 

elastic, piezoelectric, and piezomagnetic 
coefficients, respectively [63-64]. It should be 

mentioned that ijh   , ijg    and ij    are 

respectively the matrices of dielectric, 
magnetoelectric, and magnetic permeability 
coefficients [64]. 

If the electric vector and magnetic intensity 
are respectively written as gradients of the scalar 
electric ( ) and magnetic ( ) potentials, vector 

equations of Maxwell in the quasi-static 
approximation are satisfied [63]: 

, = − = −E H  (8) 

In this paper, because of the thin nature of the 
shell, the components of in-plane electric and 
magnetic fields are ignored  
( 0, 0, 0, 0x xE E H H = = = = ) [69 quoted from 

70].  
Equations (9) and (10) show Gauss’ laws for 

electrostatics and magnetostatics which can be 
used to obtain the electromagnetic state of the 
shell [17 quoted from 71]: 

, , ,

1
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, , ,

1
0

( )
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Considering magneto-electric boundary 
conditions ( ( 0.5 ) 0h − = , 0(0.5 )h V = , 

( 0.5 ) 0h − = , 0(0.5 )h = ) [17] and the 

previous assumptions that , 0x = , , 0 = , 
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, 0x =  and , 0 =  lead to the following 

relations for 
zE and 

zH : 

0 0,z z

V
E H

h h


= − = −  (11) 

while 0V  and 0  refer to electric and magnetic 

potentials, respectively [17]. 

3. Lagrange Method  

In order to extract the nonlinear ordinary 
differential equation of the system, for the 
considered problem, the Lagrange method 
equation [61] can be used:  
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Whereas kL T U U= − − . It should be 

mentioned that T and U   refer to kinetic and 

strain energies [61] while kU denotes energy due 

to a nonlinear foundation. Required relations of 
these energies can be obtained through equations 
(13) to (15): 
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It is valuable to emphasize that equations (13) 
and (14) are written based on reference [61] 
while equation (15) is derived on the basis of 
references [37, 51]. In equation (14), 1I , 2I and 

3I denote mass moments of inertia terms [62]. It 

should be noted that in equation (15), LwK and 

NLwK demonstrate linear and nonlinear 

constants of the Winkler elastic foundation while 

pK indicates the shear stiffness constant of the 

elastic foundation [51]. In order to derive the 
nonlinear ordinary differential equation of the 
vibration, the following relations which satisfy 
geometrical boundary conditions of the simply 
supported conical shells 
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The displacement and rotation relations of 
equation (16) are written based on the reference 
[61] while m and n  demonstrate half-wave 
numbers of displacements in the length and 
circumference of the shell, respectively [61], and 
( , )m n  refers to the vibration mode shape. 

Substituting equation (16) into equations (13) to 
(15) and then using equation (12) lead to 
extraction of the nonlinear ordinary differential 
equation of the system: 

 

3 ,

, , , ,

t

T

t t t xt t

w

u v w  

+ + =

=

Mx Kx b 0

x
 (17) 

while M  and K  respectively demonstrate mass 
and stiffness matrices and b  is the vector of 

nonlinear coefficients caused by geometric 
nonlinearity and nonlinearity of elastic 
foundation. 

4. Lindstedt-Poincare Method and 
Modal Analysis  

In order to use the Lindstedt-Poincare 
method, a new independent variable NLt = is 

defined [73]; thus the relation 
2 2 2 2 2d dt d d = =x x x is acquired. In 

addition, the variables NL , x and tw should be 

considered as following [73]: 

2

0 1 2( )NL     = + +  (18) 

2 3

2 3

1 2 3

( ; ) ( ) ) ( ),

( ; ) ( ) ( ) ( )t

t

w t w w w

      

      

= + +

= + +

1 2 3
x x x ( x

 (19) 
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while 0  denotes the fundamental linear 

frequency ( 0 L = ) of the conical shell. Using 

mentioned relations, one can rewrite equation 
(17) as shown in equation (20):  

2 2 3

2 2

0 1 2 2

2 3

2 3 3

1 2 3

( )
( )

( )

( )

d

d

w w w

  
   



  

  

+ +
+ +

+ + +

+ + + =

1 2 3

1 2 3

x x x
M

K x x x

b 0

 
(20) 

By performing some mathematical operations 

and setting the coefficients of , 2 and 3 equal 

to zero, equations (21) to (23) are acquired which 

are respectively coefficients of  , 2 and 3 : 

( )
2

2

0 2

d

d
 


 + =1

1

x
M Kx 0  (21) 

( )
2 2

2 2

1 0 02 2
2

d d

d d
  

 
 + + =1 2

2

x x
M M Kx 0  (22) 

( ) ( )
2 2

3 2

2 0 1 1 02 2

2

2 3

0 12

2 2
d d

d d

d
w

d

    
 




 + +

+ + + =

1 2

3

3

x x
M M

x
M Kx b 0

 (23) 

In order to obtain the response of equation 
(21), applying modal analysis relation 

 1=
1

x X  [61] results in equation (24). It is 

important to mention that X and  1 denote 

modal matrix and modal coordinates vector, 
respectively [61]. 

 
 

2

12 2

0 12

2 1 1

i

i

d

d


  



 − −

 + = 

  = 

0

X M KX

 (24) 

The row of equation (24) which includes 
2

0  

term of matrix 2

i    and its response is as 

following: 

( )
2

1

1 12
0 coss

s s

d
A

d


    


 + =  = +  (25) 

Substituting modal analysis relations 

 1=
1

x X and  2=
2

x X  [61] into equation 

(22) leads to the acquisition of equation (26): 

 
 

 2 2

2 12 2

0 2 1 02 2
2i

d d

d d

 
   

 
 + = −   (26) 

Substituting equation (25) into the row of 

equation (26) which contains 2

0 component of 

the matrix 2

i   eventuates to 1 0 = and 

particular solution of 2 0s = . Putting modal 

analysis relations  1=
1

x X ,  2=
2

x X  and 

 3=
3

x X  [61] into equation (23) and doing 

some simplifications lead to the obtaining of 
equation (27): 

 
 

( )
 

 

2

32 2

0 32

2

12

2 0 1 2

2

2 3

1 0 12

2

2

i

d

d

d

d

d
w

d


  




  




 



 + = 

− +

− −b

 (27) 

Neglecting the terms that contain other 
frequencies than 0  from the row of equation 

(27) which contains 2

0 term of matrix 2

i   and 

utilizing equation (25) and also 
1 0 = and 

2 0s =  lead to the following equation: 

( )

( )

2

3

32

33

2

2

0 0

33

2

0

3 (3, )2
A cos( )

4

(3, )
cos3( )

4

s

s

s

s

d

d

b A s

b A s







 

 

 


+ =

 
 − +
 
 

− +

X

X

 (28) 

In order to derive a finite response for 
equation (28), it is necessary to put the 
coefficient of cos( ) + equal to zero                       (

( ) ( )( )33 2

2 0 02 A 3 (3, ) 4 0sb A s  − =X ) which 

leads to ( )
32

2 03 (3, ) 8sb A s = X  and also a 

particular solution of 
3 3 2

3 0( ( (3, )) 32 )cos3( )s sb A s   = +X . Finally, 

the term of tw  which is only related to 

fundamental linear frequency ( t Lw  ) can be 

obtained as: 

( )cos , (3, )t L NLw A t A s A   = + = X  (29) 

In addition, putting the results obtained for 

0 , 1  and 2  into equation (18) leads to obtain 

of the following relation for nonlinear frequency 
ratio ( NL L  ): 

2

2

0 0

3 (3, )
1 ,

8

NL sb sgA
g



 
= + =

X  (30) 

Equation (30) indicates that the nonlinear 
frequency ratio has a direct relation with 
nonlinear parameter g . Furthermore, NL L   

has a direct relation with the square of the 

amplitude parameter ( 2A ) while its relation 
with the square of the fundamental linear 
frequency is inverse. 

5. Results and Discussions  

The purpose of this paper is the investigation 
of the nonlinear vibration of MEE composite 
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conical shells on a nonlinear elastic foundation 
under electric or magnetic potential. In order to 
validate this study, Table 1 compares the 

frequency parameter ( ( )2

0 2
1 /R E  


= − ) 

results of this study with literature (references 
[74] and [75]) for an isotropic simply supported 
conical shell with constants of 

2sin 0.25L R =

and 
2 0.01h R = while E and   denote Young 

modulus and Poisson ratio, respectively. 
According to this table, one can conclude that in 
most cases there is good agreement between the 
results of this study and the literature. 

Table 2 shows the frequency results (Hz) 
obtained for an isotropic cylindrical shell on a 
linear elastic foundation with constants of 

210 GPaE = , 
37850 kg/m =  , 0.3 =  , 

0.41 mL = , 0.3015 mR =  , 1 mmh =  and  1m =

and compares the results with the results of 
reference [76]. It is noteworthy to mention that  
R  

and    refer to the radius of the cylindrical 

shell on the middle surface and the mass density, 
respectively. The results of Table 2 are for 
different values of the constants of the foundation 
and half-wave number of displacement in the 
circumference of the shell ( n ). This table 
demonstrates very good agreement between the 
results of this paper and the reference [76] which 
could be evidence for the validity of the present 
research. 

After validation studies, it is time to 
investigate the vibration responses of the MEE 
conical shell on a nonlinear elastic foundation. It 
is important to mention that BaTiO3-CoFe2O4 
composite material is chosen as MEE material. 

The constants used in this study are extracted 
based on the constants introduced in reference 
[64] for piezoelectric BaTiO3 material and 
magnetostrictive CoFe2O4 material unless the 
values of the densities of the materials.  

The values of densities are 
35300 kg/m =  for 

CoFe2O4 and 
35800 kg/m = for BaTiO3 [77]. 

Because of the importance of obtaining of the 
constants of BaTiO3-CoFe2O4 composite material, 
some explanations are required. References [64] 
and [77] are provided the constants of BaTiO3 
and CoFe2O4 materials, separately. In order to 
obtain the constants of BaTiO3-CoFe2O4 
composite material, in this paper, the average of 
the constants of BaTiO3 and CoFe2O4 materials is 
used. The constants of reference [64] are for a 

situation that normal strain ( z ) and normal 

stress ( z ) are considered. In the present paper, 

0z = and 0z = ; so it is necessary to do some 

operations which are based on reference [62].  

The equation of MEE material can be written 

as        i ik k ij j ij jc e E s H     = − −     [64 

quoted from 65-68] which can be easily 
converted to

             
1 1 1

k ik i ik ij j ik ij jc c e E c s H 
− − −

   = + +    . 

Therefore, it is necessary to obtain matrices

 
1

ikc
−

,  
1

ik ijc e
−
    as well as  

1

ik ijc s
−
   and 

eliminate rows and columns that correspond to 

z and z . Doing this simple operation leads to 

obtain of the constants of the MEE composite 
material as shown in Table 3: 

Table 1. Comparison of frequency parameter results of this study and literature for isotropic conical shells  
with different semi-vertex angle values 

n  
30 =  45 =  

Present 
Reference 
[74] 

Reference 
[75] 

Present 
Reference 
[74] 

Reference 
[75] 

2 0.8416 0.7910 0.8431 0.7656 0.6879 0.7642 
3 0.7415 0.7284 0.7416 0.7253 0.6973 0.7211 
4 0.6468 0.6352 0.6419 0.6838 0.6664 0.6747 
5 0.5730 0.5531 0.5590 0.6500 0.6304 0.6336 
6 0.5278 0.4949 0.5008 0.6306 0.6032 0.6049 

Table 2. Comparison of the frequencies (Hz) of the present study with literature for isotropic cylindrical shells  
surrounded by elastic foundation 

n  

7 32.5 10  N/m

0 N/m

Lw

p

K

K

= 

=
 

3

7

0 N/m

2.5 10  N/m

Lw

p

K

K

=

= 
 

Present Reference [76] Present Reference [76] 

3 1004.3852 1004.4 3481.5571 3481.6 
5 551.6140 551.57 5072.7267 5072.8 
7 412.4312 412.38 6858.0504 6858.2 
9 402.0576 402.02 8689.5038 8689.8 
11 458.2785 458.29 10540.4502 10541.0 
13 557.8284 557.93 12402.5127 12403.5 
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Table 3. The values of the constants of the composite 
MEE material 

11c  11 21.544446697566628 10  N/m  

22c  11 21.544446697566628 10  N/m  

12c  10 25.34446697566628 10  N/m  

44c  10 24.415 10  N/m  

66c  10 25.05 10  N/m  

31e  2-7.5558516801854 C/m
 

24e  25.8 C/m
 

15e  25.8 C/m
 

31s  88.672074159907282 N/(A.m)
 

24s  275 N/(A.m)
 

15s  275 N/(A.m)
 

In addition, the average of the densities is 

derived as
35550 kg/m = .  

It is necessary to mention that the results of this 
study are acquired for MEE composite conical 

shell with 0.6 mL = , 15 = , 2 1 mR =  and 

5 mmh =  on nonlinear elastic foundation with 

constants 10 53 10  N/mNLwK =  , 
7 31.8 10  N/mLwK =   

and 71.8 10  N/mpK =  . All constants used in this 

paper are as mentioned unless other values are 
emphasized. In addition, all results for MEE 
composite conical shell are acquired for the mode 
shape ( , ) (1,3)m n = . 

Table 4 presents the values of fundamental 
linear frequency as well as nonlinear parameter 
( g ) for different values of the constants of the 

elastic foundation for shells subjected to electric 
or magnetic potential. 

This table indicates that the value of 
fundamental linear frequency doesn’t have any 

change with the change of the value of 
NLwK . This 

is because of the fact that 
NLwK is a nonlinear 

parameter; so it has no effect on the fundamental 
linear frequency. On the other hand, according to 
this table, one can conclude that as one of the 
linear constants ( LwK  or pK ) of the elastic 

foundation increases, the fundamental linear 
frequency gets higher values; because the 
increase of 

LwK or pK increases the linear 

stiffness of the system which leads to greater 
fundamental linear frequency. Also, Table 4 
indicates that g increases with an increase of 

NLwK while an increase of the linear constants of 

the elastic foundation ( LwK or pK ) causes a 

decrease of g . This is because of the fact that 

NLwK  is a nonlinear parameter and its increase 

leads to the increase of the nonlinearity of the 
system which appears in g . On the other hand, 

when LwK  or pK , which are linear parameters, 

increases, the rate of the nonlinearity of the 
system decreases which leads to the decrease of
g . 

Figures 3 (a) and (b) depict the effect of the 
nonlinear constant of the elastic foundation on 
the curves of nonlinear frequency ratio versus 
amplitude parameter in the presence of electric 
and magnetic potentials, respectively. These 
figures illustrate that in the presence of electric 
or magnetic potential, the increase of the 
nonlinear constant of the elastic foundation 
causes the increase of the nonlinear frequency 
ratio. This is because of the fact that as shown in 
Table 4, the increase of NLwK  leads to the 

increase of the nonlinear parameter ( g ) which 

according to equation (30) causes a greater 
nonlinear frequency ratio.  

Table 4. The influence of the constants of the elastic foundation on the vibration characteristics of the considered 
MEE composite conical shell 

Constants of elastic foundation 

4

0 09 10  V, 0 AV =  =  
4

0 00 V,  9 10  AV = =   

 (rad/s)L  2 2 (m s )g − −
  (rad/s)L  2 2 (m s )g − −

 

7 3

7

1.8 10  N/m ,

1.8 10  N/m

Lw

p

K

K

= 

= 
 

5=0 N/mNLwK  6139.36 2.62566377386⨯109 6588.06 2.62262611940⨯109 

10 5=3 10  N/mNLwK   6139.36 2.84538340985⨯109 6588.06 2.84209155973⨯109 

10 5=6 10  N/mNLwK   6139.36 3.06510304584⨯109 6588.06 3.06155700006⨯109 

10 5=9 10  N/mNLwK   6139.36 3.28482268183⨯109 6588.06 3.28102244040⨯109 

10 5

7

3 10  N/m ,

1.8 10  N/m

NLw

p

K

K

= 

= 
 

3=0 N/mLwK  6088.25 2.84573378179⨯109 6540.51 2.84245955485⨯109 

7 3=0.9 10  N/mLwK   6113.86 2.84555882891⨯109 6564.33 2.84227580630⨯109 

7 3=1.8 10  N/mLwK   6139.36 2.84538340985⨯109 6588.06 2.84209155973⨯109 

7 3=2.7 10  N/mLwK   6164.76 2.84520752293⨯109 6611.70 2.84190681331⨯109 

7 3

10 5

1.8 10  N/m ,

3 10  N/m

Lw

NLw

K

K

= 

= 
 

=0 N/mpK  3726.60 2.85749650580⨯109 4429.81 2.85479386461⨯109 
7=0.9 10  N/mpK   5079.60 2.85173587305⨯109 5614.81 2.84875824664⨯109 
7=1.8 10  N/mpK   6139.36 2.84538340985⨯109 6588.06 2.84209155973⨯109 
7=2.7 10  N/mpK   7039.42 2.83835391924⨯109 7433.01 2.83470151164⨯109 
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a. 

 

b. 

 

Figure 3. The influence of the nonlinear constant of the foundation on the −NL Lω ω A  diagrams in the presence of, 

a: electric potential, b: magnetic potential 

Figures 4 (a) and (b) show diagrams of 
nonlinear frequency ratio versus amplitude 
parameters for different values of LwK  in the 

presence of electric and magnetic potentials, 
respectively. These figures demonstrate that the 
change of LwK has a low impact on the nonlinear 

frequency ratio versus amplitude parameter 
diagrams. However, more precision in Figures 4 
(a) and (b) reveals that, for the constant 
amplitude parameter, the increase of LwK leads 

to the decrease of the nonlinear frequency ratio. 
This is due to the reason that the increase of LwK

leads to greater linear stiffness of the system and 
so as depicted in Table 4, greater fundamental 
linear frequency. 

In addition, according to Table 4, g  gets 

smaller values with an increase of LwK . As 

shown in equation (30), the mentioned facts lead 
to the decrease of the nonlinear frequency ratio 
of the considered MEE composite conical shell.  

Figures 5 (a) and (b) display diagrams of 
nonlinear frequency ratio against amplitude 
parameters in the presence of electric and 
magnetic potentials, respectively, while pK  

getting different values. Looking at these figures 
leads to the conclusion that for a constant value 
of A , the increase of pK  leads to a decrease in the 

value of the nonlinear frequency ratio.  
This conclusion can be explained as following: 

As shown in Table 4, the increase of pK causes 

smaller values for g  and greater values for 

fundamental linear frequency. It is apparent from 
equation (30) that the decrease of g and the 

increase of L result in a smaller nonlinear 

frequency ratio.  
In addition to the noted results, Figures 3 to 5 

indicate that the greater the amplitude 
parameter, the greater the nonlinear frequency 
ratio; because the increase of the amplitude 
parameter as shown in equation (30), makes the 
nonlinear effects more apparent. 

a. 

 

b. 

 

Figure 4. Diagrams of −NL Lω ω A  for different values of the foundation constant LwK  when, a: 0V  , b: 0Ω , exists 
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a. 

 

b. 

 

Figure 5. The curves of nonlinear frequency ratio against amplitude parameter for different values of pK in the condition that, 

 a: =  =4
0 09 10  V, 0 AV Ω   , b: =  =4

0 09 10  A, 0 VΩ V  

Figure 6 represents a diagram of the 
nonlinear frequency ratio versus the electric 
potential for different values of amplitude 
parameter while 0 0 A = . It may be helpful to 

mention that 0V = [-90000, -9000, -900, -90, -9, 0, 

9, 90, 900, 9000, 90000] V.    Figure 6 shows that 
as the electric potential moves from -90000 to 
90000, the nonlinear frequency ratio gets higher 
values. The reason for this behavior can be 
explained as follows: the movement of electric 
potential from negative values to positive ones 
leads to a decrease of the linear part of stress 
which strengthens the nonlinearity of the system; 
this is apparent from equations (5) and (11) as 
well as Table 3. Besides, in order to illustrate the 
reason for this behavior, Table 5 could be helpful.  
Table 5 shows the values of fundamental linear 
frequency and nonlinear parameters for different 
values of electric potential while the magnetic 
potential is considered to be zero. This table 
indicates that the nonlinear parameter increases 
and in most cases, the fundamental linear 
frequency decreases with the movement of 
electric potential from -90000 V to 90000 V 
which according to equation (30), justifies the 
increase of the nonlinear frequency ratio in the 
considered situations. Another result of Figure 6 
is that for a constant value of 0V   , as the value of 

the amplitude parameter increases, the nonlinear 
frequency ratio gets higher values. 

 
Figure 6. The curves of nonlinear frequency ratio against the 

electric potential for different amplitude parameter values 

Table 5. The impression of the electric potential on the 
values of fundamental linear frequency and nonlinear 

parameter ( g ) 

0  (V)V  
                     0 0 A =  

 (rad/s)L  2 2 (m s )g − −  

-90000 6212.01 2.84487707706⨯109 

-9000 6179.42 2.84510540678⨯109 

-900 6176.16 2.84512819648⨯109 

-90 6175.83 2.84513047502⨯109 

-9 6175.80 2.84513070287⨯109 

0 6175.79 2.84513072818⨯109 

9 6175.79 2.84513075350⨯109 

90 6175.76 2.84513098135⨯109 

900 6175.43 2.84513325979⨯109 

9000 6172.16 2.84515603989⨯109 

90000 6139.36 2.84538340985⨯109 

Figure 7 depicts the curves of nonlinear 
frequency ratio versus the magnetic potential for 
various amplitude parameter values while 

0 0 VV = and 0 = [-90000, -9000, -900, -90, -9, 

0, 9, 90, 900, 9000, 90000] A. 
Figure 7 shows that for constant amplitude 

parameter, the increase of the magnetic potential 
from -90000 A to 90000 A results in the decrease 
of the nonlinear frequency ratio. This is because 
of the fact that the movement of magnetic 
potential from -90000 A to 90000 A leads to an 
increase of the linear part of stress which 
decreases the effect of nonlinearity; according to 
equations (5) and (11) and also Table 3, this 
result is obvious. Furthermore, the reason for this 
behavior can be illustrated with the help of Table 
6 as following: Table 6 demonstrates the values 
of fundamental linear frequency and nonlinear 
parameters for different magnetic potential 
values whereas 0 0 VV = . This table shows that 

with the movement of the magnetic potential 
from -90000 A to 90000 A, the fundamental 
linear frequency gets higher values because of the 
increase of the linear stiffness while the 
nonlinear parameter becomes smaller. It is 
apparent from equation (30) that the mentioned 
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factors cause a decrease in the nonlinear 
frequency ratio. In addition, one can conclude 
from Figure 7 that for the constant value of 
magnetic potential, the greater the amplitude 
parameter, the higher the nonlinear frequency 
ratio.  

 

Figure 7. The curves of NL Lω ω  versus magnetic potential 

for different values of amplitude parameter 

Table 6. The values of vibration characteristics for various 
values of magnetic potential 

0  (A)  
0 0 VV =  

 (rad/s)L  2 2 (m )g s− −  

-90000 5733.48 2.84803633039⨯109 

-9000 6133.02 2.84542716565⨯109 

-900 6171.53 2.84516043188⨯109 

-90 6175.37 2.84513369915⨯109 

-9 6175.75 2.84513102528⨯109 

0 6175.79 2.84513072818⨯109 

9 6175.84 2.84513043108⨯109 

90 6176.22 2.84512775708⨯109 

900 6180.05 2.84510101113⨯109 

9000 6218.27 2.84483295554⨯109 

90000 6588.06 2.84209155973⨯109 

Figure 8 (a) demonstrates the curves of 
nonlinear frequency ratio versus amplitude 
parameter in the presence of positive electric 
potential, in the condition without electric and 
magnetic potentials as well as in the presence of 
positive magnetic potential. This figure implies 
that for constant A , the presence of positive 
magnetic potential leads to the smallest value of 
the nonlinear frequency ratio. Besides, a 
comparison of the responses of the system in the 
presence of positive electric potential and the 
system without electric and magnetic potentials 
reveals that for the constant amplitude 
parameter, the value of the nonlinear frequency 
ratio is slightly greater for the condition that 

4

0 09 10  V, 0 AV = +  = . The reason for the 

mentioned results of Figure 8 (a) can be 
illustrated as follows: in the presence of positive 
electric potential, the linear part of the stress is 
smaller in comparison with the situation without 
electric and magnetic potentials. On the other 
hand, in the presence of positive magnetic 

potential, the linear part of stress is higher in 
comparison with the situation without electric 
and magnetic potentials. It should be mentioned 
that greater linear stress leads to a decrease in 
the nonlinearity of the system. As can be seen, the 
effect of the magnetic potential on the diagram is 
more apparent; this is because of the fact that 
according to Table 3, the value of 

31s  is much 

greater than the absolute value of
31e . Figure 8 (b) 

shows the nonlinear frequency ratio against 
amplitude parameter diagrams for the shells 
under the negative value of electric potential, 
without electric and magnetic potentials, and 
negative value of magnetic potential. It can be 
concluded from this figure that for a constant 
value of the amplitude parameter, the value of

NL L   is the highest in the presence of negative 

magnetic potential and is the smallest in the 
presence of negative electric potential. One can 
explain the reason for the mentioned behaviors 
of the diagrams of Figure 8 (b) as following: when 
the system is subjected to negative electric 
potential, its linear stress is higher than at

0 00 A, 0 VV = = . Conversely, when the system 

is under negative magnetic potential, its linear 
stress is smaller in comparison with the system 
without electric and magnetic potentials. It is 
apparent that the greater the linear stress, the 
weaker the effect of the nonlinearity. Because of 
this fact that the value of 31s is much greater than 

the absolute value of 31e , the effect of magnetic 

potential on the diagram is more apparent. In 
addition, one can justify the mentioned 
consequences of Figures 8 (a) and (b) using 
equation (30) as well as the values of L   and g  

shown in Tables 5 and 6 for conditions 
considered in Figures 8 (a) and (b).  

Table 7 represents the values of vibration 
characteristics including fundamental linear 
frequency as well as nonlinear parameters for 
different thickness values of the MEE composite 
conical shell. This table demonstrates that as h

increases, L acquires smaller values; this is 

because of this fact that the increase of h leads to 
an increase in the mass of the shell which leads to 
a decrease in the fundamental linear frequency. 
Another outcome of Table 7 is that the value of g  

decreases as the value of h increases. Figures 9 
(a) and (b) show the influence of the thickness of 
conical shells on the curves of NL L A  − in the 

situations with electric and magnetic potentials, 
respectively. One can figure out from these 
figures that the value of the nonlinear frequency 
ratio becomes greater with an increase in the 
thickness because of the decrease in the 
fundamental linear frequency as depicted in 
Table 7.  
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a. 

 

b. 

 

Figure 8. The influence of the electric and magnetic potentials on the nonlinear frequency ratio- amplitude parameter diagrams 

Table 7. The values of fundamental linear frequency and nonlinear parameter for MEE composite conical shells  
with different thickness values 

 (mm)h  

4

0 09 10  V, 0 AV =  =  4

0 00 V, 9 10  AV = =   

 (rad/s)L  2 2 (m s )g − −   (rad/s)L  2 2 (m s )g − −  

3 7319.19 2.98193856859⨯109 7940.51 2.97518489735⨯109 

5 6139.36 2.84538340985⨯109 6588.06 2.84209155973⨯109 

7 5560.87 2.78600498177⨯109 5916.77 2.78384938379⨯109 

9 5216.95 2.75267178171⨯109 5513.24 2.75107293494⨯109 

 

a. 

 

b. 

 

Figure 9. Diagrams of nonlinear frequency ratio versus amplitude parameter for different thickness values for shells under, a: 
electric potential, b: magnetic potential 

Table 8 represents the influence of the length 
on the fundamental linear frequency and 
nonlinear parameter ( g ) of the conical shells 

under electric or magnetic potential. One can 
confirm from this table that the increase of the 
length leads to a decrease in the fundamental 
linear frequency and g . The reason for the 

decrease of fundamental linear frequency is the 
increase of mass due to the increase in length. 
The effects of the length of the MEE composite 
conical shell on the nonlinear frequency ratio 
against amplitude parameter diagrams are 

shown in Figures 10 (a) and (b). It is apparent 
that Figures 10 (a) and (b) are for the shells 
subjected to electric and magnetic potentials, 
respectively. One can infer from Figures 10 (a) 
and (b) that for a determined amplitude 
parameter, the increase of the length makes 
smaller values for the nonlinear frequency ratio 
which is due to the decrease of the nonlinear 
parameter g as depicted in Table 8.  

Another result of Figures 8 to 10 is that the 
nonlinear frequency ratio becomes higher with 
an increase in the amplitude parameter. 
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Table 8. The effect of the length of the MEE composite conical shell on the vibration characteristics 

 (m)L  

4

0 09 10  V, 0 AV =  =  4

0 00 V, 9 10  AV = =   

 (rad/s)L  2 2 (m s )g − −   (rad/s)L  2 2 (m s )g − −  

0.5 6925.35 5.25805061215⨯109 7453.19 5.25426839394⨯109 

0.6 6139.36 2.84538340985⨯109 6588.06 2.84209155973⨯109 

0.7 5540.86 1.81264427630⨯109 5940.60 1.80975483497⨯109 

0.8 5068.12 1.31636248602⨯109 5437.30 1.31377510493⨯109 
 

a. 

 

b. 

 
Figure 10. The influence of the length of the MEE composite conical shell on the −NL Lω ω A curves in the presence of, 

 a: electric potential, b: magnetic potential 

6. Conclusions 

This paper deals with the nonlinear vibration 
of an MEE composite conical shell surrounded by 
a nonlinear elastic foundation subjected to 
electric or magnetic potential. The relations of 
strains are extracted considering the effect of 
shear deformation with the help of the von 
Karman nonlinear approach.  Stress, electric 
displacement, and magnetic induction vectors 
are derived using coupled relations of MEE 
material.  Applying quasi-static approximation of 
Maxwell's vector equations, Gauss’ laws for 
electrostatics and magnetostatics, and 
considering the thin nature of the MEE composite 
conical shell lead to the extraction of electric and 
magnetic fields. The nonlinear ordinary 
differential equation of the system is extracted 
via the Lagrange technique while the effect of 
rotary inertia is considered in the extraction of 
kinetic energy. Lindstedt-Poincare method and 
modal analysis are employed to obtain the 
nonlinear responses of the MEE composite 
conical shell. The results of the literature are 
compared with this study's results to investigate 
the accuracy of the results of this research. The 
effects of several parameters including the 
nonlinear and linear constants of elastic 
foundation, the presence of electric or magnetic 
potential, thickness and length on the 
fundamental linear frequency, nonlinear 
parameter, and the curves of nonlinear frequency 

ratio versus amplitude parameter are 
investigated which can be classified as mentioned 
below: 

1. Fundamental linear frequency does not 
have any change as the value of the 
nonlinear constant of the elastic 
foundation changes. 

2. The value of fundamental linear frequency 
increases with an increase of the linear 
constants of the elastic foundation or the 
magnetic field and decreases with an 
increase in the thickness or the length. 

3. Nonlinear parameter gets greater values 
with an increase of the nonlinear constant 
of the elastic foundation or the electric 
potential and decreases with an increase 
of the linear constants of elastic 
foundation, magnetic potential, thickness, 
or length. 

4. For constant amplitude parameters, as the 
value of the nonlinear constant of the 
elastic foundation or thickness increases, 
the nonlinear frequency ratio becomes 
greater. 

5. For a determined amplitude parameter, the 
value of the nonlinear frequency ratio 
becomes smaller with an increase of the 
linear constants of elastic foundation or 
the length. 

6. The increase in the amplitude parameter 
leads to an increase of the nonlinear 
frequency ratio. 
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