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Grid-stiffened composite shells are one of the most important structures in many industries. 

These structures based on their fabrication method, provide both high strength and light 

structural weight. In this study, buckling analysis under external hydrostatic pressure is 

performed to obtain critical buckling pressure and the optimum values of parameters for 

stiffeners. First-order shear deformation theory (FSDT) based on the Ritz method is used to 

calculate the critical buckling load of these structures. The effects of shell thickness, angle of 

helical stiffeners, rib section area, and the stiffeners number into the buckling load are 

determined. Comparing the calculated buckling load for stiffened and non-stiffened 

structures shows that stiffeners significantly optimize structural performance. 

Furthermore, optimization of stiffener parameters is done by Genetic Algorithm. The results 

show that the introduced structure has the minimum mass. So, the stiffener parameters 

would be better. According to the results, the optimum dimensions for stiffener buckling 

load for the optimal stiffener have been increased by about 80% compared to non-stiffened. 

1. Introduction 

A composite grid structure is a structure of 
composite one-directional tapes that are joined 
together to form a continuous set as two-
dimensional (planar) or three-dimensional 
(spatial). Composite grid structures are more 
capable than metal structures due to strength, 
low weight, flexibility in design, easy 
construction, and the ability to withstand various 
environmental conditions. Shells that have been 
stiffened with grid structures are an appropriate 
alternative for composite, sandwich, or filled 
metal panels. The main objective of using grid 
structures is the optimization of longitudinal 
properties of composite materials in structures. 
Although grid structures are being used as a new 
technology in many industries, especially the 
aerospace industry. However, in the past, several 
valuables of research have been conducted on 
this kind of structure. 

Genetic algorithm (GA) as an evolutionary 
approach is suitable for tackling optimization 
problems. Many researchers reported that GA 

has a good performance to find the near-optimal 
solutions of discrete optimization problems such 
as composite structures [1-4]. 

Kim [5] studied the construction of composite 
grid cylinders, in which building and buckling 
strength analysis of a stiffened cylinder with the 
same grid were studied. He investigated the 
effects of a vertical compressive force on the 
buckling and rib failure and stability of the entire 
structure have been studied. In [5], he focused on 
grid composite panels instead of grid cylinders 
and examined buckling modes, rib failure, shell, 
and the entire structure failure. Authors in [6] 
studied the optimization of a rotating structure 
with variable curvature. This structure was 
composed of a shell and a composite grid 
structure. The purpose of that optimization 
problem was to minimize the weight of this 
structure, so that with the change in the size and 
rib spacing, this structure had the lowest weight, 
and also required strength under local buckling. 

After that, Zhang et al. [7] published an article 
in which they introduced two new grid structures 
and calculated their mechanical properties. 
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These two structures were a combination of 
known structures. They also validated the 
obtained properties for these structures with the 
finite element method. Yazdani et al. [8] 
performed an experimental study on the 
composite grid shells buckling under axial load. 
They concluded that increasing the number of 
helical ribs has more effective than adding 
circumferential rings or changing the grid type. 
On the other hand, shells with diamond-shaped 
grids had a more favorable performance in axial 
loading [8]. 

Jingxuan et al. [9] placed an advanced grid 
stiffened (AGS) composite under axial load. They 
determined the structural strength and failure 
threshold of the structure. The results were 
compared with the finite element method by 
ANSYS commercial software. Other researchers 
[10] explained the grid composite structures, 
their construction process, and the latest 
achievements and their applications in the space 
industry. In this study, ribs in the grid structure 
strengthen the structure and reduce its weight. 

Rahimi et al. [11] implemented and evaluated 
a grid composite cylinder with ANSYS 
commercial software. They examined the effect of 
the rib profile on the cylinder resistance under 
axial pressure load by changing the cylinder 
diameter and rib profile. Weber and Middendorf 
[12] integrated the interaction between adjacent 
skin fields into the calculation of the local skin 
buckling load by applying periodic boundary 
conditions at opposite panel edges. They 
considered the self-stiffening effect of the grid-
stiffened structures due to interaction with 
adjacent skin fields, significantly increasing the 
buckling resistance of such structures. 

Liu and Paavola [13] evaluated a general 
analytical sensitivity analysis method for the 
composite laminated panels and shells. This 
method is applied to both classical laminate plate 
theory (CLPT) and first-order shear deformation 
theory (FSDT) based on the finite element 
methods. Deveci [14] optimized the buckling of 
the composite laminates using a hybrid algorithm 
under the Puck failure criterion constraint. They 
proposed an optimization method to find the 
optimum stacking sequence designs of laminated 
composite plates in different fiber angle domains 
for maximum buckling resistance. 

Civalek [15] worked on buckling analysis of 
the composite shells with different material 
properties by the discrete singular convolution 
(DSC) method. Ghasemi et al. [16] presented a 
multi-objective optimization of a composite 
cylindrical shell under external hydrostatic via an 
improved version of the evolutionary algorithm 
of NSGA-II. The parameters of mass, cost, and 
buckling pressure as fitness functions and failure 
criteria as optimization criteria were considered. 

Also, the kind of material, the number of layers, 
and fiber orientations have been considered as 
design variables. 

Hajmohammad et al. [17] developed a 
practical analytical approach to reach the optimal 
fiber orientation in the design of fiber-reinforced 
polymer pressure vessels (FRPPVs) subjected to 
hydrostatic pressure. The genetic algorithm (GA) 
is applied to achieve the optimal orientation 
pattern with minimum weight and maximum 
buckling load. 

Ghasemi et al. [18] presented  a multi-step 
optimization method to predict the optimal fiber 
orientation in glass fiber-reinforced polymer 
(GFRP) composite shells. The proposed method 
contains a regenerated genetic algorithm (GA) 
coupled with an analytical approach to assessing 
the failure of the tubular structure. 

Soltani et al. [19] investigated the lateral 
buckling analysis and layup optimization of the 
laminated composite of web and flanges tapered 
thin-walled I-beams based on maximizing lateral-
torsional stability strength and minimizing the 
mass of the structure. The critical factors of 
fitness function as lateral buckling strength and 
the mass of the structure with critical limitations 
such as ply angle, number of layers for the web 
and flanges, and the thickness of all section walls 
are considered to be optimized using the non-
dominated sorting genetic algorithm (NSGA-II) 
and properly defined objective function. 

The natural frequency analysis of vertical 
functionally graded (FG) microplates partially in 
contact with fluid was investigated by Khorshidi 
et al [20]. Thermal buckling, bending, and free 
vibration analyses of micro-scaled functionally 
graded GNPs reinforced porous nanocomposite 
annular plate were considered by Amir et al [21]. 

 
Fig. 1. Grid cylindrical shell 

The study aims to gain the critical buckling 
pressure for grid composite structures under 
external hydrostatic pressure. In this study, a 
stiffened composite cylindrical shell using a grid 
structure with internal stiffeners hexagonal - 
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triangle grid under external hydrostatic pressure 
is analyzed. With the development of smeared 
method and also using the linear FSDT, buckling 
critical pressure can be calculated. By calculating 
the critical buckling pressure for different modes, 
the effect of stiffener parameters on buckling 
pressure can be obtained. Moreover, given that in 
many industries, the use of lighter structures is in 
priority, grid structures were optimized to 
reduce weight, and identify the optimal 
dimensions of stiffeners in this certain problem. 
In the end, the optimization of composite grid 
shells was designed using a Genetic Algorithm 
(GA) and the optimum parameters of stiffeners 
are introduced. Two scenarios of GA based on 
their population size and iteration number were 
performed to obtain the optimized parameters. 

2. Equations and Assumptions 

Figure 1 shows a cylindrical shell stiffened by 
grid stiffeners. This shell has length L, thickness t, 
and diameter D. The following assumptions were 
considered in this structure: 

1. The shell was considered thin and a 
composite laminate. 

2. Each rib of stiffeners is a thin laminated 
panel that is formed from layers with 
continuous fibers and a single direction. 

3. The used theory is the first-order shear 
deformation theory. 

4. Stiffeners have been considered internally 
and the entire structure is under external 
hydrostatic pressure and the load is 
applied from the side. 

5. Rib cross-sections of stiffeners are 
considered rectangular. 

6. Stiffeners arrangement is the hexagonal-
triangle combination. 

Displacements are provided by the FSDT in 
cylindrical coordinates in the below equations, 
that u, v, and w are displacement components at 

any arbitrary point of the shell, 𝑢0,𝑣0, and 𝑤0 are 
the displacement components in the middle level, 

𝜓
𝑥
 and 𝜓

𝜃
 are rotation from 𝜃 and 𝑥-axis, 

respectively [22]. 

(1) 0
( , , ) ( , ) ( , )

x
u x z u x z x   = +  

(2) 0
( , , ) ( , ) ( , )v x z v x z x


   = +  

(3) 0
( , , ) ( , )w x z w x =  

3. Making the Equivalent of 
Composite Grid Shells 

Smeared method for evaluating interactions 
between the shell and the stiffener was presented 
by Jaunky et al. [23]. Kidane et al. [24] have 

provided a method to study the axial buckling of 
the grid composite cylinder by using the same 
theory. To make the equivalent of stiffeners, 
strains and forces in the stiffeners are calculated. 
Then, by considering the stiffness matrix 
obtained for stiffeners, a shell with appropriate 
thickness is determined which has stiffness 
exactly equal to stiffeners. At this step, 
determining shell is replaced instead of the total 
stiffeners, and finally, the shell is added to the 
primary shell, and all of them are considered as a 
structural unit. 

3.1. Force Analysis in the Stiffeners 

{
 
 

 
 𝜀𝑥𝑥 = 𝜀𝑥𝑥

(0)
+ (

𝑡

2
)𝑘𝑥𝑥

𝜀𝜃𝜃 = 𝜀𝜃𝜃
(0)
+ (

𝑡

2
)𝑘𝜃𝜃

𝛾𝑥𝜃 = 𝛾𝑥𝜃
(0)
+ (

𝑡

2
)𝑘𝑥𝜃

 (4) 

{
𝛾𝑥𝑧 = 𝛾𝑥𝑧

(0)

𝛾𝜃𝑧 = 𝛾𝜃𝑧
(0) (5) 

By loading the entire structure, reaction 
forces in stiffeners are made as an axial force in 

the stiffeners section which is shown with 𝐹𝑙. 
However, during this loading, stiffeners can bear 
shear loads and planar shear loads, which are 

expressed with 𝐹𝑙𝑡 and 𝐹𝑙𝑧, respectively. Inside 
axial and shear forces applied to the stiffeners are 
shown in Fig.2. 

 
Fig. 2. Forces applied to the stiffeners 

By solving the strains in the direction of 
stiffeners and the perpendicular on stiffeners, 
stiffeners forces are obtained concerning strains. 
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(6) 𝐹𝑙1 = 𝐴𝑠𝑡𝐸𝑙𝜀𝑙1 = 𝐴𝑠𝑡𝐸𝑙(𝑐
2𝜀𝑥𝑥 

        +𝑠2𝜀𝜃𝜃 − 𝑐𝑠𝛾𝑥𝜃) 

(7) 𝐹𝑙2 = 𝐴𝑠𝑡𝐸𝑙𝜀𝑙2 = 𝐴𝑠𝑡𝐸𝑙 

        × (𝑐2𝜀𝑥𝑥 + 𝑠
2𝜀𝜃𝜃 + 𝑐𝑠𝛾𝑥𝜃) 

(8) 𝐹𝑙2 = 𝐴𝑠𝑡𝐸𝑙𝜀𝑙3 = 𝐴𝑠𝑡𝐸𝑙(𝜀𝜃𝜃) 

3.2. Moment Analysis of the Stiffener 

Moments applied to the stiffeners at the 
interface between the shell and stiffener, are 
caused due to shear forces. Moments applied to 
the unit cell are shown in Fig.3. 

 
Fig. 3. Moments applied to the stiffeners 

According to the presented method in the 
previous section, the applied moment on the 
sides of the unit cell can be obtained as equations 
(9), (10), and (11). 
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By taking a plane with normal vector Z, 
components of shear strains 𝜀𝑙𝑧 are: 

εlz = (sγθz + cγxz) (12) 

The shear forces caused by shear strains are 
obtained as follows: 

(13) 
𝐹𝑙𝑧1 = 𝐴𝑠𝑡𝐺𝑙𝑧𝛾𝑙𝑧1 = 

𝐴𝑠𝑡𝐺𝑙𝑧(−𝑠𝛾𝜃𝑧
+ 𝑐𝛾

𝑥𝑧
) 

(14) 
𝐹𝑙𝑧2 = 𝐴𝑠𝑡𝐺𝑙𝑧𝛾𝑙𝑧2 = 

𝐴𝑠𝑡𝐺𝑙𝑧(𝑠𝛾𝜃𝑧
+ 𝑐𝛾

𝑥𝑧
) 

(15) 
𝐹𝑙𝑧3 = 𝐴𝑠𝑡𝐺𝑙𝑧𝛾𝑙𝑧3 = 

𝐴𝑠𝑡𝐺𝑙𝑧(𝛾𝜃𝑧
) 

By analyzing the forces, moments, and shear 
forces exerted on the unit cell transforming from 
these equations as matrix multiplication, stiffness 
matrix can be achieved as shown in equation 
(16). Since the shell is a laminated composite, the 
shell stiffness matrix can be written as equation 
(17) [25-26]. 

It is noteworthy that the axial stiffness 𝐴𝑖𝑗 , 

coupled stiffness (bending-axial) 𝐵𝑖𝑗 , bending 

stiffness 𝐷𝑖𝑗  and shear stiffness 𝐻𝑖𝑗are obtained 

via the equations (18), (19), (20), and (21) where 
𝐾0 is the shear correction factor with the amount 

of  
5

6
  [22]. 

Finally, the equivalent stiffness matrix for a 
composite grid shell is the sum of the shell 
stiffness matrix and the stiffeners stiffness matrix 
as shown in the equation (22). 
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𝑆 = 𝑆𝑠h + 𝑆𝑠𝑡    (22) 

 

3.3. Analysis of Buckling Load by Rayleigh-Ritz 
method 

In the Ritz method, the total energy function 
(𝛱) is achieved from the sum of the values of 
strain energy and work done by external forces. 
On the other side, to create balance, the total 
energy function of the structure must be 

minimized. In other words, to minimize the total 
energy, total potential energy should be 
differentiated concerning displacement field 
coefficients 𝐴𝑚𝑛 , 𝐵𝑚𝑛 and 𝐶𝑚𝑛 , and by putting 
them equal to zero, the coefficient matrix is 
obtained [27-28]: 

𝛱 = 𝑈 + 𝑉 (23) 



Soheil Shamaee and Ghasemi / Mechanics of Advanced Composite Structures 10 (2023) 309-318 

314 

𝜕𝛱

𝜕𝐴𝑚𝑛
=

𝜕𝛱

𝜕𝐵𝑚𝑛
=

𝜕𝛱

𝜕𝐶𝑚𝑛
= 0 (24) 

[

𝐿11 𝐿12 𝐿13
𝐿21 𝐿22 𝐿23
𝐿31 𝐿32 𝐿33

] [

𝐴𝑚𝑛
𝐵𝑚𝑛
𝐶𝑚𝑛

] = 0 (25) 

To have non-trivial solutions in the above 
equation, the determinant of the coefficient 

matrix must be zero (|𝐿𝑖𝑗| = 0). After the 

extension of this equation, the buckling 
characteristic equation is obtained, and by 
solving this equation, the buckling load for the 
different 𝑚 and 𝑛 is achieved. It should be noted 
that the minimum amount of 𝑃, is the buckling 
critical load. 

4. Results and Discussion 

4.1. Validation 

We have verified the results caused by the 
buckling of composite cylindrical shells with 
those of reference [29]. We have considered a 
cylindrical shell with a 200 𝑚𝑚 diameter and 600 
𝑚𝑚 lengths. The mechanical properties of shell 
material (without stiffeners) are provided in 
Table 1. Also, the layers' angle is [90/60/45]sym. 

Table 1. Mechanical properties of the shell material 

Properties 

𝐸11 = 17.8(𝐺𝑃𝑎) 

𝐺12 = 3.6(𝐺𝑃𝑎) 

𝐺13 = 3.6(𝐺𝑃𝑎) 

𝜌 = 1800(𝑘𝑔/𝑚3) 

𝐸22 = 4.2(𝐺𝑃𝑎) 

𝐺23 = 2.1(𝐺𝑃𝑎) 

𝜐𝑥 = 0.274 

Figure 4 shows the buckling load for a shell 
with and without stiffeners based on the 
thickness. The obtained results demonstrate that 
using grid stiffeners for all shells (with different 
thicknesses) increases buckling load. 

4.2. The Effect of Stiffener Angle 

Figure 5 shows the buckling load and specific 
buckling load concerning the helical rib angle for 
three different thicknesses. As can be seen, by 
increasing the helical rib angle for each thickness, 
the buckling load first is increased, and then after 
a certain angle (about 75 to 85 degrees) is 
reduced. 

 
Fig. 4. Buckling load for a grid composite shell with and 

without stiffeners 

 
Fig. 5. The effect of stiffeners angle on the buckling load 

4.3. The Effect of Rib Heights 

Figure 6 shows the buckling load for different 
rib heights. It is evident that for all shell 
thicknesses, increasing the height of ribs 
increases the buckling load. 

 
Fig. 6. The effect of rib height on the buckling load 

4.4. The Effect of Rib Section Area 

Figure 7 shows the effect of the rib section 
area on the buckling load. The results show that 
by increasing the stiffener section area, the 
buckling load increases, and the larger the ribs 
section area, the higher the buckling load. 
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Fig. 7. The effect of the stiffeners section area  

on the buckling load 

4.5. The Effect of Helical Stiffeners Number 

Figure 8 shows the effect of the helical 
stiffener number on the buckling load. The 
results indicate that by increasing the number of 
helical stiffeners, the buckling load will be 
increased. 

 
Fig. 8. The effect of a couple of stiffeners numbers  

on the buckling load 

5. Optimization of Grid Shells Using 
Genetic Algorithm 

Genetic algorithm, inspired by genetic science 
and Darwin's evolutionary theory, is based on 
natural selection. Genetic algorithms are 
commonly used to generate high-quality 
solutions to optimization problems. The Genetic 
Algorithm (GA) finds near-optimal solutions to 
problems  by relying on operators such as 
mutation,  crossover,  and  selection. Figure 9 
shows the flowchart of GA with all steps involved 
from the beginning until the end. 

To reduce the weight of our proposed 
composite grid shell by Genetic Algorithm, we 
should first determine the objective function 
based on the weight of the structure. Equation 
(26) presents the weight function, which is the 
sum of the stiffeners' weight and shell weight. 

tot st shw w w= + =  

(26) 
( ) ( )( )( ) ( )2 2 2 2st st stn l ft m Rft RLh   + +  

 
Fig. 9. Flowchart of Genetic Algorithm 

The criterion of the optimization is buckling 
pressure. In this case study, the buckling pressure 
must not be more than 1 𝑀𝑃𝑎. The buckling 
pressure could be obtained from the analytical 
solution in the previous section. 

Since the weight function is a function of the 
shell parameters, so we also need to specify the 
variables. In this case, the couple number of 
helical stiffeners, the unit cell number in shell 
height, and also ribs thickness and width have 
been considered as the variables. Notably, lower 
and upper bounds for each variable were defined. 
In Table 2, variables are presented along with 
their upper and lower bounds. 

Table 2. Variables and their ranges 

Variable Ranges 

𝑛𝑠𝑡 : Couple helical stiffeners number 2 − 12 

𝑚𝑠𝑡 : Unit cell number in height shell 2 − 12 

𝑓(𝑚𝑚) : Rib width 2 − 12 

𝑡(𝑚𝑚) : Rib thickness 2 − 12 

Another point that should be addressed at the 
beginning of applying GA is the population size. In 
this study, the population size is considered 
between 15 and 20. The selection operator here 
is the Elitism operator. 

According to the crossover, Mutation, and also 
elitism selection operators in the Genetic 
Algorithm, the parameters,  the crossover 
probability, the mutation probability, and the 
elitism probability should be determined. The 
crossover possibility for each chromosome pair is 
considered 0.8. Also, the mutation probability 
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which is the probability of doing a jumping act on 
each chromosome is considered 0.2, and the 
elitism possibility which is defined as the 
probability of chromosome selection is 
considered 0.35. 

5.1. First Scenario 

In the first optimization scenario, the 
population size is intended 20 and also the 
algorithm is repeated 20 times. The results are 
shown in Fig.10 and Fig.11. 

Figure 10 shows the optimization process of 
the structure mass in terms of the iteration 
numbers, and it consists of two data sets, which 
are the minimum mass and the average mass for 
each generation. According to this figure, it is 
clear that as the iteration progress, the structure 
mass decreases.  Therefore, a near-optimal 
structure can be achieved. 

 

Fig. 10. Optimization process of the structure mass in terms 
of algorithm iterations (first scenario) 

Figure 11 shows the minimum mass of the 
structure for each generation in terms of iteration 
in a separate form. In this figure, the optimization 
process is more evident. 

 
Fig. 11. The structure mass in terms of iterations 

(first scenario) 

5.2. Second Scenario 

In the second optimization scenario, the 
population size is 15 and the iteration number is 
30. The results are shown in Fig.12 and Fig.13. the 
aim of this scenario is studying about the effects 
of increasing the number of interactions on the 
optimal solution found by the applied GA. 

 
Fig. 12. Optimization process of the structure mass in  

terms of algorithm iterations (second scenario) 

Figure 12 shows the optimization process of 
the structure mass in terms of the iteration 
number, with the difference that the iteration 
number has increased compared to the first 
scenario. As can be seen, the more iteration 
number, the less amount of the mass for each 
generation. So, by repeating the algorithm, a 
better solution can be achieved. 

 
Fig. 13. The structure mass in terms of iterations 

(second scenario) 

Figure 13 shows the minimum mass of the 
structure for each generation, in terms of the 
iteration number. As can be seen, the applied GA 
converges and the minimum mass has not 
changed for generations 11 to 30 and is a fixed 
value. 

Table 3. The stiffeners' optimum size 

stn stm )(mmf )(mmt  )(kgm Scenario Number 

2 4 9 7 76.5 8.827 First scenario 

2 3 10 8 72.3 8.7 Second scenario 
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6. Optimization of Stiffeners 

By applying GA for the mentioned scenarios, 
the near-optimal size for stiffeners in each 
scenario is obtained. Also, according to obtained 
𝑛𝑠𝑡  and 𝑚𝑠𝑡  for each scenario, the appropriate 
ribs’ angle can be calculated. Given the stiffener’s 
size for each scenario, the total mass of the 
structure is also specified. All information is given 
in Table 3. 

The introduced structure in the second 
scenario has less mass compared to the first one. 
So the stiffener size would be better in the second 
scenario, and the structure will have the 
minimum mass. According to the results, the 
optimum dimensions for stiffener buckling load 
for the optimal stiffener is equal to 1.3273 MPa 
which was increased by 80%. 

7. Conclusions 

In this study first buckling of the non-stiffened 
shell has been obtained and then the results were 
compared. The main theory of the problem is the 
linear first-order shear deformation theory. So at 
first, the buckling of a grid shell under these two 
theories is compared and then the effect of grid 

stiffeners on the buckling has been investigated. 
Then the effects of stiffeners’ various parameters 
on the buckling of grid shells are discussed. In the 
end, the optimization of composite grid shells 
was designed using a Genetic Algorithm and the 
optimum parameters of stiffeners are introduced. 
According to the results,  the buckling load for the 
obtained optimal stiffener has been increased by 
80%. 

Nomenclature 

𝒛 : Distance from the middle surface; 

𝜀𝑖𝑗
(0)

 : Middle surface normal strains; 

𝛾𝑖𝑗
(0)

 : Middle surface shear strains; 

𝑘𝑖𝑗  : Surface curvatures; 

𝐴𝑠𝑡  : Cross-section area of stiffeners; 

𝐸𝑙    : Longitudinal modulus of stiffeners;  

𝑐  : 𝐶𝑜𝑠 φ; 

𝑠   : 𝑆𝑖𝑛 φ; 

𝐹𝑙𝑧     : Force applied to the stiffeners; 

𝑁𝑖𝑗      : Resultant stress;  

𝑀𝑖𝑗           : Resultant momentums; 

𝑄𝑖𝑗      : Stiffness coefficients;  

ℎ𝑘  : The kth layer;  

ℎ𝑘+1        : The (k+1)th layer;  

𝑆𝑠h     : Equivalent stiffness matrix for shell; 

𝑆𝑠𝑡      : Equivalent stiffness matrix for  

stiffeners; 

𝑈     : Strain energy; 

𝑉 : Potential energy; 

𝑀𝑖      : Moments applied to unit cell;  

𝐺𝑖𝑗      : Shear modulus; 

𝑎     : Length of unit cell;  

𝑏              : Width of unit cell;  

𝐴𝑖𝑗
𝑠𝑡      : Extensional stiffness of stiffeners; 

𝐵𝑖𝑗
𝑠𝑡      : Coupling stiffness of stiffeners; 

𝐿𝑖𝑗      : Coefficient matrix; 

𝐻𝑖𝑗
𝑠𝑡      : Shear stiffness of stiffeners; 

𝑄̄𝑖𝑗
𝑘      : Reduced stiffness coefficients;  

𝐷𝑖𝑗
𝑠𝑡      : Bending stiffness of stiffeners; 
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