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This paper uses different higher-order shear deformation theories to analyze the axial and
transverse dynamic response of carbon nanotube-reinforced composite (CNTRC) beams
under moving harmonic load. The governing equations of the CNTRC beam are obtained
based on the shear deformation beam theory and the Hamilton principle. The exact
solution for dynamic response is presented using the Laplace transform. A comparison of
previous studies has been published, where a good agreement is observed. Finally, some
examples were used to analyze aspect ratio, other higher-order theories, excitation
frequency, the volume fraction of Carbon nanotubes (CNTs), the velocity of a moving
harmonic load, and their influence on axial and transverse dynamic and maximum
deflections. It was observed that the X-beam is a stronger beam than other CNT patterns,
Reddy theory is the lower limit, and HSDT theory is the upper limit. The vibration response
and dynamic movement of the structure can be controlled by choosing the appropriate

items.

1. Introduction

The mechanical, thermal, and electrical
properties of carbon nanotubes (CNTs) make
them suitable for reinforcing polymers and
polymer nanocomposites. The laboratory
research results indicate that only by adding 1%
by weight of carbon nanotubes to the polyester
resinYoung’s composite modulus is increased by
35% to 43%. The study of the dynamic behavior
of carbon nanotubes plays an important role in
developing their application in a wide range of
non-mechanical equipment such as oscillators,
clocks, and nanosensors. Reliability analysis of
nanoscale equipment based on carbon nanotubes
requires identifying the nanotube response to the
applied mechanical forces. The application of
carbon nanotubes in many existing fields
requires a detailed understanding of their
mechanical behavior. Since nanoscale testing is
very challenging and complex, theoretical
modeling is particularly important for predicting
carbon nanotube mechanical behavior [1-3].
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As we know, various theories have been
presented to investigate the dynamic
displacement of beams, among which we can
refer to higher-order shear deformation theories.
These theories are presented to reach a more
accurate answer and reduce the error caused by
the previous theories. In this article, various
higher-order shear deformation theories have
been investigated to present their differences.
The difference between these theories is in the
choice of shape function, according to which they
have upper limit and lower limit values.

Zhao et. al. [4] analyzed the vibrations of a
purposeful functionally graded plate with
porosity. The equations were derived using high-
order shear deformation theory and Jacobi-Ritz
theory. The effect of parameters on the vibrations
of the circular plate was investigated. Xiao et al.
[5] analyzed the nonlinear vibrations of
nanobeam in a magnetic-electric-thermal
environment. Temperature-dependent material
properties are defined. The equations were
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extracted using nonlocal and higher-order shear
deformation theories, and the Galerkin method
was solved. Finally, various parameters were
investigated. Ramezani et al. [6] analyzed the
nonlinear stability of a cylindrical shell
reinforced with carbon nanotubes in a thermal
environment. The von Kdrman strain field is used
to describe nonlinearly. The equations are
derived using higher-order zigzag theory. Finally,
the stress of cylindrical shells in a thermal
environment is analyzed. Malabari et al. [7]
presented a continuous mathematical model for
analyzing the free vibrations of a CNT multilayer
composite nanoplate. The relations were
obtained using nonlocal strain gradient theory
(NSGT). The relations were solved by the
Galerkin method. Finally, various geometries on
the nanoplate frequency were investigated.

Van Quyen et al. [8] analyzed the nonlinear
vibrations of a carbon-nanotube-reinforced
sandwich cylindrical with a honeycomb core. The
sandwich panel is located in a thermal
environment, and a negative Poisson’s ratio is
used. The Reddy higher-order theory extracted
the equations, and the equations were solved
using the Runge-Kutta method. Finally, various
free and forced vibration parameters are
investigated. Hosseini et al. [9] investigated the
response of an FG nanobeam with a moving force
in a thermal environment. The relations were
obtained by the Hamilton principle and nonlocal
theory and then solved using Laplace transform.
Finally, the effect of different parameters on the
response of nanobeam was investigated.

Dat et al. [10] investigated the analytical
solutions for nonlinear vibration of the sandwich
plate with CNT nanocomposite core in the hygro-
thermal environment. Dat et al. [11] investigated
the vibration analysis of FG-CNTRC plate
subjected to thermo-mechanical load based on
higher-order theory. Dat et al. [12] investigated
the vibration of CNT plates via refined higher-
order theory. Dat et al. [13] studied the
geometrically nonlinear vibration analysis of
sandwich nanoplates based on higher-order
NSGT.

Also, in another study, Civalek [14]
investigated multi-layer composite plates using
the discrete singular convolution (DSC) method.
Akgoz etal. [15] investigated the vibrations of the
thermo-elastic micro-beam located on the elastic
foundation using different theories and
numerical methods. Demir et al. [16] analyzed the
static analysis of nanobeam under uniform load
using the finite element method. The equations
are derived using the non-local Eringen theory
and the Galerkin method. Finally, various
parameters have been investigated.

In another study, Daikh et al. [7] investigated
free vibrations, buckling, and static displacement
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[17] and dynamic analysis [18] of carbon
nanotubes. In another study, Eltaher et. al. [19,
20] investigated the post-buckling of carbon
nanotubes on a nonlinear elastic substrate. Daikh
et al. [21-23] investigated free and forced
vibrations of carbon nanotubes with a moving
load. Karami et al. [24-27] investigated curved
structures’ vibrations and dynamic and static
responses reinforced with carbon nanotubes and
graphene.

This paper aimed to analyze the dynamic
response of carbon nanotube-reinforced
composite (CNTRC) beams under a moving
harmonic load. The governing equations of the
CNTRC beam are obtained based on the shear
deformation beam theory and Laplace transform
to solve the derived differential equations. Due to
this effort, an exact solution for both transverse
and axial responses is obtained. Through
parametric study, valuable results have been
concluded related to the effect of essential
parameters such as aspect ratio, different higher-
order theories, harmonic frequency, and load
velocity on the dynamic response of the
thermoelectric CNTRC beams, and the volume
fraction of CNTs in axial and transverse modes.

2. CNTRC Beams

A CNTRC beam made from a mixture of a
single-walled carbon nanotube (SWCNT) and an
isotropic polymer matrix is considered. The beam
has a length (L), width (B), and height (H), as
shown in Fig. 1.

The expressions of the effective Young and
shear modulus of CNTRC beams are as follows
[28, 29].

z Pcos(at)d(x =V, 1)

I |

CNT beam

FG-X FG-0

Fig. 1. Geometry of a CNTRC beam and cross-sections of four
patterns of reinforcement CNTRC beam
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M _Von Ve
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ESY and GJ' are defined as Young and shear

modulus. E¥ And G as the polymer matrix’s
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corresponding material properties. Also, V., and
V, are the volume fractions for CNT and the
polymer matrix, with the relation of V., +V, =1.
By using the same rule, Poisson’s ratio (v) and

mass density ( p ) of the beam are written as [30]:

_ k
U, =VeyUey +Vi0

(2)

Pn =VenPen +Vkpk (3)

k .
where v, V", p,, and p“ are the Poisson’s

ratios, densities, and thermal expansion
coefficients of the carbon nanotube and polymer
matrix. Different patterns of CNT reinforcement
distribution are given below [31]:

UD-Beam: V , =V,
V-Beam: V., =(1+ %)vgN
2|z ,~ 4
O-Beam: V,, =2(1- %)VCN )
2|z| -
X-Beam:  V, =2( Wen

h
where volume fraction (V. ) is the given volume

fraction of carbon nanotubes [31]:

V(:N = Wen
WCN + (pﬂ) - (pCN )WCN
A A

k k

(5)

where W_, 1is the mass fraction of CNTs

n, =1.2833,n, =1, =1.0556,V,,, = 0.12 [29].

3. Equations of Motion

According to shear deformation beam theory,
the displacement field at any point is as follows
[32]:

—y o, M (X1)
u(x,z,t)=u, —z p +¥(2) fo(x,1) )

w(X,z,t) =w,(x,t)

where up and wo are the axial and transverse
displacement at the reference plane of the beam,
W (z) is the shape function. fy and ¥ (z), defined

as [33]:

W, (X, 1)

fo(x,t) = Ox

- ¢0(X1t)

Tz
sec(Z=
(Zh)

. (7)
WY(z) = tan(%)m

For other shear strain shape functions, see
Table 1 [33].
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Table 1. Shear strain shape function ¥(z) values.

Theories Shape functions
Hyperbolic shear 7 1
deformation W (z) = hsinh(—=) —zcosh(=)
theory h 2
Bonilla ¥(2) = tan(ZZ)m™2n’
2h
Reddy w(z) =2°
K —2(£)?
arama W(z)=ze P
. meos(*2)
Mantari Y (z) :sln(%z)e “h

where ¢, is the bending rotation of the reference

plane, m=0.03 and t is time. The expression of
shear and normal strain components in Eq. (6).

ou, _o°w, o*w, Od,
E v 70
ST TP T (@) ox* X ) (8)
oY (z) ,ow,
e ) ©

The normal and shear stress, respectively o,

and o, as:

0 = En(z.)64 (10)

st(z) = Glz (Z)

Using the Hamilton principle as follows [34]:

Oy = QSS(Z)yxz ' (1 1)

T(éV—&K+6U)dt=O, (12)

where 0K is the virtual kinetic energy, and 6U
is the virtual of the total strain energy, oV is the
virtual work done by external loads. The initial
and final time is defined as t; and tz.

U = [[ (0,8, + 0,57, )dxdA=
A

dédu,

_M d?sw,

N
( dx?

13
R (13)
° _ d%w, ddog dow,

P, o _ =% O _ 5¢,))dA
( e i )+Q,( ™ 64))

X

The virtual work done ( 6V ) can be expressed
as:

L
SV = —jo (qow,) dx

(14)
q = Pcos(wt)S(x —V,t)

cos(wt) is
concentrated moving the harmonic load, o is
excitation frequency, and &(.) is Dirac delta

where the transverse load (q),

function.
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For the dynamic model, (9K ) is required for
the equations of motion:

L
SK = jo p(z)[Usu + WwoW]dAdx =

1, (UySU, + WoSW) — u%&uo +
X

, 4o,

o )+ (d(;% d6v'\/0)+
L (dWO 50, — gy, + 0, IMo _ (15)
l U,00,) + 1, (¢0d5‘”° dc‘&%+ ”
B i1, A%
4, 220 B g, + G os)
The stress results are extracted as:
N, = JAJXXdA (16)
M, = | 20,dA (17)
P.=[ ¥(2)o,dA (18)
Q= jA¥axsz (19)

Ny, My, Px, and Qx are the stress resultants in the
normal bending moment, higher-order
generalized, and shear force. I; (i = 0, 1, 2...5) are
the mass moments of inertia:

[ 1,, Iz]:'pr(z)[l,z,zz]dA (20)
[1;,1.1= [ p(2)¥(2)[, 2]dA (21)
_ 2
= jA p(2)¥2(2)dA (22)
Using Eq. (12) and, Egs. (13)-(15) with solving
the relationship and factorization, the

equilibrium equation results in the following
effect:

dN N dw,
(Yuo:d—xleou0 — I( 2 —4)
d?P, d’M dQ
: x = Tx L TXx _g=
e ae
du d >y du,
LW, — 1, —2 + 1 O, -2+
O M Pdx® (23)
| (d¢0 d2w0)+| (dzwo_%)
dx® T dx?
dP, -
0Py — o -Q, =-1;l, +
dw aw, -
—r |( )
From the above equations:
d*w, d w, d
a5, 00 Ly
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du d°w, d’w,
Mx = Bndixo_ D11 dX20 + En( dxzo -

du dzw d?w,
P= CﬂT): -E, dx? 11( 0

dw,
Q=Asly —%)

where:

[Au’ an Dn] = JAQn[ll Z, Zz]dA

[C.i.El= [ Q¥ (2)[L 2]dA

Hy= JAQ11\P2(Z)dA

B d¥(
Ass —IAst( ;

Z))ZdA

dd)

d¢o)

(25)

(26)

(27)

(28)
(29)
(30)

(31

The stress resultants of Eqs. (24)-(27) are
substituted into Eq. (23) to obtain the relations of

motion:
d dw diw, d?
AR B, S G- Oy
X X
(32)
1,0, - dw0 o (dwo
d’u d*w, d“w d’g
11dTgo_E11 dX4O H11( g - 30)_
d3u d*w, d W, d b,
B,—2+D 0
Yt M dx ax*  dx
d? W d dui
A55 ¢0) q—|0W0— 1 dX0+ (33)
| d W0 d¢0 d W,
25 T
d®w, d
|5( dX20 ¢0)
2 3 3 2
_cllLl?+ 11d 11( WO d ¢20)_
dx dx® dx® (34)
dw0 dw0
&5 ¢o)_ 3uo+|7_|( )
Assumlng [35]:
Up(X,t) = ZU () cos(2= ) (35)
th(xt) = 2@ (cos(") (36)
w, (x,t) = Zw (t)sm(@) (37)

U, (t), W, (t) and @ (t) are the unknown Fourier
coefficients to be determined for each n value. By
using the general property of the Dirac Delta
function [35]:

nzx nzV,t

S(x=Vt) = ZZSln(—)sm( ) (38)

Assuming:

nz
a= (T)



Eghbali and Hosseini / Mechanics of Advanced Composite Structures 10 (2023) 257-270

According to the exact solution provided to
investigate the forced vibrations and the
difficulty of solving a couple of equations for the
moving load state, it should be noted that the
provided method can only be solved for simply
supported boundary conditions and other
boundary conditions, solving the inverse Laplace
equations, It is not possible. For initial conditions,
Simply-support:

W, (0)=W,(0) =U,(0)=U,(0) =

®,(0)=,(0)=0 (39)

To solve the system of the differential Egs.
(32)-(34) in the time domain. By recalling this
transform:

L[W, (t) ] = sW,(s) — s, (0) =W, (0),
W, (s) = LW, ()]
L[U, (1) ]=5U,(s)~sU,(0)~U,(0),
U,(s) = LU, (1]
L[®, ()] =s*®,(s) - sP,(0) — b, (0),
@, (s) = L[®,(1)]

(40)

where applying Laplace Transform in Egs. (32)-
(34), the system of equation is obtained as follow:

Ky Ky Kg)[U,(s) 0
K, K, Ky [sW,(s);=1F (41)
Kai Kp Ky )[9,(9) 0
where:

K, = A’ +1,5°, K, =K, =B,a*-C.a’+

Las® - l,as’, K, =K, =Cpa’ + 1,8,

K, =—2E,a" + Hye' + Dya’ + Aga® +

1,87 + L,a’s” = 21,a%s* + | ,&’s? (42)

Ky =Ky =—Hyua® + E o’ - Aja + 1,08° - 1,57,
Ky = Hyo® + Ay +1,5°
P(o+aV,)

B Plo-aV,)
s +(w+aV,)’

s’ +(w-aV,)’
By solving the Eq. (41), U, (s), W,(s) and
®,(s) are obtained as:

U,(s) F (_K13K23 + K12K33)
2
W, (s) = det(K) F(K13 - K11K33)
@, (s) —F KKy = KyKys) (43)

det(K) = Kl32K22 - 2K12 K13K23 + |<11}<232 +
K122 K33 - K11K22 K33
By applying an inverse Laplace transform to

Eq. (43), the responses of the thermoelectric
CNTRC beam are obtained:

Un(x,t)—ylz[yﬁ"gﬁ t]}+y14[ygsirgz7 t}]+
=05 (fo + X (F, + Tx)) % (%, = %;) xasinh[tﬁ}r
ofX (fo + %, (T, + f4x2))(x1—x3)\/Zsinh[tE}+
\/Z(—xl +%,)(fy+%,(f, + fm))sinh[tﬁ])

P (929, ~ 39505 + 20 (X + X% + 7))

(44)
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Y Jas Vi o
=5 (3o +% (3, + J‘,xl))\/Z(xZ =% )% sinh[t\/Z}
geﬁ((JD +% (3, +3,%)) (% - xz)ﬁsinh[tﬁ}r
\/Z(—xi +3%,)(35+ % (I, + J,lxa))sinh[t\/Z])
Eﬁﬁ(gzm ~39,06 +2952(x1x22 2+ xzxaz))

@n(x,t):l[yﬁin[ 2 t}]Jrl[ygsin[ A, t]]+

W"(th)l[yssin[ azst}]Jrl[yeSin[ az,t]}+

(45)

Y, A Ys 8y
=05 (Ro + % (R + R, )) X, (%, —%;) xesinh[t\/Z}
9o (Ro + %, (R, +RX,)) (%, — %,) xasinh[t xz}r
% (=% + %) (R, + % (R, + RyX;))sinh [t\/:})
\/Z,\blz\l’Z(gzg4 ~30,0, +20,° (xlxz2 2, + xzxgz))

(46)

4. Results and Discussions

The results presented in this chapter are
related to analyzing the axial and transverse
dynamic response of CNTRC beams under
moving harmonic force. Also, the influence of
parameters such as aspect ratio, different higher-
order theories, excitation frequency, the volume
fraction of carbon nanotubes, and load velocity
on the response of the thermoelectric CNTRC
beams in axial and transverse modes were
investigated.

The relations described in Eq. (47) are
performed to calculate dimensionless natural
frequencies.
2 k
L
h VE*

Frequency values were compared, and good
validity in terms of frequency values was
observed. The results are compared with
Wattanasakulpong et. al. [32], given in Table 2.
Also, the dimensions of the beam are:

(47)

L
H:]-OO‘ L =100.

The effective material properties are given as

K

follows. v* =0.3; P :1190—3 and E¥ =2.5GPa.
m

For reinforcement material: v, =0.19;
K
P =1400m—8; ESY —600GPa; ES' =10GPa

and G.}' =17.2GPa [29].

As shown in Table 2, among different types of
CNTRC beams, frequency O-Beam is the lowest,
and X-Beam is the highest.

Figures 2-4 show the axial displacement in
terms of time. Figure 2 shows the axial
displacements for different harmonic frequencies
for V-Beam. As can be seen, the moving harmonic
force decreases, and the axial displacement also
decreases with increasing harmonic frequency.
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Table 2. Comparisons of fundamental frequencies % =15,Vg, =0.12

UD-Beab V-Beab 0-Beab X-Beab
(z_)l 0.974908 0.745672 1.11562 0.844435
51 [32] 0.9745 0.7454 1.1151 0.8441
0_)2 2.88138 2.39797 3.10205 2.6492
CT)3 4.93056 4.29371 5.16984 4.68817
6774 7.01828 6.22862 7.2849 6.79126
0.06}" ) T " N
0.04 0.05
0.02
1D 000 1= o0.00 \/
-0.02 L
(oo v = T0(mis) |\
—0.04F--—-- w =2(Rad/s) H -0.05 """ :: ijgiz::
— w =rr{Rad/s) L -V = 40(mis)
—0.061 77 - w=dRadie) | %/ — — Vo = 50(mis)
0 2 4 6 8 10 o] 2 4 6 8 10
t(s) t(s)
Fig. 2. Variation of dimensionless deflection V-Beam versus Fig. 4. Variation of dimensionless deflection V-Beam versus

time for three different excitation frequencies

m, L
V, =10(—), — =100
» =106,

Figure 3 shows the axial displacement for
different aspect ratios for V-Beam. The axial
displacement increases with the increasing
aspect ratio.

0.06) Lh=80 |
— L/h =80
0.04
0.02
= o0.00
-0.02
-0.04
-0.06
0 2 4 6 8 10
t(s)
Fig. 3. Variation of dimensionless deflection V-Beam versus

time for three aspect ratios V, = 10(?), = 7[(?)

Figure 4 shows the axial displacements for
different velocities for V-Beam. As can be seen,
the graph increases with the speed of the extreme
points.
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time for five velocities % =100, @ :1.115($)

It should be noted that the axial displacement
diagram has values for the states where the
arrow is close to state FG and zero for other
states, for example, UD-Beam.

10' ........ Vg = 5(mis)
r Vg = 8(mis)
...... Vg = 10(mis)
5 (DT %=rme)

-10}

t(s)
Fig. 5. Variation of dimensionless deflection X-Beam versus
time for five different velocities of moving load
L =100, o = ﬂ(R—ad)
h s
Similarly, the variation of transverse dynamic
deflection versus time for X-Beam for different
velocities and aspect ratio of moving harmonic
load is illustrated in Figs. 5-6.
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The results of these figures show that as the
speed increases, the peak point of the plot
decreases to shorter times. Also, the transverse
displacement has increased with an increasing
aspect ratio.

0.5

= oo

-0.5

------ L/h =65 |4

— — Lh=70 ||
) 1 2 3 4 5
t(s)
Fig. 6. Variation of dimensionless deflection X-Beam versus
time for five different aspect ratios of moving load

v, =10(D), =2
S S

0.030
0.025
— Vo=10(mi/s)
Vo=20(m/s)
0.020 — V,=30(m/s)
IS“ — V,=40(m/s)
3< 0.015
©
=
0.010
0.005
0.000 1
0 2 4 6 8 10
w(Rad/s)

Fig. 7. Maximum dimensionless displacements
of V-Beam versus excitation frequency for

four different velocity L _ 100
h

0.030
0.025
0.020

>

3< 0.015

0.010

0.005

0.000 1
0 2 4 6 8 10

w(Rad/s)

Fig. 8. Maximum dimensionless displacements of V-Beam
under moving load versus excitation frequency

for four different aspect ratio y, —10(™)
s

Figure 7 shows the maximum axial
displacements of V-Beam under moving force
versus excitation frequency for velocities. By
increasing the speed, maximum dimensionless
axial displacements decrease.
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Figure 8 presents the Maximum axial
displacements of V-Beam under moving force
versus excitation frequency for aspect ratios. By
increasing the aspect ratio, maximum
dimensionless axial displacements increases.

Vo = 10(mis) |
— V%, = 20(m/s)
— Vo = 30(m/s)

(o] 2 4 6 8 10
w(Rad/s)

Fig. 9. Maximum dimensionless transverse displacements
of V-Beam versus excitation frequency
for three different velocity L _ 10
h

o 2 4 6 8 10
w (Rad/s)

Fig. 10. Maximum dimensionless transverse displacements
of V-Beam versus excitation frequency for

three different aspect ratio v, =10(%)
S

2.5

2.0

— w = 2(Rad/s)
— w = r(Rad/s)

— w = 4(Radls)

0.5

0.0

0 20 40 60 80
L/h

Fig. 11. Maximum dimensionless displacements of V-Beam
versus aspect ratio for three different

excitation frequencies v, —10(™)
S

Figure 9 demonstrates maximum transverse
displacements of V-Beam under moving
harmonic load versus excitation frequency for
velocities. By increasing the speed, maximum
dimensionless transverse displacements
decrease.
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Fig. 10 represents the maximum transverse
displacements of V-Beam under moving
harmonic load versus excitation frequency for
aspect ratios. By increasing the aspect ratio,
maximum dimensionless transverse
displacements increase.

Figure 11 illustrates the maximum transverse
displacements of V-Beam under moving
harmonic load versus aspect ratio for excitation
frequencies. By increasing the excitation
frequency, maximum dimensionless transverse
displacements decrease.

4.6

— w = 2.9(Rad/s)
— w = rT(Rad/s)
— w = 3.2(Rad/s)

0 10 20 30 40
Vo (mi/s)

Fig. 12. Maximum dimensionless displacements of V-Beam
versus velocity for three different excitation
frequencies L _ 149

h

0.030

0.025

Bonilla
— Reddy
— HSDT

— Karama
—— Mantari

0.005

0.000

0 2 4 6 8 10
w(Rad/s)

Fig. 13. Maximum dimensionless displacements of V-Beam
versus excitation frequency for five different

theories , _30(™y L _10
° s’ h

Figure 12 shows the maximum transverse
displacements of V-Beam under moving
harmonic load versus velocity for excitation
frequencies. By increasing the harmonic
frequency, maximum dimensionless transverse
displacements decrease.

Figure 13 presents the maximum transverse
displacements of V-Beam under moving
harmonic load versus excitation frequency for
five theories L _ ;. As can be seen, the theory

h

of HSDT is a higher limit theory than the theories
by Mantari, Karama, Bonilla, and Reddy,
respectively.
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— UD-Beam
O-Beam

|g — X-Beam

w(Rad/s)

Fig. 14. Maximum dimensionless displacements
of CNTRC beams versus excitation

frequency v, :10(?), %:100

Figure 14 demonstrates the maximum
transverse displacements of CNTRC beams under
moving harmonic load versus excitation
frequency. As seen, beams O, V, UD, and X have
the highest max transverse dynamic deflection.

Table 3. Maximum transverse displacements of V-Beam
for five different theories.

w=2Rad/s w=4Rad/s w=6Rad/s
Bonilla  0.0294803 0.0421119 0.0431822
Reddy 0.0160457 0.0248846 0.0276248
HSDT 0.279156 0.237664  0.162882
Karama 0.192065 0.183877  0.135907
Mantari  0.204725 0.192423  0.140346

Table 3 shows the maximum transverse
displacement for three different excitation
frequencies for different higher-order shear
deformation theories. The difference between the
theories is based on the choice of their shape
function. HSDT theory has the highest
displacement values. Reddy's theory has the
lowest displacement values. As a result of the
HSDT theory, the upper limit is also the Reddy
theory, the lower limit. The type of theory chosen
has an impact on the results.

5. Conclusions

This paper analyzes the dynamic response of
CNTRC beams under moving harmonic force. The
governing equations of the CNTRC beam are
obtained based on higher-order theory, the
Hamilton principle, and Laplace transforms to
solve the derived differential equations.

It was found that the parameters of beam
thickness, excitation frequency, and moving load
speed have a significant effect on forced
vibrations and transverse and axial displacement
of CNTRC beams. It should be noted that the
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effects created on the results are due to the
changes in the stress results.

Among CNTRC beams, the highest
transverse and axial displacements are
for O, V, UD, and X beams, respectively, so
0-Beam has the weakest resistance to
flexural loads. They increased the aspect
ratio of the displacement of the CNTRC
beams. Also, increasing the excitation
frequency, velocity and Viy
displacement of the CNTRC beams

reduced.

The axial displacement diagram has
values for the states where the arrow is
close to state FG and zero for other states,
for example, UD-Beam.

Theory HSDT is a higher limit theory than
Theories by Mantari, Karama, Bonilla, and

Reddy %:10. Among different CNTRC

beams, frequency O-Beam is the lowest,
and X-Beam is the highest.

The presented method for the boundary
condition simply support.

Nomenclature
L Length
H Height
G Shear modulus
E Young's modulus
P Mass density
v Poisson's ratio
Oy Normal stress
o Shear stress

Xz

Nx ,Mx,Px,Qx

Stress resultants

@ Excitation frequency

Vg Volume fraction

Wen Mass fraction

m; CNT Efficiency parameters
Uo Axial displacement

Wo Transverse displacement
Y(2) Shape function

Total bending rotation
Time

Transverse load
Velocity of moving load

Virtual strain energy
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%4 Virtual work
K Virtual kinetic energy
I Mass moments of inertia
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