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This paper intends to introduce a new and simple technique to precisely assess the axial 

instability of a shear deformable sandwich nanobeam. The section of the considered beam 

element is composed of two metal face layers and an axially functionally graded (AFG) 

core. The power volume fraction law is utilized to describe the properties of spatially 

graded materials of the core. The coupled governing differential equations in terms of 

transverse displacement and angle of rotation due to bending are extracted within the 

context of first-order shear deformation theory and Eringen’s nonlocal elasticity model. 

The resulting equilibrium equations are then combined and transformed into a unique 

fifth-order differential equation. Then, the numerical differential quadrature technique is 

used to estimate the endurable axial critical loads. The most beneficial feature of the 

proposed technique is to simplify and decrease the essential computational efforts to 

obtain the endurable axial buckling loads of sandwich shear-deformable nano-scale beams 

with AFG core. In the case of an axially loaded Timoshenko nanobeam subjected to simply 

supported end conditions, the obtained results are compared with those accessible in the 

literature to confirm the correctness and reliability of the proposed approach. Eventually, 

comprehensive parameterization research is performed to investigate the sensitivity of 

linear buckling resistance to slenderness ratio, nonlocal parameter, volume fraction 

exponent, and thickness ratio. The numerical outcomes indicate obviously that the 

stability strength of sandwich Timoshenko nanobeam is significantly affected by these 

parameters. 

1. Introduction 

These days, small-size structural components 
made of functionally graded materials (FGMs) 
have attracted a great practical application in 
different micro-and nanoscale susceptible 
engineering devices including probes, sensors, 
actuators, transistors, resonators, and 
nano/micro electro-mechanical systems 
(NEMS/MEMS). Due to the fast expansion of 
nanotechnology, different nonlocal continuum 
theories are established to accurately consider 
the small-scale effects along with the detailed 
study of the mechanical features of 
nanostructures [1-3]. In this paper, the well-
known Eringen’s nonlocal elasticity theory [3] is 
employed to extract the governing equations. 
According to this theory, the stress at a reference 

point is a function of the strains at all points in the 
body.  

In recent years, several studies have been 
performed on the mechanical behavior of FG 
and/or homogenous nano-sized structural 
elements subjected to different loading cases. 
Regarding this and in the context of the first-
order shear deformation theory (FSDT), 
Ghannadpour and Mohammadi [4,5] investigated 
the endurable buckling load and natural 
frequency of nanobeams employing the 
Chebyshev polynomials as the trial shape 
functions for implementing the Ritz method. In 
the framework of Eringen’s nonlocal elasticity 
theory and the first order-shear deformation 
assumption, the bending, buckling, and free 
vibration analyses of nanobeam were performed 

http://macs.journals.semnan.ac.ir/
mailto:msoltani@kashanu.ac.ir
https://macs.semnan.ac.ir/article_7587.html


Soltani / Mechanics of Advanced Composite Structures 10 (2023) 319 - 332 

320 

by Roque et al. [6] via a meshless method. Based 
on the nonlocal Timoshenko beam theory (TBT), 
the effect of the Winkler-Pasternak foundation on 
the buckling strength of non-uniform FG 
nanobeam was studied by Robinson and Adali [7] 
with the material varying in the longitudinal 
direction. Kammoun et al. [8] investigated the 
effect of the nonlocal parameter, external 
electrical voltage, temperature change, and axial 
force on the vibrational response of 
graphene/piezoelectric/graphene sandwich 
Timoshenko nanobeams using the generalized 
differential quadrature method (GDQM). Chen et 
al. [9] used the differential quadrature method 
(DQM) to discuss the influence of flexoelectricity 
on the vibration behavior of functionally graded 
porous piezoelectric sandwich Euler-Bernoulli 
nanobeam reinforced by graphene 
platelets within the general modified strain 
gradient theory. Moreover, several numerical 
studies about the static and dynamic analyses of 
sandwich nanobeams with different shapes and 
geometries exposed to different loading 
conditions can be found in Refs. [10-13]. The 
linear buckling and free vibration characteristics 
of the functionally graded piezoelectric beams 
were investigated by Ren and Qing [14] using the 
nonlocal integral model and Euler–Bernoulli 
beam theory (EBT). Via the combination of the 
Jacobi–Ritz methodology, the transient 
response of functionally graded porous plates 
subjected to different end conditions is studied 
by Zhao et al. [15] in the context of the higher-
order shear deformation theory (HSDT). Lezgy-
Nazargah et al. [16-19] presented some useful 
works to analyze sandwich beam elements 
exposed to different external mechanical loads. 
For further numerical-based investigations on 
the bending, vibration, and buckling behaviors of 
nano-size structural elements made of different 
materials and subjected to various loadings, the 
reader is referred to [20-32]. Analysis of free 
vibration and linear stability of functionally 
graded porous material micro-beams under four 
different types of end conditions were 
comprehensively performed by Teng et al. [33]. 
The modified couple stress theory and the 
differential transformation method (DTM) are 
employed for this aim. Also, some important 
works as reported in Refs. [34-36] have been 
performed on the size-dependent analysis of 
nano-scale beams with axially varying materials. 
Finally, it should be noted that the following 
papers can be useful for more information on the 
application of the FSDT [37-48].  

In this paper, the axial instability of a 
sandwich Timoshenko nanobeam is perused 
through a novel approach. It is supposed that the 
rectangular cross-section of the beam element is 
stacked as metal/ AFG materials/metal. Eringen’s 

nonlocal elasticity in accordance with the 
classical first-order shear deformation theory is 
utilized for extracting the governing stability 
equations in terms of bending rotation and 
flexural deformation. Following the methodology 
proposed by Soltani et al. [40, 42], the pair of 
equilibrium equations is reduced to one fifth-
order differential equation in terms of transverse 
displacement. In the next step, the resulting fifth-
order differential equation with variable 
coefficients is solved numerically via the 
differential quadrature method as a powerful and 
accurate technique, and then the axial buckling 
load is calculated. To the author’s best 
knowledge, the single governing equation 
formulated herein for linear buckling analysis of 
multi-layer Timoshenko nanobeam has never 
been derived before. Due to the uncoupling of the 
system of governing equations, the expanded 
formulation requires low computational cost 
which leads to a reduction in the central 
processing unit (CPU) time. In addition to the 
exactness of the presented approach, it can be 
applied to determine the sustainable buckling 
load of nano-size beams with different types of 
changes in material characteristics along the axis 
of the element. It is also believed that the 
developed technique is practicable for the 
optimal design of smart devices, such as 
oscillators, sensors, atomic force microscopes, 
and nano/micro-electro-mechanical systems. 
Numerical outcomes are eventually reported for 
a simply supported axially loaded three-layered 
shear deformable nanobeam. It is worth noting 
that the numerical example represents the core 
aspect of the work, with a preliminary validation 
of the proposed innovative approach compared 
to the existing results, and systematic parametric 
analysis to check the sensitivity of the linear 
buckling response at the considered nano-size 
structure for different input predominant 
parameters.  

2.  The Equilibrium Equations 

For an axially loaded rectangular sandwich 
Timoshenko nanobeam with depth t, breadth b, 
and length L, as shown in Fig. 1, the Cartesian 
coordinate system (x, y, z) is selected. Let us 
consider x the longitudinal axis and y and z the 
first and second principal bending axes parallel to 
the breadth and depth. The origin of these axes 
(O) is positioned at the centroid of the cross-
section. It is assumed that the cross-section of the 
nanobeam consists of two homogenous face 
sheets at the outer sides of an axially functionally 
graded core. As shown in Fig. 1, the total depth of 
the beam is, 2c ft t t= + , where tc denotes the 

core thickness and tf is the thickness of each face 
layer that is assumed to be perfectly bonded to 
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the core material. Based on the FSDT and using 
the small displacements theory, the longitudinal 
(U*) and the vertical (W*) displacement 
components can be expressed as [38]: 

*

0( , , ) ( ) ( )U x y z u x z x= +   
(1) 

*

0( , , ) ( )W x y z w x=  

In these equations, u0 is the axial displacement 
at the midplane, which occurs only in the 
presence of external axial loading, w0 represents 
the vertical displacement (in the z-direction), and 
 is the angle of rotation of the cross-section due 
to bending. 

 
Fig. 1. An axially loaded sandwich Timoshenko beam with 

an AFG core and two outer isotropic layers. 

To derive the equilibrium equations for an 
axially loaded sandwich Timoshenko nanobeam, 
in the first stage, the components of the strain 
tensor should be determined. Based on the 
displacement field given in Eq. (1), the non-zero 
components of the strain tensor consisting of the 
axial and shear terms are as follows [40]: 

*

0

l

xx

U
u z

x


 = = +


   

(2) ( )
* *

0

1 1

2 2xz

l U W
w

z x

 
= + = + 

 

 
 

 
 

*

* 2 2

0

1 1
( ) ( )

2 2
xx

W
w

x


= =


  

in which the parameters 
l

ij
 
and 

*

ij  indicate the 

linear and nonlinear strains. The resultant 
components of the Timoshenko beam involving 
the axial force N, the bending moment M, and the 
shear force Q are described as follows [40]: 

, , .xx xx xz
A A A

N dA M zdA Q dA= = =      (3) 

In the definition, the stress resultants 
ij  

signify the components of the Piola–Kirchhoff 
stress tensor, consisting of xx the normal stress 

and xz the shear one. 

For Timoshenko nanobeam, the nonlocal 
constitutive relations according to Eringen’s 
elasticity theory can be rewritten as [49]: 

2

112

lxx
xx xxQ

x


− =




    

(4) 
2

552
2 lxz

xz xzQ
x


− =




    

In these expressions, the term μ=(e0a)2 is 

called the non-local parameter; in which 
0e  is a 

material constant that is determined 
experimentally or approximated by matching the 
dispersion curves of the plane waves with those 
of the atomic lattice dynamics, a is an internal 
characteristic length of the material. 

ijQ  

represents the stiffness coefficients. Using the 

superscripts ( )
c

•  and ( )
f

• to present the core 

and face sheets, the afro-mentioned elastic 
constants can be expressed in terms of Young’s 
modulus and Poisson’s ratio as [50]: 

5511 2

11 552

;  
2(1 )1

( ) ( )
( ) ;  ( )

2(1 )1

f ff f

ff

c cc c

cc

E E
Q Q

E x E x
Q x Q x

= =
+ − 

= =
+ − 

 (5) 

in which Ef and vf are Young’s modulus and 
Poisson’s ratio of the face layers. Additionally, Ec 
and vc denote Young’s moduli and Poisson’s ratio 
of the FG core. Since in this work, the material 
properties of the core vary arbitrarily in the 
longitudinal direction, Ec is a function of the axial 
coordinate x, while vc is constant through the 
length [51]. It is assumed that the beam is made 
of ceramic and metal components, and the 
variation of Young’s modulus along the 
longitudinal axis by taking the power-law 
gradient assumption is defined according to the 
following expression [40-42, 52]: 

( ) ( )( )p

c ceramic metal ceramic

x
E x E E E

L
= + −  (6) 

Here, Eceramic and Emetal denote ceramic and 
metal Young’s modulus at the beginning and end 
of the member, respectively. Moreover, the 
parameter p is called the volume fraction index of 
the material, which determines how the volume 
fraction of ceramic and metal is combined in the 
longitudinal direction that 0 p   . It should 

be noted that the values of zero and infinity for 
this parameter represent pure metal and pure 
ceramic, respectively. 

By introducing the linear components of 
strain tensor from Eq. (2) into Eq. (4) and using 
the definition of resultant components consisting 

of forces and moment ( N ,Q,M ) given in Eq. 

(3), the stress resultants on the basis of non-local 
elasticity theory are thus obtained as [49] 
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2

02
( )

N
N A x u

x


− = 


  

(7) 
2

2
( )

M
M EI x

x


− =


   

2

02
( )( )

Q
Q GA x w

x


− = +


   

In the previous expressions, the terms

( )EA x , ( )EI x  and ( )GA x  signify respectively 

the axial rigidity, the flexural rigidity about the y-
direction, and shear rigidity, including the 
contribution from both the AFG core and face 
layers, which are calculated as what follows: 
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t
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where k is the shear correction factor and its 
value for rectangular cross-section is assumed as 
5/6 [49].  

Fig. 1 depicts an axially loaded member in 
which P0 is the pre-buckling axial force. In this 
regard, the components of pre-buckling stresses 
are described as follows: 

0

0 0 0,  0
xx xy xz

P

A
= = =    (9) 

where 0

xx
 and ( 0

xz , 0

xy ) are the pre-buckling 

normal stress and shear stress, often called the 
initial stresses. 

In this research, equilibrium equations and 
boundary conditions are derived from stationary 
conditions of the total potential energy. Based on 
this principle, the following relation is obtained 
[40] 

0 0lU U =  +  =  (10) 

In this formulation,  denotes a variational 
operator. In addition, 

lU  and 
0U  represent the 

elastic strain energy and the strain energy due to 
the effects of the initial stresses, respectively. The 
previously-mentioned components could be 
computed using the following equations [40]: 

0

0 0
2 2

L
l l

l ij ij xx xx
V A

L L
l l

xy xy xz xz
A A

U dV dAdx

dAdx dAdx

= =

+ +

  

   

    

   
 

(11) 

0 * 0 *

0
0

0 * 0 *

0 0
2 2

L

ij ij xx xx
V A

L L

xy xy xz xz
A A

U dV dAdx

dAdx dAdx

= =

+ +

  

   

    

   
 

By inserting the variation form of the whole 
components of strain tensor involving linear and 
non-linear ones (Eq. (2)) along with Eq. (9), into 
Eqs. (11) and using Eq. (3), the first variational 
statement of total potential energy is obtained 
after essential integration over the cross-
sectional area of the nanobeam as what follows 
[42]: 

( )

( ) ( )

0

0

0 0 0
( ) ( ) 0

L

L L

N u M dx

Q w dx P w w dx

  = +

  + + + =



 

  

  
 (12) 

By gathering the coefficients of the virtual 
displacements ( 0 0, ,u w   ), and after equating 

them to zero, the following governing equations 
in the stationary state are obtained [42] 

0N − =  

(13) 
0

0
( ) 0P w Q  − =  

0M Q− + =  

Subjected to the following boundary 
conditions at x=0 and x=L:  

0N =  Or 0
0u =  

(14) 0

0 0P w Q− + =  Or 0
0w =  

0M =  Or 0=  

By substituting nonlocal resultant 
components (Eq. (7)) into equation (13), the final 
nonlocal equilibrium equations in terms of the 
primary displacement field are acquired as 
follows: 

( )0 0
: ( ) 0u EA x u


 =  (15) 

( )0 0 0 0: ( )( ) 0ivw GA x w Pw Pw


 + − + =    (16) 

( ) 0: ( ) ( )( ) 0EI x GA x w


 − + =    (17) 

The boundary conditions of the beam can be 
also expressed as: 
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0N =  Or 0
0u =  

(18) 
0

0 0

( )

( ) 0

GA w

P w w

 +

 − − =




 Or 0w =  

0( ) 0EI x Pw + =   Or 0=  

Since the current study is concerned with 
stability analysis of an axially loaded sandwich 
Timoshenko nanobeam, the first equation  
(Eq. (15)) is not considered in the following.  
In the line with the formulations proposed by 
Soltani et al. [40, 42], the governing equilibrium 
equation for the vertical displacement (16) can be 
rewritten as 

0 0( ( ))
( )

( )

Pw P GA x w
x

GA x

 − + −
=


  (19) 

whose replacement in the third equilibrium Eq. 
(17) enables its redefinition in an uncoupled 
statement just dependent on the vertical 
deflection w0, independently from the rotation , 
i.e. 

(20) 

12
0

1
1

23 3
0 0

2
1 1

( )

( ) ( ) 0

i

i i
i

i i

i ii i
i i

d w
S x

dx

d w d w
P R x R x

dx dx

+

+
=

+

+
= =

 
+ − = 

 



 

 

With 

(21) 

( ) ( )

( )

( )

( )

( ) ( )

( )

3

1

3

2

2

1

3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 ( ) ( )
( )

( ) ( ) ( )

( )

S x GA x EI x

S x EI x GA x

EI x GA x GA x

EI x GA x
R x

GA x EI x GA x

P GA x


= −

= −

 
− + 

 
 −

 =
 

  −
 
 
 
 

 

( )

( ) ( )

( )

2
2

2

3

2 ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( )

EI x GA x GA x
R x

GA x EI x

R x EI x GA x

 
− 

= − 
  

 

=

 

The corresponding boundary conditions of a 
simply supported sandwich Timoshenko 
nanobeam can be expressed as 

at 
x=0, L: 

( )

( )

( )

( )

( )

( )

22
0

2

2
0

2

0

32
0

3

4
0

4

0

( ) ( )

( ) ( )

( ) ( )

( ( ) ( )

( ) ) 0,

( ) ( )

0

d w
EI x GA x

dx

d w
EI x GA x

dxP
dw

EI x GA x
dx

EI x GA x

d w
P GA x

dx

d w
EI x GA x

dx

w


− +


  
 − 
   +  

  
  


   +
 
 
 − =
 
 
 
 

  


=



 
(22) 

Referring to the author’s knowledge, the 
resulting single non-local governing equation for 
linear buckling analysis of sandwich Timoshenko 
nanobeam having AFG core has never been 
acquired before. Due to the generality of the 
formula proposed herein, it also helps deal with 
estimating the buckling capacity of nano-scale 
sandwich Timoshenko beam with varying cross-
sections. In addition, the acquired formula can 
simplify the computational effort necessary to 
calculate the critical axial load. 

3.  Solution Methodology 

In this section, the numerical solution of a 
resulting fifth-order differential equation is 
developed. The GDQM is employed for this 
purpose and to calculate the axial critical loads. 
According to GDQM, the rth order derivative of a 
function f(x) at an arbitrary point is described as 
[53] 

( )

1

( )    1,2,...,

p

Nr
r

jijr
jx x

d f
A f x for i N

dx
==

= =  (23) 

Here, N represents the number of grid points 
along the x direction. Regarding this xj signifies 
the position of each sample point, which in this 
study is defined using the well-known 
Chebyshev–Gauss–Lobatto approach as  

1
1 cos ,  

2 1

if   0 x L        1,2,...,

i

L i
x

N

i N

 − 
= −   

−  

  =

 (24) 

The first-order derivative weighting 

coefficient ( (1)
ijA ) is computed by the following 

algebraic formulations which are based on 
Lagrangian interpolation polynomials: 
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(1)

(1)

1,

( )
   i j

( ) ( )

, 1,2,...,

          i=j

i

i j j

Nij

ik

k k i

M
for

M

A i j N

A for

= 


  −  


= =

−




 (25) 

where  

1,

( ) ( );  1,2,...,

N

i i j

j j i

M for i N

= 

 =  −  =  (26) 

Since the GDQM is based on the determination 
of the weighting coefficient, the rth-order 

weighting coefficients 
( )r
ijA  at the arbitrary 

sampling point xi can be described as 

( ) (1) ( 1)
           2 1

r r
ij ij ijA A A r m

−
=   −  (27) 

Following the assumptions of the GDQM, the 
resulting nonlocal governing equation Eq. (20) 
can be rewritten in the following characteristics 
equation as 

   ( ) *( ) 0G GK K K w + − =    (28) 

The matrices [K], [KG], and [KG*] are of a size
N N and described by the following 
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here, the term 
jk  called Kronecker delta 

function. Also,  is the non-dimensional form of 
the longitudinal variable (x) and described as 

/x L= . It is necessary to point out that the 

aforementioned parameter ( ) is adopted to 
facilitate the mathematical procedure of solution 
of the equilibrium equation presented in Eq. (20) 
via applying the GDQM. After the accomplishment 
of associated boundary conditions of a simply 
supported given by Eq. (22), the buckling load for 
sandwich Timoshenko nanobeams with axially 
varying material core and two outer metal layers 
is derived using the eigenvalue solution of Eq. 
(28). 

4. Numerical Results and Discussions 

In this section, a comprehensive numerical 
analysis and discussion based on the proposed 
numerical model in the previous section are 
accomplished to discover the effect of different 
predominant parameters including, the ratio of 
core thickness to metal face-sheet, volume 
fraction exponent, nonlocality parameter, mode 
number and slenderness ratio on the buckling 
capacity of sandwich Timoshenko nanobeam 
subjected to simply supported end conditions.  

The current section consists of two main 
parts. The first one aims to display the calculation 
correctness of the proposed method. The second 
part has been selected with the objective of 
investigating the impact of the previously 
mentioned parameters on the buckling 
characteristics of the selected nano-size 
sandwich member. Also, the following non-
dimensional expression is adopted to represent 
the outcomes: 

2

cr

nor

ceramic

P L
P

E I
=

 

(31) 

 

Table 1. Comparison of Pnor of simply supported homogenous Timoshenko nanobeam 
 for different slenderness ratios (L/t). 

 
L/t=10 L/t=20 L/t=100 

Reddy [49] Present Reddy [49] Present Reddy [49] Present 

0.0 9.6228 9.6228 9.8067 9.8067 9.8671 9.8671 

0.5 9.1701 9.1701 9.3455 9.3455 9.4031 9.4031 

1 8.7583 8.7583 8.9258 8.9258 8.9807 8.9807 

1.5 8.3818 8.3818 8.5421 8.5421 8.5947 8.5947 

2.0 8.0364 8.0364 8.1900 8.19 8.2405 8.2405 

2.5 7.7183 7.7183 7.8659 7.8659 7.9143 7.9143 

3.0 7.4244 7.4244 7.5664 7.5664 7.613 7.613 

3.5 7.1521 7.1521 7.2889 7.2889 7.3337 7.3337 

4.0 6.899 6.899 7.0310 7.031 7.0743 7.0743 

4.5 6.6633 6.6633 6.7907 6.7907 6.8325 6.8325 

5.0 6.4431 6.4431 6.5663 6.5663 6.6068 6.6068 
 



Soltani / Mechanics of Advanced Composite Structures 10 (2023) 319 - 332 

325 

4.1.  Validation of the Numerical Technique 

In the first subsection, the validation of the 
established numerical methodology for stability 
analysis of simply supported prismatic isotropic 
beam in the context of nonlocal elasticity theory 
along with the first-order shear deformation 
theory is initially checked by comparing the 
calculated results with those reported by Reddy 
[49]. Referring to the author’s knowledge of the 
DQ technique [54-58], twenty-one (N=21) are 
sufficient to estimate the buckling loads. 
Numerical results for axial critical load in the 
normalized form are presented in Table 1 for 
various values of nonlocal parameters and 
slenderness ratio. For comparison, the values for 
the required parameters of the nanobeam are 

considered as follows: L =10, E = 630 10 , =0.3. 
Based on Table 1, excellent compatibility 

between the results obtained and the available 
results [49] is evident. 

Subsequently, the validation of the current 
numerical formulations for axial instability 
analysis of AFG uniform Timoshenko beam 
subjected to simply-supported end conditions in 
the framework of classical elasticity theory is 
checked by comparing the calculated results with 
the ones presented in [41]. Regarding this, it is 
assumed that the functionally graded beam is 
composed of Zirconium dioxide (ZrO2) and 
Aluminum (Al) with the following properties 
(ZrO2: Eceramic=200GPa; Al: Emetal=70GPa). Table 2 
displays the variation of normalized endurable 
critical loads of AFG beams without face sheets in 
terms of the power-law index for various 
slenderness ratios (L/t) based on the local first-
order shear deformation theory. 

Table 2. Comparison of normalized buckling loads of AFG 
Timoshenko beams in terms of gradient parameters and 

various values of L/t. 

Material L/t 
Normalized buckling load 

Present  Ref. [41]  () 

Pure 
Ceramic 

5 5.8715 5.8342 0.639 

10 6.2097 6.1894 0.328 

50 6.3177 6.3120 0.090 

100 6.3177 6.3159 0.028 

p=1 

5 3.5461 3.5125 0.956 

10 3.8132 3.7852 0.740 

50 3.8863 3.8804 0.152 

100 3.8880 3.8834 0.118 

This comparison reveals that the established 
approach and corresponding numerical 
outcomes are in good agreement with Reference 
[41]. 

4.2. Parametric Study 

In what follows, the parameterization 
investigation is performed to numerically 
understand the sensitivity of the stability 
strength to different factors such as in-
homogeneous index, nonlocal parameter, 
thickness parameter, aspect ratio, mode number. 
Also, it should be noted that the AFG core is 
assumed to be made of Aluminum oxide (Al2O3) 
and Aluminum (Al) with the mechanical 
properties given in Table 3. Additionally, 
Aluminum is contemplated as the material of face 
sheets. 

Table 3. Mechanical properties of ceramic 
 and metallic components [59] 

Properties of 
materials 

Units 
Alumina 
(Al2O3) 

Aluminum 
(Al) 

 kg/m3 3960 2702 

E GPa 380 70 

 - 0.3 0.3 

Through the expanded numerical approach, 
the normalized endurable buckling loads of 
simply-supported sandwich nano-size 
Timoshenko beam with a fixed slenderness ratio 
L/t=50 are estimated and reported in Table 4 to 
inspect the sensitivity of the stability resistance 
to power-law indices and nonlocal parameters. In 
this section, the ratio of core thickness to metal 
face sheet (tc/tf) is taken 8. 

Table 4. Effect of FG power index on the first buckling load 
of a shear-deformable sandwich beam with different 

nonlocal parameters for the case: L/t=50, tc/tf=8. 

p = = = = = 

0 1.996 1.902 1.817 1.739 1.667 

0.75 3.674 3.492 3.326 3.175 3.035 

2.5 5.341 5.078 4.839 4.619 4.417 

4 5.899 5.615 5.355 5.118 4.900 

Graphical results are also shown in Fig. 2 
where the variations of dimensionless buckling 
loads of nano-scale sandwich beam having 
ceramic-metal AFG core at constant thickness 
ratio tc/tf =10 with respect to volume fraction 
exponent (ranging from 0 to 5) for different non-
locality parameters (= 0, 1, 2, 3 and 4 nm2) and 
aspect ratios (L/t= 10, 20 and 100) is 
investigated. 



Soltani / Mechanics of Advanced Composite Structures 10 (2023) 319 - 332 

326 

 

 

 

Fig. 2. Effect of Eringen’s parameter on the dimensionless 
buckling load of simply supported sandwich nanobeam 
with respect to gradient index for different slenderness 

ratios (tc/tf=10). 

Next, under the assumption tc/tf =10, Table 5 
is devoted to examining the impact of aspect ratio 
(L/t) on the linear buckling response of the 
selected sandwich Timoshenko nanobeam for 
different power-law exponents, and various 
Eringen’s nonlocality parameters  
(i.e.  =  0, 0.5, 1, 1.5, 2 nm2). Note that the 

compressive axial load is located at both the 
beam’s ends without any eccentricities. 

Table 5. Effect of slenderness ratio and Eringen’s parameter 
on the normalized buckling load of a Timoshenko sandwich 

beam with FG power indices for the case: tc/tf=10. 

L/t  p=0 p=0.5 p=1 p=2 p=5 p=10 

5 

0 1.799 3.062 3.842 4.831 5.972 6.377 

2 1.528 2.563 3.195 4.012 5.015 5.385 

4 1.327 2.196 2.716 3.400 4.304 4.656 

10 

0 1.945 3.308 4.175 5.264 6.460 6.839 

2 1.631 2.745 3.449 4.351 5.389 5.727 

4 1.405 2.338 2.922 3.685 4.613 4.924 

20 

0 1.984 3.372 4.262 5.376 6.588 6.962 

2 1.659 2.791 3.513 4.436 5.484 5.815 

4 1.426 2.374 2.973 3.753 4.685 4.990 

30 

0 1.992 3.384 4.278 5.397 6.611 6.985 

2 1.664 2.800 3.525 4.450 5.500 5.831 

4 1.429 2.381 2.982 3.763 4.695 5.001 

50 

0 1.996 3.390 4.286 5.407 6.623 6.996 

2 1.667 2.804 3.530 4.458 5.508 5.838 

4 1.431 2.384 2.986 3.768 4.700 5.007 

70 

0 1.997 3.392 4.288 5.409 6.626 6.999 

2 1.668 2.805 3.532 4.459 5.510 5.841 

4 1.432 2.385 2.987 3.769 4.701 5.008 

100 

0 1.998 3.393 4.289 5.411 6.628 7.001 

2 1.668 2.806 3.532 4.460 5.511 5.842 

4 1.432 2.385 2.988 3.770 4.702 5.009 

Next, to examine the effect of thickness 

parameter c

f

t
t

 on the variations of normalized 

buckling loads of shear deformable sandwich 
nanobeam having a ceramic-metal functionally 
graded core with respect to Eringen’s parameter 
(ranging from 0 to 4) with two different values of 
volume fraction exponents (p=1, and 3) are 
respectively plotted in Figs. 3 and 4 for L/t = 10, 
and L/t = 100. Each of the depictions of these 
figures illustrated six different plots relating to 

c

f

t
t

=5, 10, 15, 20, 25, and 50. 



Soltani / Mechanics of Advanced Composite Structures 10 (2023) 319 - 332 

327 

 

 

Fig. 3. Variation of the Normalized buckling load of simply 
supported sandwich Timoshenko nanobeam with  

nonlocal parameter and thickness ratio for  
different material indexes (L/t=10) 

 

 

Fig. 4. Variation of the Normalized buckling load of simply 
supported sandwich beam with nonlocal parameter and 
thickness ratio for different material indexes (L/t=100) 

The aspect ratio significantly affects the axial 
buckling capacity of three-layered shear 
deformable nano-size beams, as seen in the above 
figures and tables. An enhancement in the axial 
buckling strength is observed when the value of 
the slenderness ratio (L/t) increases. It is 

noteworthy that the buckling strength of the 
selected sandwich Timoshenko nanobeam is 
greater with L/t=100 due to the reduction in the 
shear deformation. In other words, all of the cases 
studied show that a beam having the value of 
 L/t = 5 provides the least amount of resistance to 
stability. Furthermore, the effect of the 
slenderness ratio on the buckling loads is 
negligible for long and slender sandwich 
nanobeam (i.e., 30L / t  ). For more information 

please see [40, 41, 55]. 
Inspection of the preceding figures and 

tabulations reveals that an increase in the value 
of the non-dimensional ratio of AFG core 

thickness to the metal-layer c

f

t
t

leads to an 

increase in the normalized buckling loads. This is 
due to the fact that a larger amount of thickness 
ratio corresponds to a sandwich beam that is 
closer to a ceramic-metal FG beam without 
Aluminum face layers. Under this condition, the 
stiffness of the member is increased and 
consequently higher buckling load is obtained. 
This could yield a different beneficial effect on the 
overall structural response of many nano-
engineering components such as scanning 
tunneling microscopes, oscillators, or sensors. 

Additionally, it is demonstrated that the axial 
buckling load improves noticeably with the 
increase in volume fraction exponent. Based on 
Eq. (6), one can conclude that with an increase in 
the value of p, the portion of ceramic through the 
beam element increases, and due to this fact, the 
amount of elasticity modulus and consequently 
the quantity of bending and shear stiffnesses are 
enhanced. Therefore, the maximum and 
minimum magnitudes of buckling load are 
respectively obtained for shear-deformable 
beams with full ceramic core ( p →  ) and pure 

metal core ( 0p = ). Besides, it is obvious that the 

normalized critical loads increase sharply for the 
FG power-law index in the range of 0 2p  . For 

larger values of volume fraction exponent p>2, 
the endurable buckling load increases 
monotonically and slightly. 

Based on graphical and tabular results, it is 
observed that the buckling capacity decreases 
significantly with the increase in the nonlocality 
parameter related to Eringen’s nonlocal elasticity 
theory as expected because of the reduction in 
the value of the stiffness and rigidity of the 
member. In general, the inclusion of the influence 
of the nonlocal parameter (  ) increases the 

deflection, which in turn leads to a noticeable 
decrease in the buckling capacity of the member, 
and consequently, a more unstable member is 
obtained. This confirms the findings from the 
literature, for which classical formulations 
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overestimate the results compared to nonlocal 
formulations. 

In the subsequent part, the variation of the 
first four dimensionless axial critical loads of 
simply-supported sandwich Timoshenko 
nanobeam versus Eringen’s parameter () for 
ceramic core and AFG one with (p=2) is 
presented in Fig. 5. Other required parameters 
for the problem are considered as L/t=20, 
and tc/tf=5. 

 

 
Fig. 5. Effect of the nonlocal parameter on the first four 

buckling loads, for various mode numbers. 

Regarding these illustrations, it is found that 
the nonlocal parameter has more influence on 
higher buckling modes compared with the lower 
ones. It can be stated that it is necessary and 
crucial to contemplate the nonlocal theory for the 
exact estimation of sustainable axial buckling 
loads related to higher modes of nano-size 
sandwich shear deformable beams. In addition, it 
is easily observed that the impact of  is more 
when the nonlocal parameter changes from zero 
to one. 

5. Conclusions 

This article presents an efficient and 
innovative approach for analyzing the linear 
stability behavior of shear deformable sandwich 
nanobeams, as useful for smart devices, such as 
oscillators, sensors, atomic force microscopes, 
and nano/micro-electro-mechanical systems. 
The cross-section of the considered nano-size 

beam consists of two metal sheets at the outer 
sides of an FG core, where the material properties 
vary continuity in the length direction. The 
equilibrium differential equations in terms of the 
vertical displacement and the rotation angle are 
extracted for axially loaded multi-layer beams 
within the framework of small displacements and 
rotations through Eringen's nonlocal elasticity 
and the first-order shear deformation beam 
theory. The coupled governing equations are 
then mixed and converted into a single and new 
fifth-order differential equation with variable 
coefficients. Due to uncoupling the system of 
nonlocal governing equations and its 
transformation into only one differential 
equation, it is believed that the expanded formula 
requires a lower computational cost as well as 
less CPU time. Another advantage of the 
suggested methodology is the ability to obtain the 
sustainable buckling load of sandwich 
Timoshenko nanobeam with desired axial 
changes in the properties of the core material. 

In the following, the resulting equation is 
solved via the differential quadrature method as 
a powerful numerical technique, and finally, the 
axial buckling load is calculated. The key point of 
the adopted numerical technique, indeed, lies in 
the accurate approximation of a general-order 
derivative of a smooth function through a linear 
combination of its values assumed at the selected 
collocation points discretizing the domain, even 
for a reduced number of 21 grid points. The 
accuracy of the proposed approach is confirmed 
by comparing our results with the exciting 
numerical ones. Finally, a detailed 
parameterization study is performed to peruse 
the effect of slenderness ratio, power-law index, 
Eringen’s parameter, and core thickness to face-
layer ratio on the buckling characteristics of a 
simply supported sandwich Timoshenko 
nanobeam.  

In addition to the mentioned results in the 
text, it can be stated that the numerical 
methodology established herein can accurately 
estimate the endurable axial critical load of 
sandwich shear deformable nanobeam with 
different types of longitudinal variations in the 
properties of the core material. Therefore, the 
proposed approach can be applied for an 
optimized design of smart devices. 
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