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The temperature-dependent properties and the effect of non-local elasticity in the 

presence of a magnetic field have been studied in an infinitely long solid conductive 

circular cylinder. The issue arises in the setting of two relaxation times in extended 

magneto-thermoelasticity theory. In the presence of a uniform magnetic field in the 

direction of the axis, the lateral surface is traction-free and subjected to known 

temperatures. Techniques are employed to determine the answer in the Laplace 

transform domain. A numerical method based on Fourier series expansions is used to 

carry out the inversion operation. In addition, graphs depict comparisons to highlight 

the influence of various elements such as the difference in times and the effect of the 

non-local coefficient and Empirical material constant. 

 

1. Introduction 

The theory of thermoelasticity deals with the 
effect of thermal and mechanical disturbances on 
an elastic body. Earlier interest in it resulted in a 
large number of theoretical and experimental 
research works. Thermoelasticity is important 
because it has numerous applications in domains 
including aviation, nuclear reactors, modern 
propulsion system technology, plasma physics, 
and geophysics. Green and Lindsay [1] 
introduced the theory of generalized 
thermoelasticity, which is often referred to as the 
theory of generalized thermoelasticity with two 
relaxation times. The fundamental 
considerations of that theory have been the 
subject of numerous works. For example, Hany 
[2] has solved a model consisting of a half-space 
governed by thermoelastic equations with two 
relaxation times. The action at the ambient level 
is carried out by a combination of thermal and 
mechanical shocks that act for a limited time. 
Khader et al. [3] applied Green and Lindsay's 
theory to a model of transient heat response in 
infinitely long annular cylinder surfaces with an 

internal heat source. Surendra and Elsibai [4] 
applied the two different theories of generalized 
thermal elasticity to a spherical cavity, and their 
results were compared with the classical 
dynamic-coupled theory. The interaction of 
magnetic fields and pressure in a hot solid 
material is gaining popularity due to its 
numerous applications in geophysics, plasma 
physics, and other domains. Extremely high 
temperatures and temperature gradients, as well 
as magnetic fields occurring within nuclear 
reactors, have an impact on their design and 
operation in the nuclear field [5]. The heat 
equation under discussion is usually the 
uncoupled or coupled equation, not the 
generalized one, in these investigations. In some 
cases, where the answers determined using 
either of these equations deviate slightly 
quantitatively, this attitude is valid. When 
considering short-time impacts, however, the 
whole, generalized system of equations must be 
used; otherwise, a significant amount of accuracy 
would be lost. Among the authors who 
considered the generalized magneto-
thermoelastic equations are Sherief [6-9]. Ezzat 
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and others [10-14] have studied thermoelastic 
Bodies and viscoelastic materials with fractional. 
He [15] studied the generalized electromagnetic-
thermoelastic problem for an infinitely long solid 
cylinder. Abd-Alla et al. [16] have discussed the 
Rayleigh surface wave propagation in an 
orthotropic rotating magneto-thermoelastic 
medium under the effect of gravity and initial 
stress. Othman and others [17-21] have 
presented many papers in which they studied 
Lord-Shulman theory, generalized 
thermoelasticity plane waves with two relaxation 
times, and temperature-dependent properties. 
Many authors contributed to this subject [22-37]. 
As is widely known, the physical properties of 
engineering materials vary significantly with 
temperature. Because the modulus of elasticity 
drops dramatically with temperature, the 
material's ability to elastically resist thermal 
loads declines. As a result, plastic deformation 
occurs at far lower thermal stresses than systems 
with constant physical properties imply. Araki 
[38] studied a thermal stress analysis of a 
thermos-viscoelastic hollow cylinder with 
temperature-dependent properties. Abbas [39] 
discussed the eigenvalue approach method in 
three-dimensional generalized thermoelastic 
with temperature-dependent material 
properties. Abouelregal [40] solved the boundary 
value problem of a one-dimensional semi-infinite 
piezoelectric medium. In several papers [41-56] 
the temperature-dependent properties of 
materials have been studied as the non-local 
theory of elasticity. In this work, the 
temperature-dependent properties and the effect 
of non-local elasticity in the presence of a 
magnetic field have been studied numerically in 
an infinitely long solid conductive circular 
cylinder. 

2. Governing Equations and 
Mathematical Model 

Let (r, φ, z) be cylindrical polar coordinates 
with the z-axis coinciding with the axis of a solid; 
infinitely long, elastic circular cylinder of a 
homogenous, isotropic material of radius r, 

− zar ,0  . The cylinder is placed in a 

magnetic field, as shown in Figure 1. Due to 
Maxwell’s equations, electrodynamics equations 
are linearly simplified for a perfectly 
homogeneous, conducting elastic solid 
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Fig. 1. An infinitely long solid cylinder 

From (1) and (2), we obtain: 













+−=





t

E
J

r

h
0  (3) 

t

h
rE

rr 


−=




0)(

1
  (4) 

















−=

t

u
HEJ o 00  (5) 

from equations (3) and (5), we get 
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from equations (4) and (6), we obtain 
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The cubic dilatation e is given by 
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The stress tensor σij’s are given by 
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The equations of motion and equation of heat 
conduction [53] 
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By applying the initial and boundary conditions, 
we can solve the problem. 
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The induced magnetic and electric fields are 
continues. 
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Traction-free and thermal shock, 
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from equations (4) and (18), substituting Fr into 
equation (14), we get 
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to discuss the effect of the temperature-
dependent material on the considered physical 
fields of the problem, following [39], we assume 
that 
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3. Solution of the Problem 

Let us introduce the non-dimension variables 
[20] 
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The equations (4), (7), (10), (16), and (20), can be 
written in the non-dimensional form, 
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Applying the Laplace transform with 
parameter s to both sides of equations (21)-(25), 
we obtain 
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The solutions of equations (31)-(33), have the 
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The displacement, u  , can be found in 

equations (9) and (34) 
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in the free space, around the cylinder, the induced 
fields E0 and h0 satisfy the following equations, 
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by using equations (46), we can obtain the 
systems of linear equations for the unknown 
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4. Numerical results 

To get the inverse of Laplace transforms, we 
use the method proposed in [57]. A numerical 
analysis is performed to study the effects of 
nonlocal and temperature-dependent properties. 
For the purpose of illustration, the material 
properties are listed as [6], [39]. 
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Fig. 2. Temperature distribution 

 
Fig. 3. Displacement distribution 

 
Fig. 4. Radial stress distribution 

 
Fig. 5. Electric field distribution 

 
Fig. 6. Induced magnetic field distribution 

 
Fig. 7. Temperature distribution 

 
Fig. 8. Displacement distribution 

 
Fig. 9. Radial stress distribution 

 
Fig. 10. Electric field distribution 

 
Fig. 11. Induced magnetic field distribution 
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Fig. 12. Temperature distribution 

 
Fig. 13. Displacement distribution 

 
Fig. 14. Radial stress distribution 

 
Fig. 15. Electric field distribution 

 
Fig. 16. Induced magnetic field distribution 

Figures (2-6) represent the graphs for the 
induced electric and magnetic field, stress, 
displacement, and temperature, in the case of 
absent nonlocal ( 0=  ) and temperature-

independent properties ( 1)( 0 =Tf  ). We can 

solve the problem by using three values of times, 
namely for 05.0=t  , 08.0=t , and 12.0=t  . Solid 

lines represent the case when t = 0.12, Dotted 
lines represent the solution for t = 0.05, and 
dashed lines represent the solution for t = 0.08.  
We first evaluate the derivation in the last section 
and the numerical inverse of the Laplace 
transform algorithm. The temperature on the 
cylinder surface is constant at 1. From all the 
graphs, it is easy to see that all functions satisfy 
the boundary conditions. We observe that the 
value of the temperature increases when the 
value of time increases. The position of the 
maximum points of stress and displacement-
induced electric and magnetic fields with respect 
to radius increases when the time increases. The 
finite speed of wave propagation is seen in all 
graphs, which is the major distinguishing feature 
of the expanded theory with two relaxation times. 
That is, unlike in the coupled theory, the effects of 
thermal shock on the boundary do not 
immediately fill the entire body of the cylinder. 

Figures 7-11 represent nonlocal and 
temperature-independent properties ( 

0
( ) 1f T =  ). 

The problem was solved for t = 0.08 and three 
values of nonlocal parameter, namely for 0= , 

05.0= , and 1.0=  dotted lines represent the 

solution for 1.0= , the dashed lines represent 

the solution for 05.0= , and solid lines 

represent the case when 0= . 

It clearly shows the effect of the nonlocal 
parameter on the temperature and stress 
(Figures 7 and 9). In figure 7, when ε = 0 (absent 
of nonlocal), the impacts of the thermal shock 
arrive at namely r = 0.4, but in present nonlocal 
the impacts of the thermal shock arrive namely  
r = 0.35. In figure 9, the effect of nonlocal is 
appearing at the point of discontinuity.  The effect 
of the nonlocal parameter is very small in the 
displacement, induced electric and magnetic 
fields, figures (8, 10, and 11). 

Figures 12-16, represent the case of absent 
nonlocal and temperature-dependent properties. 
The problem was solved for t = 0.08 and three 
values of Empirical material constant namely for

0* = , 05.0* = , and 1.0* = . Dotted lines 

represent the solution for 1.0* = , the dashed 

lines represent the solution for 05.0* = , and 

solid lines represent the case when 0* = . In 

Figure (12), we note that by increasing the 
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Empirical material constant α*, the speed of heat 
wave propagation decreases; this is due to the 
change in the physical properties of matter. At   

0* =  the impacts of the thermal shock have 

arrived at namely r = 0.44, at 05.0* =  the 

impacts of the thermal shock, have arrived at 

namely r = 0.47, at 1.0* =   the impacts of the 

thermal shock, have arrived at namely r = 0.51. In 
all the figures (12-16), it should be noted that 
there is a significant difference in the values of 
the considered function. This may be due to the 
fact that the temperature in thermoelasticity is an 
infinitesimal deviation from the reference 
temperature. Thus, the dependence of the 
modulus of elasticity on reference temperature 
has a significant effect on the thermal and 
mechanical interactions. And we show that by 
increasing the Empirical material constant α*, 
increases the values of the functions, which 
indicates that the physical reasons for elastic 
behavior can be quite different for different 
materials. In metals, lattice changes size and 
shape when forces are applied (energy is added 
to the system). This is evident from the figures 
(13-14). 

5. Conclusions 

In this work, the temperature-dependent 
properties and the effect of non-local elasticity in 
the presence of a magnetic field have been 
studied numerically in an infinitely long solid 
conductive circular cylinder. We can draw the 
following conclusions in light of the above 
analysis: The physical quantities satisfy the 
boundary conditions, the finite speed of wave 
propagation is apparent, and all the results are in 
concurrence with the generalized theory of 
thermoelasticity. The studied physical quantities 
are affected by the presence of a non-local 
parameter, as they are strongly affected by some 
physical quantities such as temperature and 
stress, and have a negligible effect on some 
physical quantities such as displacement, and 
electric and magnetic fields. The dependence of 
the modulus of elasticity on the reference 
temperature has a significant effect on thermal 
and mechanical interactions. This is very clear 
from the graphs. The magnitude of all studied 
physical quantities increased in the presence of 
temperature-dependent properties. This study is 
useful for these problems. The study mentioned 
above is important in the study of structural 
components and mechanical elements such as 
pressure vessels and pipes in nuclear reactors, 
chemical plants, and high-speed aircraft. It is 
subject to thermal loads due to high temperature, 
high-temperatures gradients, and periodic 
temperature changes. 

Nomenclature 

J electric current density 

ε0 electric permeabilities 

μ0 magnetic permeabilities 

D electric induction vectors 

σ0 electric conductivity 

u displacement vector 

λ, μ Lamé’s modulii 

γ material constant 

T absolute temperature 

ρ density 

θ0 constant 

H0 magnetic field 

2  Laplace’s operator 

αt coefficient of linear thermal expansion 

T0 reference temperature 

k thermal conductivity 

cE specific heat at constant strain 

τ1, τ2 the relaxation time 

H(t) Heaviside unit step function 

E0 Induced electric fields in the free space 

h0 Induced magnetic fields in the free space 

F Lorentz force 

* * *, ,k   Constants 

*  Empirical material constant 

B magnetic induction vectors 

  nonlocal parameter 
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