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To solve a differential equation of motion via more reliable procedures, it is essential to 
realize their efficiency. Whether Rayleigh's theory can be a compatible platform with two-
phase local/nonlocal elasticity to render more reliable results compared to other theories 
or not is the main question that will be answered by this paper. Thus, nanobeam modeled 
by Rayleigh beam theory is analyzed by two-phase local/nonlocal elasticity. Governing 
equation in presence of the axial and transverse displacements is derived by means of 
Hamilton’s principle and differential law of two-phase elasticity. Next, fourth-order 
Generalized Differential Quadrature Method (GDQM) is utilized to attain the discretized 
two-phase formulation. In order to confirm, the method and the results are compared with 
the exact solution prepared and presented in the literature. Moreover, the effects of 
various parameters such as geometrical properties like thickness, mode shape number, 
Local phase fraction coefficient, and nonlocal factor on the natural frequency are 
investigated to clarify that utilizing these theories with a common goal how ends with 
more accurate results, and how affects the natural frequencies. 

 

1. Introduction 

Focus on analyzing the natural behavior of 
nanoscale systems have been became one of the 
most crucial fields of study. The mechanical 
behavior of nanostructures enjoys vital 
importance due to their applications in 
nanodevices, such as nanomechanical 
resonators, nanoscale mass sensors, 
electromechanical nanoactuators, and 
nanogenerators. For instance, resonant 
frequencies are vastly vital in nanosensors to 
detect the type of viruses and bacteria. 
Theoretical results having relied on classical 
continuum theories have always been more 
convenient in contrast to other methods. Thus, 
new definitions or modifications of preliminary 
theories including strain gradient theory, 
nonlocal elastic theory, nonlocal strain gradient 
theory, and couple stress theory have been 
considered by numerous researchers. Some 
literature associated with the above-mentioned 
theories is eventually cited [1-7]. Farajpour et al. 
[8] in a review paper discussed two modified 
continuum-based theories, the nonlocal 

elasticity, and the nonlocal strain 
gradient elasticity employed to estimate the 
mechanical behavior of nanostructures. In that 
review paper, first, these two modified elasticity 
theories are briefly explained. Then, the nonlocal 
motion equations for different nanostructures 
including nanorods, nanorings, nanobeams, 
nanoplates, and nanoshells are derived. Defined 
stress in nonlocal theories is a dependent 
variable on the whole strain domain. Eringen by 
an integral formula based on the definition 
presented a simplified and constructive theory 
[4].  

The simplicity of the differential form of 
Eringen’s nonlocal elastic theory has attracted 
more interest to analyze mechanical problems. 
Furthermore, the hybrid of the differential form 
of this theory and strain gradient theory have 
both nonlocal and strain gradient effects. To 
enjoy further perception, more comprehensive 
studies are added [9-13]. The result in the 
mechanics of nanostructures studied by 
differential nonlocal shows that nonlocal 
parameter surging leads to a more softening 
effect. Although, the differential form of nonlocal 
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elasticity enjoys some paradoxical influences. 
Challamel et al. [14] in a paper, investigated the 
self-adjointness of Eringen's nonlocal elasticity 
based on simple one-dimensional beam models. 
It was shown that Eringen's model may be 
nonself-adjoint and that it can result in an 
unexpected stiffening effect for a cantilever's 
fundamental vibration frequency with respect to 
increasing Eringen's small length scale 
coefficient. Fernandez-Saez et al. [15] formulated 
the problem of the static bending of Euler–
Bernoulli beams using the Eringen integral 
constitutive equation. Beams with different 
boundary and load conditions are analyzed and 
the results are compared with those derived from 
the differential approach showing that they are 
different in general. Appuzo et al. [16] 
investigated free vibrations of nano-beams by 
making recourse to the novel stress-driven 
nonlocal integral model (SDM). Natural 
frequencies evaluated according to the SDM are 
compared with those obtained by the Eringen 
differential law (EDM) and by the 
gradient elasticity theory (GradEla). SDM 
provides an effective methodology to describe 
nonlocal phenomena. To enjoy a more 
constructive method, Eringen’s combination of 
local and nonlocal has been used by researchers, 
for example, Wang et al. [17] analyzed static 
bending of nonlocal Euler-Bernoulli beams using 
Eringen’s two-phase local/nonlocal model by an 
analytical study. Additionally, it was stated that 
the controversial nonlocal beam problem in the 
literature is well resolved by the reduction 
method, and Zhu et al. [18] adopted Eringen's 
two-phase nonlocal integral model to carry out 
an analytical study on the buckling problem of 
Euler-Bernoulli beams by using a reduction 
method. Qing [19] combined strain and strain-
driven two-phase nonlocal integral polar models 
to model the axisymmetric bending of circular 
microplates. The results showed that the purely 
strain-driven nonlocal integral polar model turns 
to a traditional nonlocal differential polar model 
if the constitutive constraints are neglected. 
Khaniki [20] stated that the differential form of 
Eringen's nonlocal elastic theory has some 
inaccuracies in analyzing small-scale structures 
with different boundary conditions. Accordingly, 
in this work, a comprehensive study on the 
vibration behavior of double-layered nanobeam 
systems (DNBS) was presented within the 
framework of Eringen's two-phase 
local/nonlocal integral mode. Fakher, and 
Hosseini-Hashemi [21] through the exact 
solution corresponding to the vibrations of two-
phase Timoshenko nanobeams provided the 
shear-locking problem investigated in the case of 
the two-phase finite element method (FEM). 
Moreover, since the FE model of local/nonlocal 

nanobeam is more complex than the classic one, 
due to the coupling of all elements together, they 
created an efficient locking-free local/nonlocal 
FEM with a simple and efficient beam element. 
Employing nonlocal models with classical 
boundary conditions may lead to inconsistency. 
Thus, higher-order boundary conditions along 
with two-phase differential equations can render 
the most accurate results compared with 
conventional patterns. Shaat et al. [22] formed 
consistent boundary conditions by iterative 
nonlocal residual approach. This approach solves 
the field equation in the local field with an 
imposed nonlocal residual. Rayleigh theory’s 
displacement field, which its simple form has 
been employed vastly thus far unlike this form 
utilized in this study for the first time, and two-
phase local/nonlocal elasticity are utilized to 
analyze the longitudinal vibration of nanobeams. 
Governing equations, in presence of the axial and 
transverse displacements, are derived by means 
of Hamilton’s principle and differential law of 
two-phase elasticity. To solve numerically, the 
Generalized Differential Quadrature Method 
(GDQM) is utilized to attain the discretized two-
phase formulation. Eventually a verification, and 
the result are prepared. Also, the effects of 
various parameters such as, geometrical 
properties, nonlocal parameters, and local phase 
fraction coefficient on the natural frequencies are 
investigated. The unique feature of the present 
work  is the effective use of two-phase elasticity 
theory in  modeling the longitudinal vibrations of  
nanobeams and the use of appropriate solution  
methods in the field of related differential  
equations, which has eliminated the  

contradictions compared to the common non-
local differential theory. Also, the softening effect  
of non-local parameters appears more strongly 
in the two-phase domain. 

2. Problem Formulation 

The equation of motion and boundary 
conditions of Rayleigh nanobeams are obtained 
as the first step. The geometry and coordinates of 
the nanobeam model, and displacement fields, 
according to the Rayleigh beam theory, are 
assumed as follows. 

𝑈 = 𝑢(𝑥, 𝑡) 

𝑉 = −𝜈𝑦
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
 

𝑊 = −𝜈𝑧
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
 

휀𝑥𝑥 =
𝜕𝑈

𝜕𝑥
 

휀𝑦𝑦 = 휀𝑧𝑧 = 0 

휀𝑥𝑦 = 휀𝑧𝑥 = 휀𝑦𝑧 = 0 

(1) 

https://www.sciencedirect.com/topics/engineering/free-vibration
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𝜈 shows Poisson’s ratio in Eq.1. In this theory, 
the inertia of the lateral motions by which the 
cross sections are extended or contracted in their 
planes is considered. But the contribution of 
shear stiffness to the strain energy is neglected. 
An element in the cross-section of the beam, 
located at the coordinates y and z, undergoes the 
lateral displacement −𝜈𝑦 𝜕𝑢(𝑥, 𝑡)/𝜕𝑥 and 
−𝜈𝑧 𝜕𝑢(𝑥, 𝑡)/𝜕𝑥, respectively along the y and z 
directions. Nanobeam strain energy is [23] 

𝜋 =
1

2
∭ (𝜎𝑥𝑥휀𝑥𝑥)𝑑𝑉

𝑉𝑜

 (2) 

Axial force, 𝑁(𝑥, 𝑡) = ∫ 𝜎𝑥𝑥𝑑𝐴𝐴
, should be 

defined and by using Eq. (1), Eq. (2) is rewritten 
as 

𝜋 =
1

2
∫ (𝑁(𝑥, 𝑡) (

𝜕𝑈

𝜕𝑥
))𝑑𝑥

𝐿

0

 (3) 

The kinetic energy of the beam can be 
obtained as 

𝑇 =
1

2
∫ 𝑑𝑥
𝐿

0

∫ 𝜌𝑑𝐴
𝐴

0

[(
𝜕𝑈

𝜕𝑡
)
2

+ (
𝜕𝑉

𝜕𝑡
)
2

+ (
𝜕𝑊

𝜕𝑡
)
2

] 

(4) 

After simplification, the kinetic energy enjoys 
the shape below, thus 

𝑇 =
1

2
∫ 𝜌𝐴
𝐿

0

(
𝜕𝑈

𝜕𝑡
)
2

𝑑𝑥

+
1

2
∫ 𝜌𝜈2𝐼𝑝

𝐿

0

(
𝜕2𝑈

𝜕𝑥𝜕𝑡
)

2

𝑑𝑥 

(5) 

where 𝜌 is the material density, and 𝐼𝑝  is defined 

by 

𝐼𝑝 = ∫(𝑦
2 + 𝑧2)𝑑𝐴

𝐴

 (6) 

In the following, governing equations and 
boundary conditions will be obtained by 
employing Hamilton’s principle. 

𝛿 ∫ (𝑇 − 𝜋 +𝑊)
𝑡2

𝑡1

𝑑𝑡 = 0 (7) 

According to Eqs. (3) and (5), variations of the 
potential and kinetic energies are presented. 

∫ 𝛿𝜋𝑑𝑡
𝑡2

𝑡1

=∫ (𝑁(𝑥, 𝑡)𝛿𝑢(𝑥, 𝑡)|0
𝐿

𝑡2

𝑡1

−∫
𝜕𝑁(𝑥, 𝑡)

𝜕𝑥
𝛿𝑢(𝑥, 𝑡)𝑑𝑥

𝐿

0

)𝑑𝑡 

(8) 

∫ 𝛿𝑇𝑑𝑡 =
𝑡2

𝑡1

−∫ ∫ 𝜌𝐴𝛿𝑢(𝑥, 𝑡) (
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
)𝑑𝑡𝑑𝑥

𝑡2

𝑡1

𝐿

0

−∫ 𝜌𝜈2𝐼𝑝(
𝜕3𝑢(𝑥, 𝑡)

𝜕𝑥𝜕𝑡2
𝛿𝑢(𝑥, 𝑡)|0

𝐿
𝑡2

𝑡1

+∫ 𝛿𝑢(𝑥, 𝑡) (
𝜕

𝜕𝑥
) (
𝜕3𝑢(𝑥, 𝑡)

𝜕𝑥𝜕𝑡2
)𝑑𝑥)𝑑𝑡

𝑙

0

 

In this step, by substituting Eq. (8) into Eq. (7), 
the governing equation can be obtained. 

𝜕𝑁(𝑥, 𝑡)

𝜕𝑥
− 𝜌𝐴(

𝜕2𝑢

𝜕𝑡2
) + 𝜌𝜈2𝐼𝑝 (

𝜕4𝑢

𝜕𝑥2𝜕𝑡2
) = 0 (9) 

Also, corresponding boundary conditions of 
that are expressed as 

(𝑁(𝑥, 𝑡) + 𝜌𝜈2𝐼𝑝 (
𝜕

𝜕𝑥
) (

𝜕3𝑢

𝜕𝑥𝜕𝑡2
))𝛿𝑢|

𝐿
0
= 0 (10) 

Note that Eq. (10) is satisfied if the beam is 
either fixed or free at the ends 𝑥 = 0 and 𝑥 = 𝐿. 
At a fixed end, 𝑢 = 0 and hence 𝛿𝑢 = 0, while 

𝑁(𝑥, 𝑡) + 𝜌𝜈2𝐼𝑝 (
𝜕

𝜕𝑥
) (

𝜕3𝑢

𝜕𝑥𝜕𝑡2
) = 0 (11) 

at a free end [23]. 

3. Two Phase Elasticity 

Two-phase local/nonlocal elasticity is shown 
below comprising local and nonlocal parts. 

𝑡(𝑥) = 휁𝐶̅: 휀(𝑥) 

         +(1 − 𝜉)∫𝛼(𝑥, �̅�, 𝜅)
𝑉

𝐶̅: 휀(�̅�)𝑑�̅� 
(12) 

𝛼(𝑥, �̅�, 𝜅) =
1

2𝜅
𝑒−

|𝑥−�̅�|
𝜅  (13) 

The definition of the parameters employed in 
this study is listed in the nomenclature. Reference 
[24] presented the equal differential of the 
integral equation with two constitutive boundary 
conditions (CBC) as follows. 

𝐺(𝑥) = 𝑌(𝑥) + 𝐶 ∫ 𝑒𝜇|𝑥−�̅�|
𝑏

𝑎

𝑌(�̅�)𝑑�̅� (14) 

�̈�(𝑥) + 𝜇(2C − 𝜇)𝑌(𝑥) = �̈�(𝑥) − 𝜇2𝐺(𝑥) (15) 

�̇�(𝑎) + 𝜇𝑌(𝑎) = �̇�(𝑎) + 𝜇𝐺(𝑎) (16) 

�̇�(𝑏) − 𝜇𝑌(𝑏) = �̇�(𝑏) − 𝜇𝐺(𝑏) (17) 

Eq. (15) is a differential form of Eq. (14), and 
two additional boundary conditions are essential 
to be satisfied. 
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4. Two-Phase Axial Force 

By using the Eqs. (12), (13) and the primary 
form of axial force defined earlier, the two-phase 
axial force is written as 

𝑁(𝑥, 𝑡)

= 휁𝐸𝐴
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥

+ 𝐸𝐴
(1 − 휁)

2𝜅
∫ 𝑒−

|𝑥−�̅�|
𝜅

𝐿

0

(
𝜕𝑢(�̅�, 𝑡)

𝜕�̅�
)𝑑�̅� 

(18) 

E is the elastic modulus, and A is the cross-section 
of the nanobeam. Now, by employing Eqs. (14), 
(15), and (18) as well as a governing equation, the 
differential form of axial force is derived as 
below. 

𝑁(𝑥, 𝑡) = −𝜌𝜈2𝐼𝑝𝜅
2 (
𝜕5𝑢(𝑥, 𝑡)

𝜕𝑥3𝜕𝑡2
)

+ 𝜌𝐴𝜅2 (
𝜕3𝑢(𝑥, 𝑡)

𝜕𝑥𝜕𝑡2
)

+ 𝐸𝐴(
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
)

− 휁𝐸𝐴𝜅2
𝜕3𝑢(𝑥, 𝑡)

𝜕𝑥3
 

(19) 

Eventually, by substituting Eq. (19) into 
governing equation, the expected form of 
governing equation is derived. 

(−𝜌𝜈2𝐼𝑝𝜅
2 (
𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
) + (𝜌𝐴𝜅2

+ 𝜌𝜈2𝐼𝑝) (
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
)

− 𝜌𝐴) (
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
)

= 휁𝐸𝐴𝜅2 (
𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
)

− 𝐸𝐴(
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
) 

(20) 

And, according to Eqs. (16), (17), and (19) the 
CBCs of axial force will be obtained as 

휁𝐸𝐴𝜅2 (
𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
) − 휁𝐸𝐴𝜅 (

𝜕3𝑢(𝑥, 𝑡)

𝜕𝑥3
)

− 𝐸𝐴(
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
) (1 − 휁)

−
𝐸𝐴

𝜅
(
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
) (휁 + 1)

= (−𝜌𝜈2𝐼𝑝𝜅
2 (
𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
)

+ 𝜌𝐴𝜅2 (
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
) + 𝜌𝜈2𝐼𝑝𝜅 (

𝜕3𝑢(𝑥, 𝑡)

𝜕𝑥3
)

− 𝜌𝐴𝜅 (
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
))(

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
)  𝑎𝑡 𝑥 = 0 

(21) 

휁𝐸𝐴𝜅2 (
𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
) + 휁𝐸𝐴𝜅 (

𝜕3𝑢(𝑥, 𝑡)

𝜕𝑥3
)

+ 𝐸𝐴(
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
) (휁 − 1)

−
𝐸𝐴

𝜅
(
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
) (1 − 휁)

= (−𝜌𝜈2𝐼𝑝𝜅
2 (
𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
)

+ 𝜌𝐴𝜅2 (
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
) − 𝜌𝜈2𝐼𝑝𝜅 (

𝜕3𝑢(𝑥, 𝑡)

𝜕𝑥3
)

+ 𝜌𝐴𝜅 (
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
))(

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
) 𝑎𝑡 𝑥 = 𝐿 

(22) 

5. Generalized Differential 
Quadrature Method (GDQM) 

Amid other numerical means such as the 
Galerkin method and finite element method, the 
GDQM has numerous beneficial attributes, that is, 
simple mathematical principle, the high pace of 
convergence, high accuracy, small calculation 
amount, and less memory demand, etc. The 
generalized differential quadrature method 
(GDQM) has been proposed as a general 
numerical method to solve high-order 
differential equations. Based on the fourth-order 
derivatives GDQM, the r-th order derivative of a 
function is considered as follows 

Ψ(𝑟)(𝑥𝑖) = ∑ℎ𝑗0
(𝑟)

𝑛𝑠

𝑗=1

(𝑥𝑖)Ψ𝑗 + ℎ11
(𝑟)(𝑥𝑖)Ψ1

(1)

+ ℎ𝑛𝑠1
(𝑟) (𝑥𝑖)Ψ𝑛𝑠

(1)

= ∑ 𝛽𝑖𝑗
(𝑟)𝑉𝑗

𝑛𝑠+2

𝑗=1

     𝑖

= 1, 2, … , 𝑛𝑠 

(23) 

Hermite shape functions are as follows 

𝛽𝑖𝑗𝑙
(𝑟) = ℎ𝑗𝑙

(𝑟)(𝑥𝑖) =
𝑑𝑟ℎ𝑗𝑙(𝑥𝑖)

𝑑𝑥𝑟
 (24) 

ℎ𝑗𝑙
(𝑟)(𝑥𝑖) = {

1 𝑖𝑓 𝑖 = 𝑗 & 𝑙 = 𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (25) 

ℎ𝑝𝑖(𝑥) = (𝑎𝑝𝑖𝑥
2 + 𝑏𝑝𝑖𝑥 + 𝑐𝑝𝑖)𝑙𝑝(𝑥)     𝑝

= 1, 𝑛𝑠 𝑎𝑛𝑑 𝑖 = 0,1 
(26) 

ℎ𝑗0(𝑥) =
(𝑥 − 𝑥1)(𝑥 − 𝑥𝑛𝑠)

(𝑥𝑗 − 𝑥1)(𝑥𝑗 − 𝑥𝑛𝑠)
𝑙𝑗(𝑥)     𝑗

= 2, 3, … , 𝑛𝑠 − 1              

(27) 

where 𝑎𝑝𝑖 , 𝑏𝑝𝑖 , and 𝑐𝑝𝑖  are given in appendix-I. 

Also, 𝑙𝑗(𝑥) is equivalent to the 𝛿𝑖𝑗 . Also, the 

weighting coefficients, Lagrangian interpolation 
for the first derivative, and higher-order 
derivatives can be expressed as 



Nazemnezhad and Ashrafian / Mechanics of Advanced Composite Structures 10 (2023) 221-232 

225 

  𝑙𝑗
(1)(𝑥𝑖)

=

{
 
 

 
 

𝑅(1)(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗)𝑅
(1)(𝑥𝑗)

 𝑖, 𝑗 = 1,2,… , 𝑛𝑠; 𝑖 ≠ 𝑗

− ∑ 𝑙𝑗
(1)(𝑥𝑖)

𝑛𝑠

𝑗=1,   𝑖≠𝑗  

𝑖, 𝑗 = 1,2,… , 𝑛𝑠

 
(28) 

𝑅(1)(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑚)

𝑛𝑠

𝑚=1,   𝑚≠𝑖

 (29) 

  𝑙𝑗
(𝑟)(𝑥𝑖)

=

{
 
 

 
 𝑟(𝑙𝑖

(𝑟−1)(𝑥𝑖)𝑙𝑗
(1)(𝑥𝑖) −

𝑙𝑗
(𝑟−1)(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗)
)  𝑖, 𝑗 = 1,2,… , 𝑛𝑠; 𝑖 ≠ 𝑗

− ∑ 𝑙𝑗
(𝑟)(𝑥𝑖)

𝑛𝑠

𝑗=1,   𝑖≠𝑗  

𝑖, 𝑗 = 1,2, … , 𝑛𝑠

 

(30) 

Both the equal space model and Chebyshev 
Gauss Lobatto model could be used, however 
owing to further reliable and quick convergence, 
the latter, that is eq. (32), is utilized. Also, the 
discretized form of the function could be defined 
as follows 

{𝑉}𝑇

= {Ψ1
(0), Ψ1

(1), Ψ2, Ψ3, . . . , Ψ𝑛𝑠−1, Ψ𝑛𝑠
(0), Ψ𝑛𝑠

(1)} 

= {𝑉1, 𝑉2, … , 𝑉𝑛𝑠+2} 

(31) 

𝑥𝑖 =
𝐿

2
[1 − cos (

(𝑖 − 1)

(𝑛𝑠 − 1)
𝜋)] 

                                                        𝑖 = 1,2, … , 𝑛𝑠 

(32) 

6. Vibration Analysis 

To analyze the vibrational status of the 
system, harmonic vibration has been assumed, 
thus the displacement field can be shaped as 
shown below 

𝑈(𝑥, 𝑡) = 𝑈(𝑥)𝑒𝑖𝜆𝑡  (33) 

{𝑈}𝑇 = {𝑈1, 𝑈2, … , 𝑈𝑛𝑠+2}
𝑇 (34) 

To derive the discretized governing equations 
in the axial direction by utilizing Eqs. (33) and 
(34) into Eqs. (20), can be the final segment to 
achieve expected results. 

(−𝜌𝜈2𝐼𝑝𝜅
2 ∑ 𝛽𝑖𝑗

(4)𝑈𝑗

𝑛𝑠+2

𝑗=1

+ 

(𝜌𝐴𝜅2 + 𝜌𝜈2𝐼𝑝) ∑ 𝛽𝑖𝑗
(2)𝑈𝑗

𝑛𝑠+2

𝑗=1

− 𝜌𝐴𝑈𝑖+1)(−𝜆
2) 

= 휁𝐸𝐴𝜅2 ∑ 𝛽𝑖𝑗
(4)𝑈𝑗

𝑛𝑠+2

𝑗=1

− 𝐸𝐴 ∑ 𝛽𝑖𝑗
(2)𝑈𝑗

𝑛𝑠+2

𝑗=1

 

(35) 

Furthermore, applying Eqs. (33) and (34) into 
Eqs. (21), and (22) finalize the discrete type of 

CBCs. The matrix, shown below, comprising a 
discrete governing equation and all of the 
boundary conditions shows that solving such an 
eigenvalue problem ends to the natural 
frequencies and corresponding mode shapes. 

휁𝐸𝐴𝜅2 ∑ 𝛽𝑖𝑗
(4)𝑈𝑗

𝑛𝑠+2

𝑗=1

− 휁𝐸𝐴𝜅 ∑ 𝛽𝑖𝑗
(3)𝑈𝑗

𝑛𝑠+2

𝑗=1

 

−𝐸𝐴(1 − 휁) ∑ 𝛽𝑖𝑗
(2)𝑈𝑗

𝑛𝑠+2

𝑗=1

−
𝐸𝐴

𝜅
(휁 + 1)𝑈2 

= (−𝜌𝜈2𝐼𝑝𝜅
2 ∑ 𝛽𝑖𝑗

(4)𝑈𝑗

𝑛𝑠+2

𝑗=1

+ 𝜌𝐴𝜅2 ∑ 𝛽𝑖𝑗
(2)𝑈𝑗

𝑛𝑠+2

𝑗=1

+ 𝜌𝜈2𝐼𝑝𝜅 ∑ 𝛽𝑖𝑗
(3)𝑈𝑗

𝑛𝑠+2

𝑗=1

− 𝜌𝐴𝜅𝑈2)(−𝜆
2)     𝑎𝑡 𝑥 = 0 

(36) 

휁𝐸𝐴𝜅2 ∑ 𝛽𝑖𝑗
(4)𝑈𝑗

𝑛𝑠+2

𝑗=1

+ 휁𝐸𝐴𝜅 ∑ 𝛽𝑖𝑗
(3)𝑈𝑗

𝑛𝑠+2

𝑗=1

 

+𝐸𝐴(휁 − 1) ∑ 𝛽𝑖𝑗
(2)𝑈𝑗

𝑛𝑠+2

𝑗=1

−
𝐸𝐴

𝜅
(1 − 휁)𝑈𝑛𝑠+2 

= (−𝜌𝜈2𝐼𝑝𝜅
2 ∑ 𝛽𝑖𝑗

(4)𝑈𝑗

𝑛𝑠+2

𝑗=1

+ 𝜌𝐴𝜅2 ∑ 𝛽𝑖𝑗
(2)𝑈𝑗

𝑛𝑠+2

𝑗=1

− 𝜌𝜈2𝐼𝑝𝜅 ∑ 𝛽𝑖𝑗
(3)𝑈𝑗

𝑛𝑠+2

𝑗=1

+ 𝜌𝐴𝜅𝑈𝑛𝑠+2)(−𝜆
2)     𝑎𝑡 𝑥 = 𝐿 

(37) 

[
[𝐾𝑏𝑏]4∗4 [𝐾𝑏𝑑]4∗(𝑛𝑠−2)

[𝐾𝑑𝑏](𝑛𝑠−2)∗4 [𝐾𝑑𝑑](𝑛𝑠−2)∗(𝑛𝑠−2)
] {
{𝑉𝑏}

{𝑉𝑑}
} 

−𝜆2 [
[𝑀𝑏𝑏]4∗4 [𝑀𝑏𝑑]4∗(𝑛𝑠−2)

[𝑀𝑑𝑏](𝑛𝑠−2)∗4 [𝑀𝑑𝑑](𝑛𝑠−2)∗(𝑛𝑠−2)
] {
{𝑉𝑏}

{𝑉𝑑}
} 

= 0 

(38) 

7. Numerical Results 

To realize the influences of axial 
displacements on the vibration of a nanosensor, 
corresponding results are extracted and 
presented in three portions. The first is devoted 
to the verification of the employed method, and 
the other two portions presented the numerical 
achievements of this work. In all results, the 
material listed below in Table.1 is utilized.  

Table 1. Material Properties 

Material Properties  

𝜌 1000 (kg/m3) 

𝜈 0.3 

𝜅/L 0.1~0.5 

h/L 0.05~0.1 

E 1.44e9 (GPa) 

L 2 (nm) 
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In the first portion, the whole derivation 
process of formulas has been carried on by 
assuming 휁 = 1. Thus, the employed theory 
became fully local, and the assumption made it 
possible to enjoy sufficient verification compared 
with the essential natural frequency formula 
obtained by Rao. [23]. The formula is indexed 
below for further assessment. 

𝜔𝑛
2 =

𝑛2𝜋2

(1 +
𝜈2𝑛2𝜋2𝐼𝑝

𝐴𝐿2
⁄ )

𝐸

𝜌𝑙2
 (39) 

Figures 1 and 2 comprising the first and 
second five natural frequencies, and their exact 

targets towards which curves converge show the 
path of progress of GDQM. For the first and 
second natural frequencies, there is a similar 
pattern, that is, on nearly 23 sample points, a 
sharp decline occurs, and they approach the exact 
solution. For the rest of the natural frequencies, 
various statuses should be considered. The rash 
decrease happened on almost 51 sample points. 
As expected, increasing the number of sample 
points cause further convergence and precise 
results. Overall, it can be obviously seen that it is 
possible to achieve the desired accuracy by 
utilizing 150 sample points. To enjoy the higher 
quality, the horizontal axis of the above-
mentioned figures is divided into 100. 

  

  

 
Fig. 1. First five natural frequencies with 휁 = 1  
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Fig. 2. Second five natural frequencies with 휁 = 1  

Figure 3 deals with generating an amplitude 
of the local phase fraction coefficient, and truly 
shows the 10 variants of natural frequencies, and 
how it changes along the horizontal axis or 
distinct 휁. Figure 3 is presented the first ten 
natural frequencies. There, the first natural 
frequency experiences a sharp fluctuation which 
occurs almost in intervals 0~0.05. Then, it begins 
a stable climbing, however, the slope compared 
with other variants is considerable. What is 
essential to state here is that 0~0.05 interval is a 
region on which investigation does not result in a 
particular consequence, and with increasing local 
phase fraction coefficient, the order and natural 
frequencies raised in a hugely noticeable way. 
Thus, it can be stated that zeta parameter enjoys 
a vastly crucial role in final quantities. 

 
Fig. 3. Natural Frequencies with Zeta amplitude  
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of thickness and local phase fraction coefficient. 

Three and five independent values for the two 

above-mentioned variables are defined. It is 

obvious that increasing h/L leads to an 

inconsiderable decline of natural frequencies. 

The decline for upper cases of natural frequency 

can be severe, and further. Additionally, this type 

of trend of natural frequency can be seen for the 

distinct value of the local phase fraction 

coefficient. What is mentionable in the next table, 

Table 3., is the demonstration of the relation of 

natural frequencies with nonlocal factors and 

local phase fraction coefficient that is not as clear 

as in the prior section. It can be stated that zeta 

0.2, 0.4, and 0.6 for all quantities of 𝜅/L enjoy 

similar effects on natural frequency in 

comparison with the previous table showed, but 

the two last cases of local phase fraction 

coefficient show a completely different approach. 

For 0.8 all differences are intensively low, and for 

1, the behavior is predictable. In other words, the 

nonlocal factor is constructive in the process 

while the local phase fraction coefficient does not 

reach the ultimate value. 

Table 2. The first five Natural Frequencies with various h and 휁 

𝜻 h/L 
Mode Number 

1st 2nd 3rd 4th 5th 

0.2 

0.05 18.9959 29.8722 41.1043 51.5548 63.0791 

0.075 18.9854 29.8237 40.9603 51.2477 62.4990 

0.1 18.9716 29.7570 40.7590 50.8256 61.7135 

0.4 

0.05 22.5631 38.0495 54.3944 69.8905 86.3596 

0.075 22.5376 38.0009 54.2133 69.4787 85.5764 

0.1 22.5248 37.9215 53.9563 68.9165 84.5165 

0.6 

0.05 25.3353 44.5360 64.7942 84.2136 104.4723 

0.075 25.3189 44.4761 64.5753 83.7217 103.5302 

0.1 25.3050 44.3839 64.2751 83.0470 102.2484 

0.8 

0.05 27.7061 50.1253 73.6769 96.4056 119.8565 

0.075 27.6992 50.0518 73.4260 95.8436 118.7762 

0.1 27.6870 49.9420 73.0924 95.0704 117.3090 

1 

0.05 29.8637 55.0860 81.5789 107.2133 133.4731 

0.075 29.8328 55.0240 81.3025 106.5870 132.2703 

0.1 29.8103 54.9187 80.9242 105.7299 130.6347 

Table 3. The first five Natural |Frequencies with various K and 휁 

𝜻 𝜅/L 
Mode Number 

1st 2nd 3rd 4th 5th 

0.2 

0.1 24.9743 46.1374 62.5482 75.3673 86.0071 

0.2 22.8861 38.6334 50.0314 60.1094 69.7962 

0.3 21.1401 34.1179 44.6697 54.7428 64.8907 

0.4 19.8690 31.4545 42.1386 52.2470 62.8104 

0.5 18.9716 29.7570 40.7590 50.8256 61.7135 

0.4 

0.1 25.8425 48.7280 68.0464 84.7580 99.8715 

0.2 24.6653 43.8405 59.9263 75.0148 89.6937 

0.3 23.7058 40.9163 56.5348 71.5662 86.5978 

0.4 23.0207 39.1188 54.8931 69.8924 85.2461 

0.5 22.5248 37.9215 53.9563 68.9165 84.5165 

0.6 

0.1 26.5934 51.0556 72.9800 93.0233 111.8100 

0.2 26.2108 48.2883 68.1394 87.1192 105.6250 

0.3 25.8533 46.4712 66.0084 84.8794 103.6405 

0.4 25.5592 45.2477 64.9206 83.7323 102.7439 

0.5 25.3050 44.3839 64.2751 83.0470 102.2484 

0.8 

0.1 27.2848 53.2243 77.5309 100.5206 122.4807 

0.2 27.6184 52.2618 75.3441 97.6204 119.3487 

0.3 27.7528 51.3164 74.1748 96.2959 118.1916 

0.4 27.7567 50.5421 73.5118 95.5462 117.6309 

0.5 27.6870 49.9420 73.0924 95.0704 117.3090 

1 

0.1 27.9381 55.2773 81.7886 107.4436 132.2327 

0.2 28.9256 55.8997 81.8592 107.0441 131.6063 

0.3 29.4801 55.6877 81.4785 106.4668 131.1149 

0.4 29.7353 55.2888 81.1658 106.0355 130.8222 

0.5 29.8103 54.9187 80.9242 105.7299 130.6347 
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8. Conclusion 

Two-phase local/nonlocal elasticity as the 
essential theory is utilized to investigate the 
longitudinal vibration of Rayleigh nanobeams. 
The generalized differential quadrature method 
solves the differential equation of motion. 
Rayleigh's theory and two-phase local/nonlocal 
elasticity demonstrate a reliable linkage that 
ends with accessible results.  In this study, results 
truly show that employing the main theories 
result in acceptable consequences. Nonlocal 
factors and local phase fraction coefficients may 
significantly decrease or increase the 
frequencies. The details were described in the 
prior section, but it can be mentioned that the 
geometrical parameters can enjoy a more 
significant effect on natural frequency than other 
mentioned parameters. 

Moreover, the displayed discrepancy between 
distinct mode shapes and natural frequencies, in 
Fig. 3 with regard to the local phase fraction 
coefficient illustrates the importance of the 
employed independent variable. The 
compatibility of GDQM with vibration analysis of 
two-phase Rayleigh nanobeam is confirmed by 
comparison with an analytical procedure, even 
though considerable amounts of sample points 
were needed to attain. One of the main novelties 
of the current work is employing two-phase 
elasticity theory without contradiction in 
modelling longitudinal vibrations of nanobeams 
as well as the development of proper solution 
procedures in the domain of corresponding 
differential equations that in comparison with 
common nonlocal differential theory eliminated 
contradictions and consequently provides 
Integral form of results in accordance with 
differential one. 

Moreover, by comparing the results of two-
phase theory and nonlocal, it can be said that in 
addition to the elimination of contradictions 
softening effect of nonlocal parameter 
consideration appears with more intensity in the 
two-phase domain (with a quantity close to zero) 
that this enjoys more discrepancy in higher 
modes. Eventually, this is essentially considering 
that according to the complexity related to the 
manner of creation of atomic linkage between the 
nanostructure and supportive surfaces, utilizing 
classical boundary conditions in modelling 
nanostructures can make errors, thus employing 
higher order boundary conditions along with 
two-phase differential equations enjoys vital 
importance. Thus, it can be mentioned here that 
the development of models concerning boundary 
conditions is constructive to enhance the 
accuracy of prediction of mechanics of 
nanomachines, and more research in this field is 
needed.  

Nomenclature 

L Length 

b Width 

h Thickness 

U, V, W Displacement fields 

𝜋 Strain energy 

Vo Volume of the nanobeam 

𝜎𝑥𝑥  Normal stress 

휀𝑥𝑥 Normal strain 

𝑁 Axial force 

T Kinetic energy 

𝐼𝑝  
Polar moment of the inertia of the 
cross-section 

𝑡(𝑥) Stress in two-phase state 

휁 Local phase fraction coefficient 

𝛼 Kernel function 

휀 Strain tensor 

𝐶̅ Elasticity tensor 

�̅� Volume of the domain 

𝜅 Nonlocal factor 

𝐶&𝜇 Constant coefficients. 

𝑛𝑠 Number of sample points, 

𝑥𝑖  Location of sample points, 

ℎ𝑗0
(𝑟) 

Hermite shape functions for all 
sample points, 

ℎ11
(𝑟) 

Hermite shape functions for Rth 
order derivative at the first 
sample point 

ℎ𝑛𝑠1
(𝑟)  

Hermite shape functions for Rth 
order derivative at the last sample 
point 

𝑎𝑝𝑖 , 𝑏𝑝𝑖 , 𝑐𝑝𝑖  Constant coefficients 

𝑙𝑗(𝑥) 
Lagrangian interpolation test 
functions 

𝛿𝑖𝑗  Kronecker delta 

𝜈 Poisson’s ratio 

𝜌 Density  
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Appendix I 

{
 
 

 
 𝑎10 =

−1

(𝑥1 − 𝑥𝑛𝑠)
2
+
−𝑙1

(1)(𝑥1)

(𝑥1 − 𝑥𝑛𝑠)

𝑏10 =
1

(𝑥1 − 𝑥𝑛𝑠)
− 𝑎10(𝑥1 + 𝑥𝑛𝑠)

𝑐10 = 1 − 𝑎10𝑥1
2 − 𝑏10𝑥1

 

{
  
 

  
 𝑎11 =

1

𝑥1 − 𝑥𝑛𝑠

𝑏11 =
−(𝑥1 + 𝑥𝑛𝑠)

𝑥1 − 𝑥𝑛𝑠

𝑐11 =
𝑥1𝑥𝑛𝑠
𝑥1 − 𝑥𝑛𝑠

 

{
 
 

 
 𝑎𝑛𝑠0 =

−1

(𝑥1 − 𝑥𝑛𝑠)
2
+
−𝑙𝑛𝑠

(1)(𝑥1)

(𝑥1 − 𝑥𝑛𝑠)

𝑏𝑛𝑠0 =
−1

(𝑥1 − 𝑥𝑛𝑠)
− 𝑎𝑛𝑠0(𝑥1 + 𝑥𝑛𝑠)

𝑐𝑛𝑠0 = 1 − 𝑎𝑛𝑠0𝑥𝑛𝑠
2 − 𝑏𝑛𝑠0𝑥𝑛𝑠

 

{
  
 

  
 𝑎𝑛𝑠1 =

−1

𝑥1 − 𝑥𝑛𝑠

𝑏𝑛𝑠1 =
𝑥1 + 𝑥𝑛𝑠
𝑥1 − 𝑥𝑛𝑠

𝑐𝑛𝑠1 =
−𝑥1𝑥𝑛𝑠
𝑥1 − 𝑥𝑛𝑠

 

Appendix II 

∫ 𝛿𝑇𝑑𝑡 =
𝑡2

𝑡1

∫ (∫ 𝜌𝐴
𝐿

0

𝛿 (
𝜕𝑢

𝜕𝑡
) (
𝜕𝑢

𝜕𝑡
) 𝑑𝑥

𝑡2

𝑡1

+∫ 𝜌𝜈2𝐼𝑝

𝐿

0

𝛿 (
𝜕2𝑢

𝜕𝑥𝜕𝑡
)

2

𝑑𝑥)𝑑𝑡 

Transformation of Integral order, the first part 

≫ ∫ 𝛿 (
𝜕𝑢

𝜕𝑡
) (
𝜕𝑢

𝜕𝑡
) 𝑑𝑡

𝑡2

𝑡1

= (
𝜕𝑢

𝜕𝑡
) 𝛿𝑢(𝑥, 𝑡)|𝑡1

𝑡2

−∫ 𝛿𝑢(𝑥, 𝑡) (
𝜕2𝑢

𝜕𝑡2
)𝑑𝑡

𝑡2

𝑡1

 

The Second part 

≫∫ 𝛿 (
𝜕2𝑢

𝜕𝑥𝜕𝑡
) (

𝜕2𝑢

𝜕𝑥𝜕𝑡
)𝑑𝑡

𝑡2

𝑡1

 

                = (
𝜕

𝜕𝑥
) (

𝜕2𝑢

𝜕𝑥𝜕𝑡
) 𝛿𝑢(𝑥, 𝑡)|𝑡1

𝑡2 

                       −∫ 𝛿𝑢(𝑥, 𝑡) (
𝜕

𝜕𝑥
) (

𝜕3𝑢

𝜕𝑥𝜕𝑡2
)𝑑𝑡

𝑡2

𝑡1

 

∫ 𝛿𝑇𝑑𝑡
𝑡2

𝑡1

=∫ (𝜌𝐴((
𝜕𝑢

𝜕𝑡
) 𝛿𝑢(𝑥, 𝑡)|𝑡1

𝑡2
𝐿

0

−∫ 𝛿𝑢(𝑥, 𝑡) (
𝜕2𝑢

𝜕𝑡2
)𝑑𝑡)

𝑡2

𝑡1

+ 𝜌𝜈2𝐼𝑝((
𝜕

𝜕𝑥
) (

𝜕2𝑢

𝜕𝑥𝜕𝑡
) 𝛿𝑢(𝑥, 𝑡)|𝑡1

𝑡2

−∫ 𝛿𝑢(𝑥, 𝑡) (
𝜕

𝜕𝑥
) (

𝜕3𝑢

𝜕𝑥𝜕𝑡2
)𝑑𝑡

𝑡2

𝑡1

)) 𝑑𝑥

= −∫ ∫ 𝜌𝐴𝛿𝑢(𝑥, 𝑡) (
𝜕2𝑢

𝜕𝑡2
)𝑑𝑡𝑑𝑥

𝑡2

𝑡1

𝐿

0

−∫ ∫ 𝜌𝜈2𝐼𝑝𝛿𝑢(𝑥, 𝑡) (
𝜕

𝜕𝑥
) (

𝜕3𝑢

𝜕𝑥𝜕𝑡2
)𝑑𝑡𝑑𝑥

𝑡2

𝑡1

𝐿

0

 

The last part needs to have another integration 
by parts, on the x variable. 

∫ ∫ 𝜌𝜈2𝐼𝑝𝛿𝑢(𝑥, 𝑡) (
𝜕

𝜕𝑥
) (

𝜕3𝑢

𝜕𝑥𝜕𝑡2
)𝑑𝑥𝑑𝑡

𝐿

0

𝑡2

𝑡1

= ∫ 𝜌𝜈2𝐼𝑝(
𝜕3𝑢

𝜕𝑥𝜕𝑡2
𝛿𝑢(𝑥, 𝑡)|0

𝐿
𝑡2

𝑡1

−∫ 𝛿𝑢(𝑥, 𝑡) (
𝜕

𝜕𝑥
) (

𝜕3𝑢

𝜕𝑥𝜕𝑡2
)𝑑𝑥)𝑑𝑡

𝐿

0

 

Thus: 

∫ 𝛿𝑇𝑑𝑡 =
𝑡2

𝑡1

 

−∫ ∫ 𝜌𝐴𝛿𝑢(𝑥, 𝑡) (
𝜕2𝑢

𝜕𝑡2
)𝑑𝑡𝑑𝑥

𝑡2

𝑡1

𝐿

0

−∫ 𝜌𝜈2𝐼𝑝(
𝜕3𝑢

𝜕𝑥𝜕𝑡2
𝛿𝑢(𝑥, 𝑡)|0

𝐿
𝑡2

𝑡1

+∫ 𝛿𝑢(𝑥, 𝑡) (
𝜕

𝜕𝑥
) (

𝜕3𝑢

𝜕𝑥𝜕𝑡2
)𝑑𝑥)𝑑𝑡

𝐿

0
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