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Pineapple leaf is a natural fibre possessing superior mechanical strength which can be 

used as a reinforcing component in natural fibre-based composites. In general, composites 

can endure a wide variety of loads while in service. This work reports the buckling analysis 

of pineapple fibre reinforced epoxy composites and compared it to an isotropic composite 

reinforced with a synthetic fibre such as E-glass. The effects of changing the fibre volume 

fraction and plate aspect ratio, on physical buckling behaviour have been reported. The 

elastic parameters were calculated analytically, whereas the buckling studies were carried 

out using the finite element method. Buckling was shown to be significantly influenced by 

the changes in volume fractions, plate aspect ratio, and buckling mode. Additionally, the 

influence of design parameters such as optimum ply angle for composite stacking-

sequence was also investigated under no shear conditions. It was observed that pineapple 

leaf fibre composites yielded better buckling characteristics than contemporary synthetic 

E-glass fibre composites. 

1. Introduction 

Natural fibre composites are being used to 
replace most structural applications in today's 
world, whether in the automation, aviation, or 
shipping industries. Because synthetic fibres are 
non-biodegradable and only reusable up to a 
certain point, their widespread use has had a 
negative and damaging influence on sentient 
beings. Natural fibres are crucial as they are 
biocompatible and biodegradable, have a high 
strength-to-weight ratio, have less density, and 
are non-toxic. Additionally, they are also 
abundantly available as most of the parts of fruits 
and plants are wasted due to a lack of knowledge 
regarding their economic value [1,2]. Natural 
fibres have recently been used in industrial and 
automation applications, although they still lack 
some of the properties that synthetic fibres can 
supply. Senthilkumar et. al. [1] analysed 
pineapple leaf fibre composite for free vibration 
and damping properties. Earlier, Saha et. al. 
investigated the mechanical, thermal, and 
biodegradation behaviour of pineapple leaf 
particulates and found satisfactory results [2]. 

Peças et. al. [3] reviewed several papers based on 
the usage of fibres in various industries and on 
their processing and utilisation in automotive 
industries. Mohammed et. al. [4] presented 
various surface treatment methods and the 
impact of chemical treatments on fibre matrix 
adhesion, along with the physical and mechanical 
characteristics of several fibres. Jawid et. al. [5] 
presented various properties and qualities of 
pineapple leaf fibres. They also stated that 
pineapple leaf fibres are extensively used in 
textile industries and automation industries. 
Sema et. al. [6] provided insight into pineapple 
leaf fibres cultivation and their availability in 
portions of northeast India such as Karbi 
Anglong, North Cachar hills, West and East Garo 
hills, and Barak valley which produces almost 
40% of the total pineapple of India. Mishra et. al. 
[7] investigated the fibre loading condition and 
its impact resistance for pineapple leaf fibre 
composites for various weight fractions. It was 
found that these composites have an impact 
strength of around 80.29 J/m for a 30% weight 
fraction. Borah et. al. [8] studied the structural 
responses of various fibre composites and 
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presented a comparative study for varying 
damping ratios with plate aspect ratio and 
volume fractions. Jalili et. al. [9] investigated the 
effects of flax fibre on the multi-objective 
optimum design of hybrid laminated composite 
for maximum buckling with different material 
configurations keeping the cost as a priority. 
Hosseinzadeh et. al. [10] conducted the multi-
objective optimization for flax fibres composite 
by minimizing the cost and maximizing the 
frequency gaps in order to assess the capabilities 
of fibre-reinforced composites. Le et. al. [11] 
investigated the viscoelastic beahviour of a 
laminated composite under axial loading 
conditions using Abaqus. Le et. al. [12] studied 
the buckling behaviour of transversely isotropic 
multilayered beams with thin and soft interfaces 
for a better understanding of wrinkle formation 
under compressive loading. Chai et. al. [13] 
presented the stability behaviour of typical 
laminated composite plates with all sides simply 
supported and bound to in-plane stress 
conditions, utilising a total potential energy 
method in conjunction with the Rayleigh-Ritz 
technique. Darvizeh et. al. [14] investigated the 
buckling of composite plates, wherein the 
mathematical modeling for typically laminated 
plates was constructed using the generalized 
differential quadrature rule (GDQR) and the R–R 
approach. Adali et. al. [15] stated that if the plies 
are symmetric about the middle, a balanced 
laminated is achieved where the coupling is 
absent. This implies that a balanced configuration 
has the advantage of reducing the 𝐷16 and 𝐷26 
values for any angle ply laminates as these values 
can be neglected and are considered zero. 
Furthermore, they also mentioned that for 
laminates with several layers, 𝐷16 and 𝐷26 values 
might be rather modest in comparison to other 
𝐷𝑖𝑗  values. Bert et. al. [16] found that among 

various stacking sequences, simply supported 
plates and symmetrical angle ply laminates had 
the largest buckling mode under uni-axial and bi-
axial loads. There has been a lot of research done 
on the mechanical and thermal properties of 
natural fibres, however, relatively little attention 
has been devoted to the structural deformations 
that may occur as a result of loading in 
composites. 

The overall aim of this research is to 
investigate the buckling modes of failure of 
pineapple leaf fibre composite as a function of 
varying stacking sequences. Additionally, the 
buckling characteristics of the pineapple leaf 
fibre composites are compared with a synthetic 
fibre composite in order to understand the 
performance capabilities of natural fibre 
composites under buckling.  The numerical 
analysis is performed using Kirchhoff’s plate 
theory and Navier’s solutions under no-shear 

conditions. Furthermore, buckling 
characteristics were modelled by FEM analysis. 

The rest of the paper is organized as follows: 
Section 2 formulates the numerical method and 
theory for buckling. Additionally, it describes the 
boundary conditions applied and the modeling of 
laminated composite incorporating the applied 
loads. In section 3, the detailed outcomes have 
been explained, and finally, concluding remarks 
regarding the outcome of the research have been 
stated in section 4. 

2. Problem Description and 
Experimental Setup 

The elastic modulus, shear modulus, and 
Poisson's ratio of a composite lamina were 
calculated using the rule of mixture, as given by 
Jones [17]. The requisite fibre qualities were 
derived from several studies. 

 𝐸11 = 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚  (1) 

𝐸22 =
𝐸𝑓𝐸𝑚

𝐸𝑚𝑉𝑓 + 𝐸𝑓𝑉𝑚

 (2) 

Major Poisson’s ratio (𝜈12) and Minor 
Poisson’s ratio (𝜈21) can be obtained as; 

𝜈12 = 𝜈𝑓𝑉𝑓 + 𝜈𝑚𝑉𝑚  (3) 

 𝜈21 = 𝜈12(
𝐸22

𝐸11

) (4) 

In-plane shear modulus (𝐺12) of the 
composite can be obtained as; 

𝐺12 =
𝐺𝑚𝐺𝑓

𝐺𝑚𝑉𝑓 + 𝐺𝑓𝑉𝑚

 (5) 

where 𝐺𝑓 , 𝐺𝑚 are the shear modulus of fibre and 

matrix respectively and can be calculated as; 

𝐺𝑓 =
𝐸𝑓

2(1 + 𝜈𝑓)
;     𝐺𝑚 =

𝐸𝑚

2(1 + 𝜈𝑚)
 (6) 

In recent years, the usage of composites in 
structural applications has expanded 
dramatically. These composites are in the form of 
thin laminates that may be formed according to 
the pattern that is required. When thin laminates 
with no out-of-plane loads are examined, the 
lamina is regarded to be in a plane stress state,  
i.e., 𝜎3 = 0, 𝜏31 = 0and 𝜏23 = 0. This yields the 
𝑆𝑖𝑗values which are known as reduced 

compliance coefficients. The compliance matrix 
[S], inverting the compliance matrix [S]and the 
reduced stiffness matrix [Q]is obtained as shown 
by Jones [17]; 

[

𝝈𝟏

𝝈𝟐

𝝉𝟏𝟐

] = [

𝑸𝟏𝟏 𝑸𝟏𝟐 𝟎
𝑸𝟏𝟐 𝑸𝟐𝟐 𝟎

𝟎 𝟎 𝑸𝟔𝟔

] [

𝝐𝟏

𝝐𝟐

𝜸𝟏𝟐

] (7) 
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 𝑄11 =
𝐸11

1 − 𝜈12𝜈21

 (8) 

  𝑄12 =
𝜈12𝐸22

1 − 𝜈12𝜈21

 (9) 

  𝑄22 =
𝐸22

1 − 𝜈12𝜈21

 (10) 

  𝑄66 = 𝐺12 (11) 

where, 𝑄𝑖𝑗  are called reduced stiffness 

coefficients, and are related to elastic constants 
as explained in  [17]. A2D coordinate system is 
used to represent an angle lamina as shown in 
Figure 1. The axes displaying coordinate systems 
1-2 are referred to as local axes, whereas the axes 
x-y are referred to as global axes. The angle 
formed by two axes is denoted by the symbol 𝜃. 
The local and global stresses are related through 
transformation matrix T as described by Jones 
[17]; 

 
Fig. 1. Local and global axes of an angle lamina 

The expression of global stress and global 
strain can be written as given by Jones [17]; 

[

𝝈𝒙

𝝈𝒚

𝝉𝒙𝒚

] = [

𝑸𝟏𝟏 𝑸𝟏𝟐 𝑸𝟏𝟔

𝑸𝟏𝟐 𝑸𝟐𝟐 𝑸𝟐𝟔

𝑸𝟏𝟔 𝑸𝟐𝟔 𝑸𝟔𝟔

] [

𝝐𝒙

𝝐𝒚

𝜸𝒙𝒚

] (12) 

where, 𝑄̅𝑖𝑗  elements are called transformed 

reduced stiffness matrix. The 𝑄̅𝑖𝑗  elements can be 

found as given by Jones[17]. 
The location of laminas in the composite 

laminate is shown in figure 2. 

 
Fig. 2. Locations of laminas in a laminate 

For the orientation of fibres in a stacking 
sequence of laminas in a different direction, the 
flexural stiffness 𝐷𝑖𝑗and bending stiffness matrix 

[D] are calculated as follows [18]; 

𝐷𝑖𝑗 =
1

3
∑[𝑄𝑖𝑗]𝑘(ℎ𝑘

3 − ℎ𝑘−1
3 )

𝑛

𝑘=1

 (13) 

[𝑫] = [

𝑫𝟏𝟏 𝑫𝟏𝟐 𝑫𝟏𝟔

𝑫𝟏𝟐 𝑫𝟐𝟐 𝑫𝟐𝟔

𝑫𝟏𝟔 𝑫𝟐𝟔 𝑫𝟔𝟔

] (14) 

2.1. Theory of Buckling 

Equation of motion in terms of displacements 
in a constitutive relationship for a laminated 
plate in full matrix form can be written as shown 
by Chai and Hoon[13]: 

[
𝑵
𝑴

] = [
𝑨 𝑩
𝑩 𝑫

] [𝜺𝟎

𝜺𝟏] (15) 

where, 𝜀0and 𝜀1are called the membrane strains 
and surface curvatures respectively [13]. 

For a given plate, the total loss in potential 
energy of the deformed plate is taken from Chai 
and Hoon [13]: 

Π = 𝑈 − 𝑉 (16) 

Using the strain energy displacement 
resultants and consecutive relations for the 
laminated plate by using the above expressions 
and solving the form given in Eq. 15 and 
substituting in Eq. 16 the strain energy as given 
by [13]: 

𝑈 = 

1

2
∫{𝐷11 (

∂2𝑤0

∂𝑥2
)

2

+ 2𝐷12(
∂2𝑤0

∂𝑥2
)(

∂2𝑤0

∂𝑦2
)

Ω

+ 4𝐷66 (
∂2𝑤0

∂𝑥 ∂𝑦
)

2

+ 𝐷22(
∂2𝑤0

∂𝑦2
)2

+ 4𝐷16(
∂2𝑤0

∂𝑥2
)(

∂2𝑤0

∂𝑥 ∂𝑦
)

+ 4𝐷26(
∂2𝑤0

∂𝑦2
)(

∂2𝑤0

∂𝑥 ∂𝑦
)} dΩ 

(17) 

where, 𝐷𝑖𝑗  are reduced flexural stiffness values 

and 𝑑Ω = dxdy. 
Assuming that the plate is subjected to stress 

resultants 𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦 the potential energy 

acquired as a consequence of external loading is 
stated in [13]: 

𝑉 = 

1

2
∫ {𝑁𝑥(

∂𝑤0

∂𝑥
)2 + 𝑁𝑦(

∂𝑤0

∂𝑦
)2

Ω

+ 2𝑁𝑥𝑦(
∂𝑤0

∂𝑥
)(

∂𝑤0

∂𝑦
)} dΩ 

(18) 
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According to Hamilton's variational principle, 
real displacements among permissible routes 
accompanied by a dynamical method as stated by 
Darvijeh [14] is given by, 

𝛿 ∫ Πd𝑡
𝑡1

𝑡𝑜

= 0 (19) 

𝛿Π = 𝛿𝑈 − 𝛿𝑉 = 0 (20) 

where 𝛿 is the initial variation and 𝑡0, 𝑡1 are 
specified times, upon applying Hamilton’s 
principle for a mid-plane symmetric plate, 𝐵𝑖𝑗 =

0 with coupling terms i.e. 𝐷16 = 𝐷26 = 0, and 
neglecting the shear effects of loading 𝑁𝑥𝑦 = 0. 

Under these conditions, the equation governing 
deflection is given by Reddy[19]. 

𝐷11 (
∂4𝑤0

∂𝑥4
) + 2(𝐷12 + 2𝐷66) (

∂4𝑤0

∂𝑥2 ∂𝑦2
) 

+𝐷22 (
∂4𝑤0

∂𝑦4
) = 𝑁𝑥 (

∂2𝑤0

∂𝑥2
) + 𝑁𝑦 (

∂2𝑤0

∂𝑦2
) 

(21) 

To determine a non-zero deflection the in-
plane forces are [19]; 

𝑁𝑥 = −𝑁0,  𝑁𝑦 = −𝑘𝑁0,  𝑘 =
𝑁𝑥

𝑁𝑦
 (22) 

where k is also known as the plate buckling 
constant. 

2.2. The Navier’s Solution 

Navier's solutions are particularly useful for 
orthotropic laminates. The Navier solution makes 
use of two sinusoidal functions that meets the 
boundary condition in exact form. The number of 
waves in the two directions is a function of the 
solution, the dimensions of the plate, and the 
properties of the material as expressed in [19]. 

𝑤0(𝑥, 𝑦) = 𝑊𝑚𝑛𝑠𝑖𝑛(𝛼𝑥)𝑠𝑖𝑛(𝛽𝑦) (23) 

Substituting Eq. 23 into Eq. 21 we obtain (for 
any m and n) 

𝑁0(𝑚, 𝑛) =
𝑑𝑚𝑛

(𝛼2 + 𝑘𝛽2)
 (24) 

For uni-axial compressions of a rectangular 
laminate, 𝑘 = 0 and for bi-axial 𝑘 = 1. Where, 

𝑑𝑚𝑛 = 𝐷11𝛼4 + 2(𝐷12 + 2𝐷66)𝛼2𝛽2 

         +𝐷22𝛽4 
(25) 

𝛼 =
𝑚𝜋

𝑎
  ,   𝛽 =

𝑛𝜋

𝑏
 (26) 

𝑁0(𝑚, 𝑛) =
𝜋2

𝑚2𝑏2
[𝐷11𝑚4 (

𝑏

𝑎
)

2

+ 2(𝐷12 + 2𝐷66)𝑚2𝑛2

+ 𝐷22𝑛4(
𝑎

𝑏
)2] 

(27) 

The smallest value of 𝑁0, for any m, occurs for 
𝑛 = 1, [19]. Hence critical buckling load is a 
function of 𝑁 = 𝑁0(𝑚). For Navier’s solution, the 
non-dimensionalized buckling load is found 
using this formula as expressed in Reddy [19]. 

𝑁 = 𝑁0𝑏2/(𝜋2𝐷22) (28) 

2.3. Finite Element Method 

The FEM modeling of fibre composite was 
carried out in ANSYS composite prepost for the 
design and stacking sequence of laminated 
composite. SHELL181 type element was used in 
the present FE analysis as the SHELL181 is 
pertinent for the analysis of thin to substantially 
thick shell structures. The SHELL181 element 
contains four nodes, each with six degrees of 
freedom. 

The boundary condition of the square plate 
for the eigenvalue buckling analysis was 
considered as simply supported (SSSS) on all 4 
edges. The plate edges were transformed to the 
nodal named selection, making it easier to define 
the boundary conditions at the extreme 
boundary limits of edges. The nodal displacement 
along the z-axis was zero for all four edges of the 
plate, rotation along the y-axis was fixed for the 
top and bottom nodal edges, and rotation along 
the x-axis was fixed for the left and right nodal 
edges of the plate. Two additional nodal-named 
selections were created on the plate, one in 
middle (considering plate coordinates) where 
displacement along x,y was zero at the center and 
the other nodal-named selection at the side edge 
along the x-axis where displacement along y was 
set to zero. Figure 3 shows the stacking sequence 
of the composite. 

 
Fig. 3. Angle ply stacking sequence of [0°/45°]𝑠 
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For the eigenvalue buckling analysis, the 
dimensions of the composite plate were kept at 
120 mm × 120 mm × 1.6 mm based on ASTM 
standards as provided by Komur et. al. [20], 
where the ply thickness is 0.0004 meters or 
0.4mm each, for 4 plies. For eigenvalue buckling 
in ANSYS, after applying the boundary condition, 
a load of 1000 N/mm (line pressure) was applied 
on the two opposite sides of the composite plate 
for uni-axial loading and on all four sides of the 
composite plate for bi-axial loading conditions of 
the simply supported plate (SSSS) (refer figures 4 
and 5). 

 
Fig. 4.Uni-axial loading of a square composite plate 

 
Fig. 5. Bi-axial loading of a square composite plate 

The eigenvalue buckling in ANSYS gradually 
starts applying the load until it reaches the 
bifurcation point as shown in Figure 6 (A point 
where deformation occurs or starts). 

 
Fig. 6.Diagram for bifurcation point in buckling 

At this point, the composite buckles, and the 
rest is examined in post-buckling behaviour, also 
known as nonlinear buckling. The loading of 
1000 N/m is applied as a Load Multiplier or Load 
Factor, which is given as; 

𝐴𝑛𝑠𝑦𝑠 𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 

 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐵𝑢𝑐𝑘𝑙𝑖𝑛𝑔 𝐿𝑜𝑎𝑑 𝑁𝑐𝑟

𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝐿𝑜𝑎𝑑
 

The mesh convergence study was carried out 
and the optimal results were found for an 
element size of 12 mm mesh for 120 mm ×120 
mm × 1.6 mm plate based on ASTM standards 
[20]. It had better mesh metric quality with an 
aspect ratio of 1 (best). There was no mesh 
refinement required as the plate considered was 
square or rectangular (for higher plate aspect 
ratios) and had no curvature to it, where the 
outcomes were identical with no or very minimal 
error. The plate wrapping factor details the wrap 
(mathematical deviation of a mesh element) of 
mesh elements. A greater wrapping factor means 
a lower or poorer quality mesh structure, and the 
ideal wrapping factor is 0. The mesh wrapping 
factor was 0 for the generated mesh in this study. 
By default, the element order was set to program 
controlled and physics preference was set to 
mechanical, thus for which ANSYS creates quad 4 
elements, and the number of elements and nodes 
were found to be 100 and 121 respectively. 

3. Results and Discussion 

It is one of the most critical aspects of failure 
analysis for a material that is undergoing 
deformation. Buckling is often determined in the 
situation of lengthy columns; although it can 
occur in the majority of practical instances, 
including thin flat plates. Buckling is a failure 
mode in which a structure deflects or deforms as 
a result of abrupt compressive force. This study 
uses Navier's model to investigate the impact of 
uni-axial and bi-axial loading under a given load 
on all four sides of an orthotropic composite 
plate. Navier's model is used for orthotropic 
plates with mid-plane symmetry and the effects 
of shear have been neglected. The variation of 
buckling load is studied with plate aspect ratio 
and the number of half waves in the x-direction. 
For the validation of the analytical result, the 
same values are considered as given in Reddy 
[19]. 

In Table 1, the influence of plate aspect ratio 
and modulus on non-dimensionalized buckling 
loads 𝑁 of rectangular laminates [0°/90°]𝑠 for 
uni-axial loading conditions (k=0) and bi-axial 

loading conditions (k=1) are shown, where, 
𝐸11

𝐸22
= 

varied, 𝐺12 = 𝐺13 =  0.5𝐸22, 𝐺23 = 0.5𝐸22, 𝜗12 =
0.25. All layers are considered to be of equal 
thickness [13].  
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Table 1. Comparison of Navier's non-dimensional buckling load [19] with the analytical result 

k 
𝑎

𝑏
 

𝐸11

𝐸22

= 5 10 20 25 40 
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o
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N
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n
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o

n
al

 

N
u

m
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0 

0.5 13.9 13.85 18.12 18.09 21.87 21.85 22.87 22.85 24.59 24.57 

1 5.65 5.608 6.347 6.317 6.961 6.942 7.124 7.108 7.404 7.393 

1.5 5.233 5.191 5.277 5.247 5.31 5.291 5.318 5.32 5.332 5.321 

1 

0.5 11.12 11.08 12.69 12.63 13.92 13.88 14.24 14.21 14.76 14.73 

1 2.852 2.804 3.174 3.158 3.481 3.471 3.562 3.554 3.702 3.696 

1.5 1.61 1.597 1.624 1.614 1.634 1.628 1.636 1.631 1.641 1.637 

 

In all cases the critical buckling mode is  

(m× n) = (1× 1), except for 
𝑎

𝑏
= 0.5and (k=1); for 

which the modes are (1× 1), (1× 2), (1× 2),  
(1× 2), and (1× 3) for modulus ratios 5, 10, 20, 
25, and 40, respectively [19]. It was observed that 
larger aspect ratios resulted in increased modes 
of buckling, as seen in Figure 7. 

 
Fig. 7.Buckling load (non-dimensionalized), vs plate 

aspect ratio 
𝑎

𝑏
 [19] 

The non-dimensionalized buckling load  

𝑁 = 𝑁0𝑏2/(𝜋2𝐷22) versus plate aspect ratio 
𝑎

𝑏
 for 

laminates with material parameters are 
𝐷11

𝐷22
= 10, 

𝐷12 + 2𝐷66 = 𝐷22are plotted in Figure 8. 

 
Fig. 8. Buckling load (non-dimensionalized), vs plate 

aspect ratio 
𝑎

𝑏
 (numerical) 

When the plate aspect ratio is less than 2.5, it 
collapses into a single half-wave in the x-direction 
(refer to Figure 9) [19]. 

 
Fig. 9. Buckling load (non-dimensionalized) vs number of 

half wavelengths ‘m’ [19] 

The plate bends into larger and more half-
waves in the x-direction as the aspect ratio 
increases [19]. Notice that intersections of two 
successive modes correspond to specific aspect 
ratios (refer to Figure 10). As a result, there are 
two buckled mode configurations for each of 
these plate aspect ratios. 

 
Fig. 10. Buckling load (non-dimensionalized) vs number 

of half wavelengths m [19] (numerical) 
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3.1. Comparison Between a Natural Fibre 
Composite and a Synthetic Fibre 
Composite Under Uni-axial Loading and 
Bi-axial Loading 

Herein, PaLF composites are compared with a 
synthetic fibre composite (E-glass), as PaLF fibres 
have better mechanical properties compared to 
most of the other NF's [5]. For synthetic fibre, E-
glass was considered as it had almost comparable 
mechanical properties with PaLF [5,21]. The fibre 
and matrix properties are shown in Table 2.  

Table 2. Materials Properties 

Fibres 
Density 

(
𝑘𝑔

𝑚3
) 

Young's 
Modulus 
(GPa) 

Poisson's 
Ratio 

References 

Pineapple 1500 82 0.3 [3-5] 

E-Glass 2500 73 0.22 [21] 

Epoxy 1200 3.78 0.35 [8, 22] 

Table 3 shows non-dimensionalized buckling 
load for uniaxial loading. 

Table 3. N̅ values for uni-directional loading 

Stacking 

sequence 

𝑎

𝑏
 𝑉𝑓 % 

PaLF 
Min. buckling 

mode PaLF 

E-Glass 
Min. buckling 

mode E-glass 

% 

change Numerical FEM Numerical FEM 

[0°/0°]s 

1 

20 8.29 8.18 1 × 1 7.81 7.71 1 × 1 5.79 

25 9.43 9.31 1 × 1 8.83 8.71 1 × 1 6.36 

30 10.61 10.47 1 × 1 9.88 9.75 1 × 1 6.88 

2 

20 8.18 8.05 1 × 1 7.81 7.71 1 × 1 4.52 

25 8.82 8.68 1 × 1 8.62 8.49 1 × 1 2.27 

30 9.53 9.38 1 × 1 9.28 9.13 1 × 1 2.62 

3 

20 7.08 6.99 2 × 1 6.84 6.76 2 × 1 3.39 

25 7.78 7.69 2 × 1 7.48 7.39 2 × 1 3.86 

30 8.53 8.43 2 × 1 8.17 8.07 2 × 1 4.22 

[0°/90°]s 

1 

20 8.28 8.09 1 × 1 7.81 7.62 1 × 1 5.68 

25 9.42 9.21 1 × 1 8.82 8.62 1 × 1 6.37 

30 10.60 10.36 1 × 1 9.87 9.65 1 × 1 6.89 

2 

20 8.28 8.09 2 × 1 7.81 7.62 2 × 1 5.68 

25 9.42 9.21 2 × 1 8.82 8.62 2 × 1 6.37 

30 10.60 10.36 2 × 1 9.87 9.65 2 × 1 6.89 

3 

20 7.90 7.70 2 × 1 7.56 7.37 2 × 1 4.30 

25 8.80 8.58 2 × 1 8.38 8.17 2 × 1 4.77 

30 9.74 9.51 2 × 1 9.23 9.01 2 × 1 5.24 

[0°/45°]s 

1 

20 8.68 8.59 1 × 1 8.16 8.06 1 × 1 5.99 

25 9.91 9.82 1 × 1 9.26 9.16 1 × 1 6.56 

30 11.17 11.08 1 × 1 10.38 10.29 1 × 1 7.07 

2 

20 8.66 8.59 2 × 1 8.14 8.06 2 × 1 6.00 

25 9.88 9.82 2 × 1 9.23 9.16 2 × 1 6.58 

30 10.96 10.86 1 × 1 10.36 10.29 2 × 1 5.47 

3 

20 7.78 7.72 2 × 1 7.47 7.40 2 × 1 3.98 

25 8.65 8.60 2 × 1 8.25 8.19 2 × 1 4.62 

30 9.56 9.52 2 × 1 9.08 9.03 2 × 1 5.02 

[0°/60°]s 

1 

20 8.57 8.45 1 × 1 8.06 7.94 1 × 1 5.95 

25 9.78 9.65 1 × 1 9.14 9.01 1 × 1 6.54 

30 11.02 10.89 1 × 1 10.25 10.11 1 × 1 6.99 

2 

20 8.55 8.45 2 × 1 8.04 7.94 2 × 1 5.96 

25 9.75 9.65 2 × 1 9.11 9.01 2 × 1 6.56 

30 10.98 10.89 2 × 1 10.21 10.11 2 × 1 7.01 

3 

20 7.89 7.80 2 × 1 7.56 7.47 2 × 1 4.18 

25 8.78 8.71 2 × 1 8.37 8.28 2 × 1 4.67 

30 9.71 9.65 2 × 1 9.21 9.14 2 × 1 5.15 
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From Table 3, the buckling load values for uni-
axial loading for PaLF composite and E-glass 
composites can be obtained. The minimum 
buckling load for various stacking-sequence of 
[0°/0°]𝑠, [0°/90°]𝑠, [0°/45°]𝑠 and [0°/60°]𝑠 has 
been provided for increasing volume fraction. 
Variations for increasing plate aspect ratios and 
buckling load are also shown. According to Table 
3, the buckling load values for higher plate aspect 
ratios occur at higher mode shapes. This is 
because, as previously stated in Eq. 27, the 
minimum critical buckling load is a function of 
'm', and thus the minimum value for critical 
buckling may occur at higher mode shapes as the 
aspect ratio increases for certain values of modes. 

It is certain that the PaLF composite 
outperforms the E-glass composite in terms of 

outcomes. For plate aspect ratio (
𝑎

𝑏
= 1) and  

(
𝑎

𝑏
= 1) at [0°/45°]s stacking sequence, the PaLF 

composite showed the best possible results. 
Similar findings were obtained for 𝜃 =
45° stacking sequence under uni-axial 
compression by [15,23]. 

Figure 11 shows the variation of non-
dimensionalized buckling load to plate aspect 
ratio for increasing mode shapes. The figure also 
shows the variation for different stacking-
sequence of the composite plate. It can be noted 
that the non-dimensionalized buckling load is 
minimum for [0°/90°]s stacking sequence, 
whereas the [0°/45°]s and [0°/0°]s stacking 
sequence results are better. Note that Figure 11 
shows the non-dimensionalized form for a 
continuously varying plate aspect ratio. 

 
Fig. 11. Buckling load (Non-dimensionalised) vs plate 
aspect ratio for uni-axial loading of various stacking-
sequence at 25% volume fraction of PaLF composite 

Non-dimensionalized form (𝑁) is important in 
understanding the concepts of how this 
parameter (𝑁) is directly related to flexural 
stiffness values, for changing plate aspect ratios. 
It could not be possible to understand directly 
just by checking the critical buckling load values. 
As critical buckling values will show the possible 
load at which it will start to buckle and not the 

modes of buckling. The non-dimensionalized 
form could be used to study how a plate will 
behave under certain loads and in several modes 
that it will buckle into. The non-dimensionalized 
buckling load has an inverse relation to 𝐷22 as 
previously stated in Eq. 28. Also as stated by Joshi 
et. al. [23], at 90°, 𝐷11 equals the value of 𝐷22 at 
0° and 𝐷22  at 90°  equals the value of 𝐷11 at 0°. At 
45°, 𝐷11 and 𝐷22are equal, hence the maximum 
buckling load occurs at 45° orientation. But the 
inverse relationship between 𝐷22and non-
dimensionalized buckling load results in 
changing the maximum buckling load values for 
[0°/0°]sand [0°/90°]s stacking sequence. 
Furthermore, it can also be observed how 
increasing the plate aspect ratio changes the 
buckling mode for any plate. As the plate aspect 
ratio grows, the plate buckles into more and more 
half waves in the x-direction. It is worth noting 
that the intersection of two successive modes for 
various stacking sequences, happens at a 
particular mode and plate aspect ratio. For higher 
angles of orientation of fibres apart from [0°/0°]s 
stacking sequence, figure 11, shows how the plate 
buckles into two half waves as the plate aspect 
ratio reaches two. 

Table 4 shows the buckling load values for bi-
axial loading for the PaLF composite and E-glass 
composite.  

For the bi-axial loading of the composite plate, 
it was observed that the minimum critical 
buckling load was lowered by a significant 
amount as compared to uni-axial loading. PaLF 
results are still better for comparison with E-
glass fibre. The minimum critical buckling load 
for all stacking-sequence at different volume 
fractions and plate aspect ratios were found at 
𝑚 = 1, 𝑛 = 1. Buckling load for bi-axial loading is 
unsustainable for a higher plate aspect ratio 
because the plate lengthens and the buckling load 
decreases drastically. 

It was observed that PaLF composite would 
be much more resistant to deformation when 
compared to E-glass due to its superior 
mechanical properties. Thus PaLF can be a 
suitable alternative for E glass in different types 
of composites. When compared with synthetic 
fibre composites; PaLF composites showed 
better buckling characteristics, thus, showing 
that PaLF composites outperform contemporary 
E-glass composites. The improvements were 
observed to be more in the case of square 
laminates and at higher weight fraction of fibres 
(i.e. 30 vol%). Square PaLF composite plates with 
30 vol% fibres showed a buckling load increment 
of approximately about 7% when compared with 
similar E-glass composites. Thus, PaLF composite 
materials have huge potential to be used in 
structural components under buckling 
conditions. 
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Table 4. 𝑁̅ values for bi-directional loading 

Stacking 

sequence 

𝑎

𝑏
 𝑉𝑓 % 

PaLF Min. buckling 

mode PaLF 

E-Glass Min. buckling 

mode E-glass 

% 

change 
Numerical FEM Numerical FEM 

[0°/0°] 

1 

20 4.15 4.09 1 × 1 3.91 3.85 1 × 1 5.78 

25 4.72 4.65 1 × 1 4.42 4.36 1 × 1 6.36 

30 5.30 5.23 1 × 1 4.94 4.87 1 × 1 6.79 

2 

20 1.63 1.61 1 × 1 1.60 1.58 1 × 1 1.84 

25 1.75 1.74 1 × 1 1.72 1.70 1 × 1 1.71 

30 1.90 1.88 1 × 1 1.85 1.83 1 × 1 2.63 

3 

20 1.32 1.30 1 × 1 1.31 1.29 1 × 1 0.76 

25 1.40 1.39 1 × 1 1.39 1.37 1 × 1 0.71 

30 1.50 1.48 1 × 1 1.48 1.46 1 × 1 1.33 

[0°/90°] 

1 

20 4.14 4.04 1 × 1 3.90 3.81 1 × 1 5.80 

25 4.71 4.60 1 × 1 4.41 4.31 1 × 1 6.37 

30 5.30 5.18 1 × 1 4.93 4.82 1 × 1 6.98 

2 

20 1.97 1.92 1 × 1 1.89 1.85 1 × 1 4.06 

25 2.18 2.13 1 × 1 2.08 2.04 1 × 1 4.59 

30 2.40 2.35 1 × 1 2.29 2.24 1 × 1 4.58 

3 

20 1.72 1.69 1 × 1 1.66 1.63 1 × 1 3.49 

25 1.90 1.87 1 × 1 1.83 1.79 1 × 1 3.68 

30 2.09 2.05 1 × 1 2.00 1.96 1 × 1 4.31 

[0°/45°] 

1 

20 4.34 4.29 1 × 1 4.08 4.03 1 × 1 5.99 

25 4.95 4.91 1 × 1 4.63 4.58 1 × 1 6.46 

30 5.59 5.54 1 × 1 5.19 5.14 1 × 1 7.16 

2 

20 1.82 1.81 1 × 1 1.77 1.75 1 × 1 2.75 

25 2.00 1.98 1 × 1 1.93 1.91 1 × 1 3.50 

30 2.18 2.17 1 × 1 2.10 2.09 1 × 1 3.67 

3 

20 1.48 1.46 1 × 1 1.45 1.43 1 × 1 2.03 

25 1.60 1.59 1 × 1 1.56 1.55 1 × 1 2.50 

30 1.73 1.72 1 × 1 1.69 1.67 1 × 1 2.31 

[0°/60°] 

1 

20 4.29 4.22 1 × 1 4.03 3.97 1 × 1 6.06 

25 4.89 4.83 1 × 1 4.57 4.51 1 × 1 6.54 

30 5.51 5.44 1 × 1 5.12 5.06 1 × 1 7.08 

2 

20 1.90 1.88 1 × 1 1.83 1.81 1 × 1 3.68 

25 2.09 2.07 1 × 1 2.01 1.99 1 × 1 3.83 

30 2.29 2.28 1 × 1 2.19 2.18 1 × 1 4.37 

3 

20 1.59 1.57 1 × 1 1.54 1.52 1 × 1 3.14 

25 1.73 1.72 1 × 1 1.68 1.66 1 × 1 2.89 

30 1.89 1.88 1 × 1 1.83 1.81 1 × 1 3.17 
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Figure 12 shows the variation of non-
dimensionalized buckling load to plate aspect 
ratio for increasing mode values m for bi-axial 
loading. It can be noted that buckling load 
decreases drastically for increasing plate aspect 

ratio(
𝑎

𝑏
). This can also be viewed as, considering 

bi-axial loading the plate is exerted to 
compressive forces from all sides, thus making 
the plate easy to buckle, so at higher plate aspect 
ratios the buckling effect will be significantly 
more resulting in a lower value of buckling load. 

 
Fig. 12. Buckling load (Non-dimensionalized) vs plate 
aspect ratio for bi-axial loading of various stacking-
sequence at 25% volume fraction of PaLF composite 

It can be noted from figure 12 that, for higher 
values of plate aspect ratio the mode of buckling 
never shifts to higher modes, as the minimum 
buckling load for bi-axial loading occurs at 𝑚 =
1, 𝑛 = 1. Eq. 27 shows that non-dimensionalized 
buckling is strongly associated to 𝑏2, and hence 
the dependency results in the minimal buckling 
mode. 

Table 5 shows the variation of critical 
buckling load for uni-axial loading of a discrete 
array of stacking-sequence with changing plate 
aspect ratio at 25 vol% vol fraction for PaLF 
composite. 

According to Joshi et. al. [23] for a square plate 
under uni-axial compression (Eq. 24) adds 
significantly to the buckling load. The bending 
stiffness coefficient 𝐷11continues to fall as the 
orientation increases from 0° to 90°. As 
mentioned before, at 90°, 𝐷11equals 𝐷22at 0° and 
𝐷22 at 90° equals 𝐷11 at 0°. At 45°, 𝐷11 and 𝐷22 are 
equal, hence the maximum buckling load occurs 
at 45° orientation. Also, Joshi et. al. [23] observed 

that if the plate aspect ratio 
𝑎

𝑏
 is less than one, then 

the contribution of 𝐷22 decreases with decreasing 
aspect ratio and 𝐷11strives to push the optimal 
fiber orientation toward 0°, while 𝐷12 + 2𝐷66 and 
𝐷22 attempts to hold it back. As a result, the 
optimal fiber orientation is between 0°and45°. 
For an aspect ratio higher than one, 𝐷22 
contributes significantly and attempts to pull the 
fibre orientation towards 90°, resulting in an 
effective fibre orientation between 45° and 90°. 
According to Joshi et. al. [23] changing the 
buckling mode to 𝑚 = 2, 𝑛 = 1, affects the 
contribution of each attribute in Eq. 27. Because 
𝐷11 is multiplied by 𝑚4, the 𝐷22 term no longer 
dominates at near-to-unity aspect ratios. This 
results in optimal fiber orientation angles 
ranging from 45°and 90° for aspect ratios in the 
range from one to two. As a consequence, nearly 
identical findings were achieved for this 
investigation, where the optimal fibre stacking 
sequence for increased plate aspect ratio was 
discovered to be for the [0°/60°]𝑠stacking 
sequence. 

Table 5. Variation of critical buckling load for uni-axial loading of a discrete array of stacking-sequence with changing plate 
aspect ratio at 25 vol% vol fraction for PaLF composite 

𝑎

𝑏
 [0°/0°] 

Min. buckling 

mode  

𝑚 × 𝑛 

[0°/90°] 

Min. buckling 

mode  

𝑚 × 𝑛 

[0°/45°] 

Min. buckling 

mode  

𝑚 × 𝑛 

[0°/60°] 

Min. buckling 

mode  

𝑚 × 𝑛 

0.2 142.440 1 × 1 128.597 1 × 1 133.008 1 × 1 130.175 1 × 1 

0.4 37.682 1 × 1 34.228 1 × 1 35.926 1 × 1 35.070 1 × 1 

0.6 18.494 1 × 1 17.062 1 × 1 18.184 1 × 1 17.725 1 × 1 

0.8 12.028 1 × 1 11.420 1 × 1 12.255 1 × 1 11.970 1 × 1 

1 9.309 1 × 1 9.209 1 × 1 9.817 1 × 1 9.652 1 × 1 

2 8.684 1 × 1 9.209 2 × 1 9.817 2 × 1 9.652 2 × 1 

3 7.689 2 × 1 8.583 2 × 1 8.601 2 × 1 8.708 2 × 1 

4 7.787 3 × 1 8.356 3 × 1 8.584 3 × 1 8.598 3 × 1 

5 7.845 3 × 1 8.372 4 × 1 8.699 4 × 1 8.668 4 × 1 

6 7.689 4 × 1 8.434 5 × 1 8.601 4 × 1 8.708 4 × 1 

7 7.712 5 × 1 8.409 5 × 1 8.556 5 × 1 8.606 5 × 1 

8 7.757 5 × 1 8.356 6 × 1 8.584 6 × 1 8.598 6 × 1 

9 7.689 6 × 1 8.353 7 × 1 8.601 6 × 1 8.626 7 × 1 

10 7.695 7 × 1 8.372 8 × 1 8.558 7 × 1 8.625 7 × 1 
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Figure 13 shows the fluctuation of buckling 
load for uni-axial loading to increasing plate 
aspect ratio for various ply stacking sequences. 
When previously noted, the best ply angle for a 

plate aspect ratio of 
𝑎

𝑏
= 1  &  

𝑎

𝑏
=  2  was 

determined to be approximately 45° and as the 
plate aspect ratio increases the optimum ply 
angle shifted towards 90°. 

 
Fig. 13. Uni-axial buckling load vs plate aspect ratio for 
various stacking-sequence of PaLF composite at 25% 

volume fraction from Table 5. 

This can be validated from figure 13 which 
shows that for larger plate aspect ratios, the 
optimal ply angle for uni-axial loads was about 
60° for the aforementioned simulation results 
using 4 plies stacking-sequence. Joshi et. al. [23] 
found the best ply orientation angle for uni-axial 
loading at 50°  while considering 6 plies stacking-
sequence. 

Now considering bi-axial loading in the 
composite plate for various stacking-sequence 
from Table 6, in conjunction with Figure 14, it can 
be seen that for bi-axial loading the [0°/45°]s 

stacking sequence performed best with a plate 
aspect ratio of one. When the plate aspect ratio 
exceeds one, the cross-ply stacking sequence of 
[0°/90°]s shows the best possible results 
compared to other stacking sequences. This is 
also true that the cross-ply stacking sequence is 
mostly considered for bi-axial loading in 
composite plates, as it can withstand a higher 
amount of loading. Hence it would be wise to go 
for [0°/90°]s stacking sequence under bi-axial 
loading in composites. 

The uniaxial and biaxial loading of composites 
for critical buckling load study has been carried 
out considering the parameters that account for 
buckling as in Eq. 27. Figures 13 and 14 provide 
the information regarding the failure of a 
composite at the minimum value of buckling 
irrespective of mode, and depicts the change in 
plate aspect ratio to corresponding critical 
buckling. 

 
Fig. 14. Bi-axial buckling load vs plate aspect ratio for 

stacking-sequenceofPaLF composite at 25% vol. fraction 

 

Table 6. Variation of critical buckling load for bi-axial loading of a discrete array of stacking-sequence with changing plate aspect 
ratio at 25% volume fraction for PaLF composite 

𝑎

𝑏
 [0°/0°] 

Min. 

buckling 

mode  

𝑚 × 𝑛 

[0°/90°] 

Min. 

buckling 

mode  

𝑚 × 𝑛 

[0°/45°] 

Min. 

buckling 

mode  

𝑚 × 𝑛 

[0°/60°] 

Min. 

buckling 

mode  

𝑚 × 𝑛 

0.2 136.9611 1 × 1 123.6507 1 × 1 127.8927 1 × 1 125.1684 1 × 1 

0.4 32.4844 1 × 1 29.5073 1 × 1 30.9704 1 × 1 30.2325 1 × 1 

0.6 13.5984 1 × 1 12.5458 1 × 1 13.3708 1 × 1 13.0329 1 × 1 

0.8 7.3341 1 × 1 6.9632 1 × 1 7.4723 1 × 1 7.2986 1 × 1 

1 4.6547 1 × 1 4.6045 1 × 1 4.9084 1 × 1 4.8262 1 × 1 

2 1.7367 1 × 1 2.1296 1 × 1 1.9848 1 × 1 2.0701 1 × 1 

3 1.3857 1 × 1 1.8651 1 × 1 1.5865 1 × 1 1.716 1 × 1 

4 1.2892 1 × 1 1.7994 1 × 1 1.467 1 × 1 1.6139 1 × 1 

5 1.25 1 × 1 1.7747 1 × 1 1.4158 1 × 1 1.5711 1 × 1 

6 1.2303 1 × 1 1.7629 1 × 1 1.3893 1 × 1 1.5493 1 × 1 

7 1.2191 1 × 1 1.7564 1 × 1 1.3737 1 × 1 1.5365 1 × 1 

8 1.212 1 × 1 1.7524 1 × 1 1.3637 1 × 1 1.5284 1 × 1 

9 1.2072 1 × 1 1.7498 1 × 1 1.357 1 × 1 1.523 1 × 1 

10 1.2038 1 × 1 1.7479 1 × 1 1.3522 1 × 1 1.5192 1 × 1 
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This work describes the possibility of using a 
PaLF composite in assisting researchers in 
identifying practical prospective applications in 
the field of acoustic and vibration isolation such 
as multi-dimensional earthquake isolation 
devices using viscoelastic dampers and vibration 
isolation pads used in industries [4], impact 
energy absorption widely incorporated in 
motorsports and automotive application [4] and 
anti-crushing devices used in automotive 
applications, and super-light composite panels 
used in windmills and aerospace applications [4, 
8].  The work could be further expanded to 
experimental findings. Additionally, this study 
can be broadly performed for different structures 
like honeycomb and stiffened structures 
considering the hybridization of composites. 

4. Conclusions 

The goal of the current study is to create an NF 
composite with enhanced buckling properties 
that can support axial loads without easily 
bending or deforming. Finite element analysis 
was used to perform buckling of thin laminated 
plates for the PaLF composite and compared it to 
an isotropic synthetic fibre like E-glass. 
Additionally, the model's correctness was 
determined by numerically comparing the 
findings. The generalized conclusions that can be 
drawn are as follows; 

• It was observed that PaLF composite 
would be much more resistant to 
deformation when compared to E-glass 
due to its superior mechanical properties. 
Thus PaLF can be a suitable alternative for 
E-glass in different composites. 

• In case of bi-axial loading of the composite 
plates, it was observed that the critical 
buckling load was lowered by a significant 
amount when compared to uni-axial 
loading conditions. 

• When compared with synthetic fibre 
composites; PaLF composites showed 
better buckling characteristics, thus, 
showing that PaLF composites outperform 
contemporary E-glass composites. The 
improvements were observed to be more 
in the case of square laminates and at 
higher weight fraction of fibres (i.e. 30 
vol%). Square PaLF composite plates with 
30vol% fibres showed a buckling load 
increment of approximately about 7% 
when compared with similar E-glass 
composites. 

• Considering uni-axial and bi-axial loading 

cases for square plates (
a

b
= 1) the 

optimum ply orientation was found for 
[0°/45°]s stacking sequence. 

• For higher plate aspect ratios under uni-
axial loading conditions, the optimum ply 
orientation was found for [0°/60°]s 
stacking sequence whereas for bi-axial 
loading the optimum ply orientation was 
found for cross-ply stacking sequence of 
[0°/90°]s. 

Based on this study, it is paramount to state 
that pineapple leaf fibre-based composite 
materials exhibit better buckling characteristics 
than contemporary synthetic fibre composites 
such as E-glass composites. Thus, they have huge 
potential to be used in structural components 
under buckling conditions.  

Nomenclature 

𝐸11 
Young’s modulus in longitudinal 
direction (GPa) 

𝐸22 
Young’s modulus in transverse 
direction (GPa) 

𝜗12 Major Poisson's ratio 

𝜗21 Minor Poisson's ratios 

𝐺12 In-plane shear modulus 

𝑆𝑖𝑗  Reduced compliance coefficients 

𝑄𝑖𝑗  Reduced stiffness coefficients 

𝐷𝑖𝑗  Flexural stiffness 

[A] Extensional stiffness matrix 

[B] Coupling stiffness matrix 

[D] Bending stiffness matrix 

𝜎 Stress (Pa or MPa) 

𝜏 Shear stress (Pa or MPa) 

𝜀 Strain 

𝛾 Shear strain 

W 
Transverse displacement of a point on 
the plate 

Λ Natural frequency factor 

𝜔 Natural frequency (Hz) 

t Time (s) 

𝜌 
Density of the composite material 
(kg/m3) 

f Frequency (Hz) 

𝑁𝑜 Critical buckling load 

𝑁 Non-dimensional buckling load 

k Plate buckling constant 

ζ Damping ratio 

m Half wavelengths in the x-direction 

n Half wavelengths in the y-direction 

h Total thickness of the laminate (mm) 
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𝑁𝑥𝑦 Stress resultants 

a 
Length of composite plate along x-axis 
(mm) 

b 
Breadth of composite plate along y- 
axis (mm) 

U Strain energy of plate 

V Potential energy in plate 

Π 
Total loss in potential energy of a 
deformed plate 

𝛿 
First variation according to Hamilton’s 
principle 
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