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In functionally graded materials (FGM), pores have a key impact. A variety of properties, 

such as resistance to mechanical shock, thermal insulation, catalytic efficiency, and the 

release of thermal stress, can be added by gradually changing pores distribution from the 

inner surface to the exterior surface. Tensile strength and the material's Young's modulus 

are impacted by the level and distribution of porosity. Two directional functionally graded 

beams are subjected to different sets of boundary conditions by employing a fifth-order 

shear deformation theory. The power-law distribution shows that the material properties 

of the beam change in both axial and thickness directions. Axial and transverse cross-

sectional deflections are given in polynomial forms in order to calculate the critical 

buckling load. The auxiliary functions are combined with the displacement functions to 

fulfill the boundary criteria. Considerations for the boundary conditions include the 

following three: Clamped - clamped (CC), Simply supported (SS), and Clamped-free (CF). 

The computed findings are contrasted with earlier attempts in order to aid in the 

convergence and verification investigations. The effects of different aspect ratios, 

boundary conditions, and gradient indices on the buckling responses of the two directional 

functionally graded beams are all investigated. 

 

1. Introduction 

New generation materials have been 
developed using improvements in material 
manufacturing methods to suit the need for use. 
Each period saw the innovation of particular 
materials to support the development of 
technology. Composite materials are made of two 
or more different materials yet nonetheless 
possess the necessary properties for a particular 
application [1]. However, the differences in 
mechanical properties at the interface of these 
two different materials can lead to significant 
interlaminar stresses [2]. Therefore, concerns 
with delamination and de-bonding will manifest 
in a hot environment. In general, for many years, 
isotropic homogenous materials of various types, 
such as those from the metal and polymer groups, 
have been widely used in a variety of technical 
fields [3]. The metal group of materials excels in 

great strength and toughness, whereas polymers 
excel in high flexibility as well as corrosion 
resistance. However, at extremely high 
temperatures, these materials are unable to 
withstand stresses [4]. Therefore, materials from 
the ceramics family could be used to combine 
these metals with polymers to benefit from their 
special qualities and improve properties such as 
thermal resistance [5]. A new variety of materials 
must be developed in order to accommodate the 
recent rise in the use of materials for engineering 
constructions that are subjected to heavy 
mechanical loads in hot conditions [6]. 

Progressive materials with mechanical 
qualities that change in space are called 
functionally graded materials (FGM). 
Components of FGM are made to vary constantly 
and smoothly in all gradient directions [7]. The 
main objective of FGM research is to create 
materials that can survive extremely high 
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temperatures so that ceramics can be mixed with 
other materials to form refractories, which are 
materials with remarkable heat resistance [8]. 
However, it is impossible to use ceramics to build 
engineering structures that can withstand 
significant mechanical stress. This could be due to 
the fact that ceramics have poor toughness 
properties, necessitating the mixing of ceramics 
with other materials such as metals and polymers 
that have strong toughness capabilities [9]. The 
transport industry, optics, energy storage, and 
conversion systems, semiconductors, the 
production of cutting tools and machine 
components, biosystems, etc. are just a few of the 
significant applications that the FGM could be 
employed. FGM could be available to address the 
issue and fulfill the requirement because certain 
applications call for specific key concerns 10]. 

Understanding how FGM structures react 
when exposed to static and dynamic loading 
conditions is essential for structural designs. To 
improve the predictability of how FGM structures 
would respond to different mechanical loads, 
numerous theories were proposed [11]. To 
analyze bending, buckling, and vibration in FGMs, 
several researchers have previously made 
specific theoretical and experimentally validated 
choices. Numerous techniques are used to 
explain the gradient of FGM that are constructed 
from two distinct phases of material [12]. In 
general, volume fraction distributions rather 
than actually graded microstructures are used to 
construct the bulk of approaches. Classical beam 
theory (CBT), developed by Bernoulli and Euler, 
is the simplest beam theory to analyze thin beams 
[13]. However, this approach is inappropriate for 
the investigation of thick Functionally Graded 
(FG) beams since it disregards the shear 
deformation impact. The displacements and 
stresses in thick beams are overestimated by 
CBT. The variation in the first order in axial 
displacement is an assumption made by 
Timoshenko in his 1921 theory. As a result, it is 
often referred to as first-order shear deformation 
theory (FSDT) or Timoshenko beam theory (TBT) 
[14]. The criterion for zero transverse shear 
stress could not be met on the top and bottom 
surfaces of the beam via FSDT. The strain energy 
brought on by the shear deformation effect must 
be properly taken into consideration to avoid the 
use of the shear correction factor. As a result, 
various scholars provide higher-order shear 
deformation theories to precisely predict the 
bending response. Sayyad and Ghugal [15] have 
provided a comprehensive analysis.  

A substance is referred to as porous if it has 
pores that permit fluid to move through them. A 
porous substance's porosity is one of its key 
characteristics [16]. Permeability, tensile 

strength, and electrical conductivity are all 
influenced by the properties of the matrix and the 
fluid that fills the pores. Porous structures are 
frequently used in several fields, including civil 
engineering, marine engineering, and aerospace 
engineering. Recently, researchers have begun to 
pay more attention to functionally graded porous 
materials (FGPMs) [17]. 

FGPMs, in which the mechanical properties 
change continuously throughout the structure. 
These are substances whose porosity gradually 
changes over the course of their volume. The 
foundation material contains pores with varying 
porosity distribution. Porosity variation may be 
caused by modifications in pore density or size. 
Depending on the cell structure, FGPMs may be 
configured as open or closed cells [18]. Open-cell 
structures feature pores that are connected, 
whereas closed-cell structures have a substance 
that surrounds and isolates each cell. Through a 
gradual change in porosity, desirable qualities 
can be imparted. 

Magnucki [19] looked at different types of 
buckling in porous beams with different 
properties. They assessed how porosity affected 
the strength as well as buckling load shear 
deformation theory and calculated the critical 
load. Magnucka-Blandzi [20], who also identified 
the appropriate dimensionless parameters to 
raise a critical force and lower beam mass, 
effectively developed a sandwich beam with an 
FG metal foam core. Using analytical solutions 
and the Euler-Bernoulli theory, Mojahedin et al 
[21], estimation of free vibration in FG thin beams 
with pores was made. Babaei et al. used the finite 
element approach to examine buckling, static, 
and dynamic [22] evaluations of an FG-saturated 
porous thick beam in accordance with higher-
order beam theory. Mojahedin et al. [23] 
provided a solution for thermos-elastic analysis 
of a saturated FG porous beam by adapting the 
Timoshenko beam theory. In light of various 
beam theories and Navier's solution, Hung et al. 
[24] explored the static behavior of an FG 
sandwich beam with a fluid-infiltrating porous 
core. From the current literature, it can be 
concluded that the accuracy-based fifth-order 
shear deformation theory is not used to explore 
the impact of porosity on FGM beams. 

The major focus of this paper is the critical 
buckling analysis of two-dimensional FG beams 
using Power Law variations in boundary 
conditions, aspect ratios, gradient indices, and 
porosity indices. A unique shear shape function is 
created to attain zero shear stress conditions at 
the top and lower surfaces of the FG beam, and 
the fifth-order theory is adjusted to take into 
consideration the effects of transverse shear 
deformation 
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2. Formulation and Mathematics 

2.1. Formulation of Porous FG beam 

The coordinate system for the beam used in 
the present research is presented in Figure 1. A 
rectangular FG beam with dimensions of length 
(L) in the x-direction, width (B) in the y-direction, 
and thickness (h) in the z-direction. It is assumed 
that material qualities differ continuously across 
the length, and thickness, directions. By grading 
the ceramic and metal phases, an FG rectangular 
beam in the thickness direction is produced. 
Here, the lower surface (z= -h/2) is made of metal 
and the upper surface (z= +h/2) is made of 
ceramic. The reference surface, or (z=0), is the 
central surface of the beam. Origin (O) is the 
midpoint of a rectangular beam (x,y), thus  
z = [-h/2, h/2] 

 
Fig. 1. Functionally graded beam geometry 

The volume proportion of the component 
materials affects the material properties of the FG 
beam. It is anticipated that the thickness 
coordinate and material properties will work 
together. Porous volume fraction (Vf), as 
indicated in Eq. 1 [25], could be represented by 
the Power Law distribution in x and z. 

𝑉𝑓(𝑥, 𝑧) = (
𝑧

ℎ
+
1

2
)
𝑃𝑧

(
𝑥

𝐿
+
1

2
)
𝑃𝑥

 (1) 

here, 𝑃𝑧 and 𝑃𝑥  denote the behaviour of volume 
fraction throughout the thickness and length of 
the beam. Variation of porous volume fractions of 
ceramic in thickness and length directions is 
depicted in Figure 2. 

 
Fig. 2. Porous volume fraction of ceramic in thickness 

 (z/h) and length (x/L) direction 

Effective material properties in evenly 
distributed porous FG beams (P) can then be 
expressed as, 

𝑃(𝑥, 𝑧) = (𝑃𝑐 − 𝑃𝑚) (
𝑧

ℎ
+
1

2
)
𝑃𝑧

(
𝑥

𝐿
+
1

2
)
𝑃𝑥

 

                +𝑃𝑚 −
𝛼

2
(𝑃𝑐 + 𝑃𝑚) 

(2) 

where α represents the coefficient of porosity 
(0≤α≤1), m and c represent the metal and 
ceramic phases.  

As per the aforementioned relationship, 
Young's modulus (E), and mass density (ρ), which 
are used for material stiffness and moment of 
inertia estimation for evenly distributed porous 
FG beams can be expressed as: 

𝐸(𝑥, 𝑧) = (𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+
1

2
)
𝑃𝑧

(
𝑥

𝐿
+
1

2
)
𝑃𝑥

 

               +𝐸𝑚 −
𝛼

2
(𝐸𝑐 + 𝐸𝑚) 

(2a) 

𝜌(𝑥, 𝑧) = (𝜌𝑐 − 𝜌𝑚) (
𝑧

ℎ
+
1

2
)
𝑃𝑧

(
𝑥

𝐿
+
1

2
)
𝑃𝑥

 

               +𝜌𝑚 −
𝛼

2
(𝜌𝑐 + 𝜌𝑚) 

(2b) 

Although there is a slight variance in Poisson's 
ratio value as compared with other properties, it 
is considered to be constant because 
computations are made using the average value. 

Likewise, the effective material properties of 
unevenly distributed porous FG beams (P) can 
then be expressed as, 

𝑃(𝑥, 𝑧) = (𝑃𝑐 − 𝑃𝑚) (
𝑧

ℎ
+
1

2
)
𝑃𝑧

(
𝑥

𝐿
+
1

2
)
𝑃𝑥

 

                +𝑃𝑚 −
𝛼

2
(𝑃𝑐 + 𝑃𝑚) (1 −

2
𝑧⁄

ℎ
) 

(3) 

Young's modulus (E), and mass density (ρ) for 
unevenly distributed porous FG beams could be 
expressed as: 

𝐸(𝑥, 𝑧) = (𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+
1

2
)
𝑃𝑧

(
𝑥

𝐿
+
1

2
)
𝑃𝑥

 

               +𝐸𝑚 −
𝛼

2
(𝐸𝑐 + 𝐸𝑚) (1 −

2
𝑧⁄

ℎ
) 

(3a) 

and 

𝜌(𝑥, 𝑧) = (𝜌𝑐 − 𝜌𝑚) (
𝑧

ℎ
+
1

2
)
𝑃𝑧

(
𝑥

𝐿
+
1

2
)
𝑃𝑥

 

               +𝜌𝑚 −
𝛼

2
(𝜌𝑐 + 𝜌𝑚) (1 −

2
𝑧⁄

ℎ
) 

(3b) 



Bridjesh et al. / Mechanics of Advanced Composite Structures 10 (2023) 393 - 406 

396 

2.2. Constitute Equations for Displacement 
Field 

For robust constructions and to save 
production costs, FG beams and plates that are 
subject to static and dynamic loads must be well-
designed. When analyzing FGM constructions 
made by adapting classical beam and plate 
theories, the deflection findings of bending 
analysis are often found to be underestimated; 
nevertheless, critical loads and natural 
frequencies are typically overstated. In order to 
improve forecast accuracy, it is advisable to use 
theories that consider the effects of shear 
deformation while analyzing beams and plates 
formed by FGMs. To determine the impact of 
transverse shear and normal strain, Reddy's 
advanced higher-order shear deformation theory 
is modified. These are the displacement field and 
constitutive equations: 

𝑈(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑧∅(𝑥, 𝑡) 

                    −𝑓(𝑧) (∅(𝑥, 𝑡) +
𝜕𝑤0
𝜕𝑥

(𝑥, 𝑡)) 
(4a) 

𝑊(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡) (4b) 

where U is axial displacement and W is 
transverse displacement. 𝑢0 and 𝑤0 are the axial 
displacement at a given point on the neutral axis. 
𝜕𝑤0

𝜕𝑥
 is the bending slope and ∅ is the shear slope.  

The displacement field equation in matrix 
form can be expressed as, 

(
𝑈

𝑊
) = [

1 0 −𝑧
0 1 0

] {𝑢0 𝑤0 𝑤0,𝑥}𝑇 

          = [𝑧𝑑]{𝑑} 

(5) 

The shape function f(z) could be used to 
determine transverse shear deformation and the 
non-zero strain field equations can be computed 
using Eqs. (4a) and (4b) as, 

𝜀𝑥 =
𝜕𝑈

𝜕𝑥
=
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤0
𝜕𝑥2

 

      +𝑓(𝑧) (
𝜕∅

𝜕𝑥
+
𝜕2𝑤0
𝜕𝑥2

) 

(6a) 

𝜀𝑧 =
𝜕𝑊

𝜕𝑧
= 0 (6b) 

𝛾𝑥𝑧 = 𝑓
′ [∅ +

𝜕𝑤0
𝜕𝑥

] (6c) 

and 

𝑓(𝑧) =
ℎ

𝜋
∗ 𝑠𝑖𝑛 [

𝜋 ∗ 𝑧

ℎ
] 

           −
𝑧

𝜋 ∗ 𝑛
(1 −

1

𝑛
∗
2

ℎ

𝑛−1

∗ 𝑧𝑛−1) 

(7a) 

𝑓′(𝑧) =
ℎ

𝜋
∗ 𝑠𝑖𝑛 [

𝜋

ℎ
] 

            −
1

𝜋 ∗ 𝑛
(1 −

1

𝑛
∗
2

ℎ

𝑛−1

∗ (𝑛 − 1)𝑧𝑛−2) 

(7b) 

According to Hooke’s Law and using Eqs. 6a, 
6b, 6c, 7a, 7b, the field equations for stress can be 
deduced as follows: 

𝜎𝑥 =
𝐸(𝑥, 𝑧)

1 − 𝜇2
𝜀𝑥 (8a) 

𝜏𝑥𝑧 =
𝐸(𝑥, 𝑧)

2(1 + 𝜇)
𝛾𝑥𝑧 (8b) 

2.3. Buckling Formulation in FG Beam 

The Bi-directional FG beam's strain energy 
can be expressed as: 

𝑈 =
1

2
∫ ∫ (𝜎𝑥𝜀𝑥 + 𝜏𝑥𝑧𝛾𝑥𝑧)𝑑𝑧𝑑𝑥

+ℎ
2

−ℎ
2

𝐿

0

 (9) 

Substituting Eqs. 6a, Eq. 6c, Eq. 8a, and Eq. 8b 
in Eq. 9, the obtained strain energy can be 
expressed as, 

𝑈 =
1

2
∫∫ (

𝐸(𝑥, 𝑧)

1 − 𝜇2
𝜀𝑥𝜀𝑥

+ℎ
2

−ℎ
2

𝐿

0

+ 
𝐸(𝑥, 𝑧)

2(1 + 𝜇)
𝛾𝑥𝑧𝛾𝑥𝑧)𝑑𝑧𝑑𝑥 

(10) 

𝑈 =
1

2
∫ ∫ [(

𝐸(𝑥, 𝑧)

1 − 𝜇2
((
𝜕𝑢0
𝜕𝑥
)
2

+ℎ
2

−ℎ
2

𝐿

0

+
𝜕𝑢0
𝜕𝑥

𝜕2𝑤0
𝜕𝑥2

(2𝑓 − 2𝑧)

+
𝜕𝑢0
𝜕𝑥

𝜕∅

𝜕𝑥
(2𝑓)

+ ((
𝑑2𝑤0
𝑑𝑥2

)

2

) (𝑧2 − 2𝑧𝑓

+ 𝑓2) +
𝜕2𝑤0
𝜕𝑥2

𝜕∅

𝜕𝑥
(2𝑓2

− 2𝑧𝑓 + (
𝜕∅

𝜕𝑥
)

2

(𝑓)2)

+
𝐸(𝑥, 𝑧)

2(1 + 𝜇)
(∅2(𝑓′)2

+ ∅
𝜕𝑤0
𝜕𝑥

(2𝑓′
2
)

+ ((
𝑑2𝑤0
𝑑𝑥2

(𝑓′)2)))]𝑑𝑧𝑑𝑥 

(11) 
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Total strain energy and potential work are 
added to determine the beam's total potential 
energy (π). 

𝜋 = 𝑈 + 𝑉 (12) 

u(x, t) =∑Ajθj(x)e
iωt

m

j=1

,  

 𝜃𝑗(𝑥) = (𝑥 +
𝐿

2
)
𝑝𝑢

(𝑥 −
𝐿

2
)
𝑞𝑢

𝑥𝑚−1  

(13) 

𝑤(𝑥, 𝑡) =∑𝐵𝑗𝜑𝑗(𝑥)𝑒
𝑖𝜔𝑡

𝑚

𝑗=1

, 

 𝜑𝑗(𝑥) = (𝑥 +
𝐿

2
)
𝑝𝑤

(𝑥 −
𝐿

2
)
𝑞𝑤

𝑥𝑚−1    

(14) 

𝜙(𝑥, 𝑡) =∑𝐶𝑗𝜓𝑗(𝑥)𝑒
𝑖𝜔𝑡

𝑚

𝑗=1

, 

 𝜓𝑗(𝑥) = (𝑥 +
𝐿

2
)
𝑝𝜙

(𝑥 −
𝐿

2
)
𝑞𝜙

𝑥𝑚−1  

(15) 

The boundary conditions proposed are 
𝜃𝑗 (𝑥),  φj(𝑥) and ψj(𝑥) and 𝝎, the natural 

frequency of the beam. Unknown coefficients 𝐴𝑗, 

𝐵𝑗 , and 𝐶𝑗  could be estimated using the complex 

number, 𝑖 = √−1. 

Substituting Eq. 14, and Eq. 15 in Eq. 13, and 
adapting the principle of minimum potential 
energy, we get, 

∂Π

∂Aj
= 0,

∂Π

∂Bj
= 0,

∂Π

∂Cj
= 0;  j = 1,2,3, … . , m (16) 

The values of Aj, Bj, and Cj represented with qj, 
can be used to estimate critical buckling loads for 
a two-dimensional FG beam as given in Eq. 17, 

(

 
 

[
 
 
 
 
[𝑆11]

[𝑆12]
𝑇

[𝑆13]
𝑇

[𝑆12]

[𝑆22]

[𝑆23]
𝑇

[𝑆13]

[𝑆23]

[𝑆33]]
 
 
 
 

− 𝑁𝑐𝑟

[
 
 
 
 
[0]

[0]

[0]

[0]

[𝐾N0]

[0]

[0]

[0]

[0]]
 
 
 
 

)

 
 

 

                         ×

{
 
 

 
 
𝐴

𝐵

𝐶}
 
 

 
 

=

{
 
 

 
 
{0}

{0}

{0}}
 
 

 
 

 

(17) 

The geometric stiffness and stiffness matrices 
are [𝐾N0], and [Ski] and their components are 
given by, 

𝑆11(𝑖, 𝑗) = ∫
𝐸(𝑥, 𝑧)

1 − 𝜇2

𝐿/2

−𝐿/2

[(𝑥 +
𝐿

2
)
𝑝𝜃

(𝑥

−
𝐿

2
)
𝑞𝜃

𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝𝜃

(𝑥

−
𝐿

2
)
𝑞𝜃

𝑥𝑗−1] 𝑑𝑧𝑑𝑥 

(18) 

𝑆12(𝑖, 𝑗) = (𝑓 − 𝑧)∫
𝐸(𝑥, 𝑧)

1 − 𝜇2

𝐿/2

−𝐿/2

[(𝑥

+
𝐿

2
)
𝑝𝜃

(𝑥 −
𝐿

2
)
𝑞𝜃

𝑥𝑖−1 (𝑥

+
𝐿

2
)
𝑝φ

(𝑥

−
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑗−1] 𝑑𝑧𝑑𝑥 

(19) 

𝑆13(𝑖, 𝑗) = 𝑓∫
𝐸(𝑥, 𝑧)

1 − 𝜇2

𝐿
2

−
𝐿
2

× 

[(𝑥 +
𝐿

2
)
𝑝𝜃

(𝑥 −
𝐿

2
)
𝑞𝜃

𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝ψ

(𝑥

−
𝐿

2
)
𝑞ψ

𝑥𝑗−1] 𝑑𝑧𝑑𝑥 

(20) 

𝑆22(𝑖, 𝑗) = (𝑧2 − 𝑧𝑓 + 𝑓2)∫
𝐸(𝑥, 𝑧)

1 − 𝜇2

𝐿
2

−
𝐿
2

× 

[(𝑥 +
𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝φ

(𝑥

−
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑗−1] 𝑑𝑧𝑑𝑥 + 

(𝑓′)2∫
𝐸(𝑥, 𝑧)

2(1 + 𝜇)

𝐿
2

−
𝐿
2

[(𝑥 +
𝐿

2
)
𝑝φ

(𝑥

−
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝φ

(𝑥

−
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑗−1] 𝑑𝑧𝑑𝑥 

(21) 

𝑆23(𝑖, 𝑗) = (𝑓2 − 𝑧𝑓)∫
𝐸(𝑥, 𝑧)

1 − 𝜇2

𝐿
2

−
𝐿
2

× 

[(𝑥 +
𝐿

2
)
𝑝φ

(𝑥 −
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝ψ

(𝑥

−
𝐿

2
)
𝑞ψ

𝑥𝑗−1] 𝑑𝑧𝑑𝑥 + 

(𝑓′)2∫
𝐸(𝑥, 𝑧)

2(1 + 𝜇)

𝐿
2

−
𝐿
2

[(𝑥 +
𝐿

2
)
𝑝φ

(𝑥

−
𝐿

2
)
𝑞φ

𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝ψ

(𝑥

−
𝐿

2
)
𝑞ψ

] 𝑑𝑧𝑑𝑥 

(22) 
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𝑆33(𝑖, 𝑗) = (𝑓)2∫
𝐸(𝑥, 𝑧)

1 − 𝜇2

𝐿
2

−
𝐿
2

× 

[(𝑥 +
𝐿

2
)
𝑝ψ

(𝑥 −
𝐿

2
)
𝑞ψ

𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝ψ

(𝑥

−
𝐿

2
)
𝑞ψ

𝑥𝑗−1] + 

(𝑓′)2∫
𝐸(𝑥, 𝑧)

2(1 + 𝜇)

𝐿
2

−
𝐿
2

[(𝑥 +
𝐿

2
)
𝑝ψ

(𝑥 −
𝐿

2
)
𝑞ψ

(𝑥

+
𝐿

2
)
𝑝ψ

(𝑥 −
𝐿

2
)
𝑞ψ

] 𝑑𝑧𝑑𝑥 

(23) 

𝐾𝑁0(𝑖, 𝑗) = ∫ [(𝑥 +
𝐿

2
)
𝑝φ

(𝑥
L 2⁄

−L 2⁄

−
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑖−1 (𝑥 +
𝐿

2
)
𝑝φ

(𝑥

−
𝐿

2
)
𝑞φ

𝑥, 𝑥𝑗−1] 𝑑𝑧𝑑𝑥 

(24) 

2.4. Position of the Neutral Axis 

According to the physical neutral surface 
concept [26], the physical neutral axis of the FG 
beam is given by: 

𝑧0 =

∫ 𝑧𝐸(𝑧)𝑑𝑧
ℎ
2
−ℎ
2

∫ 𝐸(𝑧)𝑑𝑧
ℎ
2
−ℎ
2

=
(𝐸𝑐 − 𝐸𝑚)ℎ𝑝

2(2 + 𝑝)(𝐸𝑐 + 𝐸𝑚𝑝)
 (25) 

It is clear that in a homogeneous isotropic 
beam, the geometric middle surface and the 
physical neutral surface are identical. The 
variation of the Power Law index on the position 
of the neutral axis is presented in Figure 3. 

 
Fig. 3. Variation of Power Law index on the position 

 of the neutral axis 

3. Numerical Computation – Results 
and Discussion 

The accuracy of the current approach is 
examined using several numerical examples, 

including the impacts of gradient indexes i.e., 
material composition, on the buckling behaviour 
of two-dimensional FG beams, boundary 
conditions, and aspect ratios (L/h) have also been 
studied. Material properties of the constituents of 
the considered FG beam are as follows: 

Alumina:         Ec=380 GPa, ρc=3960 kg/m3, μc=0.3 

Aluminium: Em=70 GPa, ρm=2702 kg/m3, 
                           μm=0.3 

To analyze the shear deformation, the height 
of the beam is varied. Three varied boundary 
conditions, such as SS, CF, and CC are applied and 
tabulated in Table 1. 

Table 1. Boundary conditions for the FG beam 

Boundary 
condition 

x= -L/2 x= L/2 

SS u=0, w=0 w=0 

CF u=0, w=0, 𝜙=0, w’=0  

CC u=0, w=0, 𝜙=0, w’=0 u=0, w=0, 𝜙=0, w’=0 

The FG beam material properties fluctuate in 
the axial (L) and thickness direction (h), 
governed by the Power Law. Non-dimensional 
buckling load parameter, (𝑁cr) could be used for 
the representation of results. where, 

�̅�cr= 
12𝑁𝑐𝑟𝐿

2

𝐸2𝑏ℎ
3

 (26) 

A homogeneous beam is taken into account 
for the convergence and verification 
investigations, and displacement functions with 
various numbers of terms (m=2, 4, 6, 8, 10, and 
12) are used [27].  

The calculated findings are provided as a 
dimensionless critical buckling load taking into 
account different gradient indices in both 
directions, aspect ratios, and boundary 
conditions, specifically SS, CC, and CF. 

For comparison, the findings from the earlier 
investigations [25] in terms of dimensionless 
critical buckling load are utilized as presented in 
Table 2. 

Table 2 shows that the results for the buckling 
behavior of SS and CF beams quickly converge 
since the displacement function has six terms. 
However, by employing 6 terms in the 
displacement function, the agreed findings of the 
CC boundary condition are obtained. To ensure 
accuracy, 12 terms from the polynomial 
expansion are employed for the complete 
buckling analysis of two directional FG beams 
[28]. 



Bridjesh et al. / Mechanics of Advanced Composite Structures 10 (2023) 393 - 406 

399 

Table 2. Critical buckling load of FGM beams with respect to 
various boundary conditions and aspect ratio (L/h) change 

L/

h 
Theory 

Boundary Conditions 

SS CC CF 

5 

[25] 57.925

5 

158.936

5 

13.156

7 P

r

e

s

e

n

t 

2 terms 58.427 159.438 13.658 

4 terms 49.123 154.538 13.562 

6 terms 49.098 152.649 13.561 

8 terms 49.098 152.649 13.561 

10 terms 49.098 152.649 13.561 

12 terms 49.098 152.649 13.561 

20 

[25] 63.148

7 

223.944

9 

13.474 

P

r

e

s

e

n

t 

2 terms 63.937 224.733 14.263 

4 terms 54.053 212.887 14.194 

6 terms 54.026 209.741 14.162 

8 terms 54.026 209.741 14.162 

10 terms 54.026 209.741 14.162 

12 terms 54.026 209.741 14.162 

From Tables 3-5, shown in Appendix, the first 
three dimensionless critical buckling loads of the 
2D-FGBs with SS, CC, and CF boundary conditions 
are presented for two different aspect ratios 
(L/h=5 and L/h=20), and a range of gradient 
indices in both directions (Pz and Px ). The first 
three critical buckling loads are seen to decrease 
for all sorts of boundary conditions as the 
gradient indices increase. It is found that the 
shear deformation effect increases in importance 
as the buckling mode number increases. The 
relative difference between the critical buckling 
loads with respect to aspect ratio change 
increases for CC beams as the buckling mode 
order increases [29]. 

Comparing the values of the critical buckling 
loads for aspect ratios of L/h = 5 and L/h = 20 for 
the suggested boundary conditions, it can be 
deduced that the CF beam has the lowest value 
while the CC beam has the largest value. Finally, 
the dimensionless critical buckling load is 
reduced by the gradient index variation in the x-
direction more so than the gradient index 
variation in the z-direction. 

The effects of gradient indices (px and pz) and 
aspect ratios on the dimensionless buckling 
stresses of the 2D-FGBs under various boundary 
conditions are shown in Figures 4 to 6. It has been 
found that the dimensionless critical buckling 
load decreases as gradient indices increase.  

This results from a reduction in the stiffness 
of the beam [30]. It shows that the gradient index 
in the x direction has a bigger effect on the 
dimensionless critical buckling load than the 
gradient index in the z direction for all types of 
boundary conditions. 

 
Fig. 4. Critical buckling (Ncr) of SS beam at various 

 aspect ratios and gradient index 

 
Fig. 5. Critical buckling (Ncr) of CF beam at various aspect 

ratios and gradient index 

 
Fig. 6. Critical buckling (Ncr) of CC beam at various aspect 

ratios and gradient index 
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The influence of porosity pattern (even and 
uneven) on the critical buckling load is presented 
in Tables 6 to 8 and Figures 7 to 9. The critical 
buckling load for a pure ceramic FG beam is 
observed to be at its maximum value, and the 
buckling load decreases as the gradient index 
value increases because the metal constituent of 
the FG beam increases as the gradient index 
increases [23, 30].  

On the other hand, as the FG beam goes from 
being perfect to imperfect, the critical buckling 
load declines noticeably with the high buckling 

modes. When it comes to porosity patterns, an 
uneven pattern is more noticeable than a uniform 
one in terms of buckling curves. This can be 
explained by the way that porosity is dispersed 
throughout the entire structure, with 
concentrated pores in the middle of the beam 
having a major impact on buckling response 
more so than evenly distributed pores [31]. As a 
result, while analyzing the stability of such 
structural components, the distribution profile of 
pores is a crucial factor in the buckling response 
of the FG beam. 

Table 6. Influence of gradient exponents and porosity distribution on dimensionless critical buckling of 
 a simply supported (SS) 2D FG beam at aspect ratio L/h=5 

Px & Pz 
Even Porosity Uneven Porosity 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 49.0987 46.2213 43.3438 40.4664 49.0987 48.1533 47.2021 46.2449 

0.5 30.036 27.4438 24.8864 22.3692 30.036 29.1784 28.3137 27.441 

1 20.6701 18.0904 15.5585 13.0814 20.6701 19.8135 18.9472 18.0694 

2 16.7171 14.07 11.4592 8.8354 16.7171 15.7872 14.8342 13.8512 

5 13.2142 10.4455 7.7 4.5981 13.2142 12.2171 11.1895 10.1219 

10 11.4151 8.5481 5.6932 2.7892 11.4151 10.3859 9.3216 8.2144 

Table 7. Influence of gradient exponents and porosity distribution on dimensionless critical buckling of  
a clamped free (CF) 2D FG beam at the aspect ratio L/h=5 

Px & 
Pz 

Even Porosity Uneven Porosity 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 13.5618 12.7885 12.0153 11.24198 13.5618 13.3208 13.0794 12.8374 

0.5 5.747 5.4364 5.1259 4.8153 5.747 5.6502 5.5533 5.4561 

1 4.0713 3.6412 3.2111 2.781 4.0713 3.9367 3.8015 3.6656 

2 3.3054 3.0915 2.4749 2.0486 3.3054 3.1676 3.0274 2.884 

5 2.9733 2.9117 2.3462 1.687 2.9733 2.9334 2.903 2.8725 

10 2.9181 2.7511 2.0898 1.3764 2.9181 2.7939 2.6793 2.62 

Table 8. Influence of gradient exponents and porosity distribution on dimensionless critical buckling of 
 a clamped –clamped (CC) 2D FG beam at the aspect ratio L/h=5 

Px & 
Pz 

Even Porosity Uneven Porosity 

0 0.1 0.2 0.3 0 0.1 0.2 0.3 

0 152.6496 143.6405 134.6318 125.6231 152.6496 149.9487 147.247 144.544 

0.5 80.0819 67.4412 56.5971 44.3822 80.0819 74.5723 71.3645 68.0884 

1 50.5415 41.0822 30.1532 16.7305 50.5415 48.1873 44.9595 41.642 

2 38.2772 31.0614 20.4039 8.5326 38.2772 38.0332 34.8157 31.4762 

5 31.9311 24.8779 14.8718 3.989 31.9311 31.5725 28.5979 25.5229 

10 30.1944 21.9149 12.5248 2.6324 30.1944 28.3847 25.6111 22.7969 
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Fig. 7. Critical buckling of SS beam with even porosity and 

uneven porosity at aspect ratio L/h=5 

 
Fig. 8. Critical buckling of CC beam with even porosity and 

uneven porosity at aspect ratio L/h=5 

 

Fig. 9. Critical buckling of CC beam with even porosity and 
uneven porosity at aspect ratio L/h=5 

4. Conclusions 

This study shows the buckling behaviour of 
two-directional functionally graded beams with 
various boundary conditions. By using various 
gradient indices in both the axial and thickness 
directions, analytical polynomial series solutions 
are obtained for the boundary conditions Simply 

supported - Simply supported (SS), Clamped - 
clamped (CC), and Clamped-free (CF). It is 
studied how boundary conditions, gradient 
indices, and aspect ratios affect the circular 
buckling stress of 2D FG beams. The boundary 
conditions are met by the use of auxiliary 
functions. It is evident from the findings of the in-
depth investigation that the gradient indices have 
a significant impact on the dimensionless 
buckling load of the 2D FG beams. However, the 
gradient index's impact in the z direction is more 
profound than its impact in the x direction.  

By choosing appropriate gradient indexes, the 
buckling behaviour of the 2D FG beams can be 
managed to satisfy design requirements. The 
shear deformation effect on the critical buckling 
loads of the 2D FG beam reduces as the aspect 
ratio rises. The CC 2D FG beam is found to be 
significantly more susceptible to the shear 
deformation effect than the other 2D FG beam 
models. 

The shear correction factor is not necessary 
since the third-order shear deformable beam 
theory that is used in this study to solve the 
buckling behavior of the two directional FGBs 
fulfills the zero traction boundary conditions on 
the top and bottom surfaces of the beam. It 
enables better buckling response prediction for 
the 2D FG beams. Higher-order shear 
deformation beam theories are required because 
the shear deformation effect is crucial, 
particularly for thick beams. Finally, the 
suggested theory effectively addresses the 
buckling behaviour of the 2D FG beams and yields 
accurate findings. 

Nomenclature 

FGM Functionally graded materials 

CC Clamped - clamped 

SS Simply supported 

CF Clamped-free  

CBT Classical beam theory 

TBT Timoshenko beam theory 

L Length 

B Width 

h Thickness 

Vf Porous volume fraction 

Px Volume fraction through thickness 

Pz Volume fraction through length 

α Coefficient of porosity 

E Young's modulus 

ρ Mass density 

U Axial displacement 

W Transverse displacement 

∅ Shear slope 

F(z) Shape function 
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Appendix 

Table 3. Influence of gradient exponents and aspect ratio on dimensionless critical buckling (Ncr) of 
 a SS two directional FG beam, L/h=5 and L/h=20 

Beam Theory Px 
L/h = 5   for   Pz L/h=20    for    Pz 

0 0.5 1 2 5 10 0 0.5 1 2 5 10 

P 
R 
E 
S 
E 
N 
T 

2 terms 

0 

58.43 40.49 34.68 28.30 21.20 17.31 63.65 44.65 39.64 32.62 26.60 19.57 

4 terms 49.12 32.69 25.40 19.68 16.45 14.59 53.77 35.26 27.08 21.33 18.10 16.72 

6 terms 49.10 32.37 25.09 19.57 16.15 14.55 53.74 35.04 27.06 21.22 17.99 16.41 

8 terms 49.10 32.37 25.09 19.57 16.15 14.55 53.74 35.04 27.06 21.22 17.99 16.41 

10 terms 49.10 32.37 25.09 19.57 16.15 14.55 53.74 35.04 27.06 21.22 17.99 16.41 

12 terms 49.10 32.37 25.09 19.57 16.15 14.55 53.74 35.04 27.06 21.22 17.99 16.41 

P 
R 
E 
S 
E 
N 
T 

2 terms 

0.5 

42.70 33.46 26.84 22.64 18.00 15.50 46.51 34.64 29.75 25.22 20.36 16.73 

4 terms 36.76 24.77 22.19 18.56 14.77 13.75 41.34 29.33 23.32 19.31 17.29 16.27 

6 terms 34.77 24.50 20.08 16.74 14.50 13.26 39.05 27.02 22.01 18.38 16.18 14.85 

8 terms 34.77 24.50 20.08 16.74 14.50 13.26 39.05 27.02 22.01 18.38 16.18 14.85 

10 terms 34.77 24.50 20.08 16.74 14.50 13.26 39.05 27.02 22.01 18.38 16.18 14.85 

12 terms 34.77 24.50 20.08 16.74 14.50 13.26 39.05 27.02 22.01 18.38 16.18 14.85 

P 
R 
E 
S 
E 
T 

2 terms 

1 

34.82 30.41 22.93 19.79 16.34 14.49 37.92 33.80 24.60 21.21 17.60 15.66 

4 terms 27.20 20.55 18.85 16.53 14.09 12.47 31.31 24.31 21.30 17.29 16.27 15.24 

6 terms 25.49 19.45 16.82 14.78 13.25 12.28 29.01 21.62 18.54 16.27 14.72 13.67 

8 terms 25.49 19.45 16.82 14.78 13.25 12.28 29.01 21.62 18.54 16.27 14.72 13.67 

10 terms 25.49 19.45 16.82 14.78 13.25 12.28 29.01 21.62 18.54 16.27 14.72 13.67 

12 terms 25.49 19.45 16.82 14.78 13.25 12.28 29.01 21.62 18.54 16.27 14.72 13.67 

 
P 
R 
E 
S 
E 
N 
T 

2 terms 

2 

26.94 23.46 19.01 16.93 14.65 13.43 29.33 3.65 20.45 18.20 15.81 14.53 

4 terms 18.18 16.18 14.17 13.16 12.14 11.12 21.34 18.34 16.33 14.71 14.10 13.27 

6 terms 17.13 14.58 13.44 12.51 11.67 11.08 19.15 16.05 14.72 13.70 12.86 12.22 

8 terms 17.13 14.58 13.44 12.51 11.67 11.08 19.15 16.05 14.72 13.70 12.86 12.22 

10 terms 17.13 14.58 13.44 12.51 11.67 11.08 19.15 16.05 14.72 13.70 12.86 12.22 

12 terms 17.13 14.58 13.44 12.51 11.67 11.08 19.15 16.05 14.72 13.70 12.86 12.22 

P 
R 
E 
S 
E 
N 
T 

2 terms 

5 

19.06 17.46 15.09 14.06 12.94 12.35 20.74 18.15 16.29 15.18 14.00 13.38 

4 terms 13.18 12.17 11.46 11.15 10.83 10.11 14.64 14.33 13.92 12.81 12.29 11.27 

6 terms 11.49 10.91 10.65 10.40 10.12 9.93 12.43 11.78 11.50 11.27 11.04 10.85 

8 terms 11.49 10.91 10.65 10.40 10.12 9.93 12.43 11.78 11.50 11.27 11.04 10.85 

10 terms 11.49 10.91 10.65 10.40 10.12 9.93 12.43 11.78 11.50 11.27 11.04 10.85 

12 terms 11.49 10.91 10.65 10.40 10.12 9.93 12.43 11.78 11.50 11.27 11.04 10.85 

P 
R 
E 
S 
E 
N 
T 

2 terms 

10 

15.48 13.41 13.31 12.76 12.16 11.85 17.83 15.59 14.41 13.80 13.18 12.85 

4 terms 11.15 10.75 10.34 10.12 9.91 9.68 13.31 12.71 12.30 11.89 11.27 10.74 

6 terms 10.09 9.93 9.84 9.76 9.65 9.58 10.85 10.69 10.62 10.56 10.50 10.45 

8 terms 10.09 9.93 9.84 9.76 9.65 9.58 10.85 10.69 10.62 10.56 10.50 10.45 

10 terms 10.09 9.93 9.84 9.76 9.65 9.58 10.85 10.69 10.62 10.56 10.50 10.45 

12 terms 10.09 9.93 9.84 9.76 9.65 9.58 10.85 10.69 10.62 10.56 10.50 10.45 
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Table 4. Influence of gradient exponents and aspect ratio on dimensionless critical buckling (Ncr) of 
 a CF two directional FG beam, L/h=5 and L/h=20 

Beam Theory Px 

L/h=5                               Pz L/h=20                             Pz 

0 0.5 1 2 5 10 0 0.5 1 2 5 10 

P 
R 
E 
S 
E 
N 
T 

2 terms 

0 

13.66 9.00 7.08 6.66 4.78 4.50 13.98 9.94 7.93 6.81 5.00 4.60 

4 terms 13.56 9.00 7.04 6.63 4.78 4.43 13.91 9.43 7.33 6.79 4.95 4.55 

6 terms 13.56 8.99 7.04 6.61 4.77 4.38 13.87 9.17 7.17 6.74 4.90 4.51 

8 terms 13.56 8.99 7.04 6.61 4.77 4.38 13.87 9.17 7.17 6.74 4.90 4.51 

10 terms 13.56 8.99 7.04 6.61 4.77 4.38 13.87 9.17 7.17 6.74 4.90 4.51 

12 terms 13.56 8.99 7.04 6.61 4.77 4.38 13.87 9.17 7.17 6.74 4.90 4.51 

P 
R 
E 
S 
E 
N 
T 

2 terms 

0.5 

8.56 6.38 5.43 4.72 4.01 3.73 8.75 6.70 5.56 4.82 4.10 3.82 

4 terms 7.79 5.97 5.17 4.59 3.99 3.73 8.00 6.40 5.24 4.65 4.09 3.82 

6 terms 7.59 5.75 4.97 4.39 3.99 3.72 7.70 5.83 5.04 4.47 4.08 3.81 

8 terms 7.59 5.75 4.97 4.39 3.99 3.72 7.70 5.83 5.04 4.47 4.08 3.81 

10 terms 7.59 5.75 4.97 4.39 3.99 3.72 7.70 5.83 5.04 4.47 4.08 3.81 

12 terms 7.59 5.75 4.97 4.39 3.99 3.72 7.70 5.83 5.04 4.47 4.08 3.81 

P 

R 

E 

S 

E 

T 

2 terms 

1 

7.02 4.59 4.51 4.19 3.69 3.42 7.17 4.76 4.61 4.28 3.77 3.50 

4 terms 5.49 4.46 4.17 3.94 3.62 3.40 5.76 4.54 4.34 4.03 3.67 3.47 

6 terms 5.25 4.43 4.07 3.79 3.56 3.39 5.31 4.48 4.12 3.85 3.63 3.47 

8 terms 5.25 4.43 4.07 3.79 3.56 3.39 5.31 4.48 4.12 3.85 3.63 3.47 

10 terms 5.25 4.43 4.07 3.79 3.56 3.39 5.31 4.48 4.12 3.85 3.63 3.47 

12 terms 5.25 4.43 4.07 3.79 3.56 3.39 5.31 4.48 4.12 3.85 3.63 3.47 

 
P 
R 
E 
S 
E 
NT 

2 terms 

2 

6.01 4.49 4.23 3.84 3.47 3.28 6.14 4.71 4.33 3.93 3.55 3.35 

4 terms 4.37 3.97 3.83 3.65 3.27 3.13 4.51 4.01 3.91 3.76 3.29 3.22 

6 terms 3.83 3.54 3.41 3.30 3.20 3.12 3.87 3.58 3.46 3.35 3.26 3.19 

8terms 3.83 3.54 3.41 3.30 3.20 3.12 3.87 3.58 3.46 3.35 3.26 3.19 

10 terms 3.83 3.54 3.41 3.30 3.20 3.12 3.87 3.58 3.46 3.35 3.26 3.19 

12 terms 3.83 3.54 3.41 3.30 3.20 3.12 3.87 3.58 3.46 3.35 3.26 3.19 

P 
R 
E 
S 
E 
N 
T 

2 terms 

5 

5.06 3.98 3.83 3.56 3.30 3.17 5.17 4.10 3.91 3.63 3.37 3.24 

4 terms 3.86 3.37 3.20 3.19 3.18 3.07 4.31 3.42 3.27 3.22 3.20 3.12 

6 terms 3.11 3.05 3.02 3.00 2.97 2.95 3.15 3.09 3.07 3.05 3.03 3.01 

8 terms 3.11 3.05 3.02 3.00 2.97 2.95 3.15 3.09 3.07 3.05 3.03 3.01 

10 terms 3.11 3.05 3.02 3.00 2.97 2.95 3.15 3.09 3.07 3.05 3.03 3.01 

12 terms 3.11 3.05 3.02 3.00 2.97 2.95 3.15 3.09 3.07 3.05 3.03 3.01 

P 
R 
E 
S 
E 
N 
T 

2 terms 

10 

4.37 3.64 3.54 3.36 3.19 3.10 4.47 3.76 3.62 3.43 3.26 3.17 

4 terms 3.79 3.32 3.17 3.17 3.06 2.96 3.96 3.39 3.28 3.22 3.09 3.01 

6 terms 2.96 2.95 2.94 2.93 2.92 2.92 3.01 2.99 2.99 2.98 2.98 2.97 

8 terms 2.96 2.95 2.94 2.93 2.92 2.92 3.01 2.99 2.99 2.98 2.98 2.97 

10 terms 2.96 2.95 2.94 2.93 2.92 2.92 3.01 2.99 2.99 2.98 2.98 2.97 

12 terms 2.96 2.95 2.94 2.93 2.92 2.92 3.01 2.99 2.99 2.98 2.98 2.97 
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Table 5. Influence of gradient exponents and aspect ratio on dimensionless critical buckling (Ncr) of  
a CC two directional FG beam, L/h=5 and L/h=20 

Beam Theory Px 

L/h=5                               Pz L/h=20                             Pz 

0 0.5 1 2 5 10 0 0.5 1 2 5 10 

P 
R 
E 
S 
E 
N 
T 

2 terms 

0 

159.44 123.05 100.16 75.81 62.37 56.17 224.45 145.87 121.30 92.53 76.11 68.55 

4 terms 154.54 109.73 89.28 67.68 55.62 50.02 212.60 136.85 112.10 84.90 69.76 62.77 

6 terms 152.65 102.77 79.99 61.38 47.39 41.49 209.46 136.37 105.07 81.97 68.83 62.50 

8 terms 152.65 102.77 79.99 61.38 47.39 41.49 209.46 136.37 105.07 81.97 68.83 62.50 

10 terms 152.65 102.77 79.99 61.38 47.39 41.49 209.46 136.37 105.07 81.97 68.83 62.50 

12 terms 152.65 102.77 79.99 61.38 47.39 41.49 209.46 136.37 105.07 81.97 68.83 62.50 

P 
R 
E 
S 
E 
N 
T 

2 terms 

0.5 

128.39 93.76 75.80 62.87 54.63 49.89 152.04 115.78 92.51 76.72 66.66 60.86 

4 terms 106.55 81.74 67.34 55.99 48.70 44.52 142.23 107.85 84.52 70.25 61.11 55.85 

6 terms 99.75 73.08 60.69 50.19 41.57 37.56 138.50 98.19 81.00 68.13 59.92 55.13 

8 terms 99.75 73.08 60.69 50.19 41.57 37.56 138.50 98.19 81.00 68.13 59.92 55.13 

10 terms 99.75 73.08 60.69 50.19 41.57 37.56 138.50 98.19 81.00 68.13 59.92 55.13 

12 terms 99.75 73.08 60.69 50.19 41.57 37.56 138.50 98.19 81.00 68.13 59.92 55.13 

P 
R 
E 
S 
E 
T 

2 terms 

1 

101.92 81.81 66.64 57.48 51.14 47.27 123.28 93.90 80.09 68.94 60.97 57.16 

4 terms 78.92 64.66 59.38 51.25 45.63 42.19 113.57 87.89 74.45 64.26 57.22 52.91 

6 terms 72.60 57.87 50.54 43.99 38.27 35.40 105.47 80.31 69.25 60.71 54.85 51.19 

8 terms 72.60 57.87 50.54 43.99 38.27 35.40 105.47 80.31 69.25 60.71 54.85 51.19 

10 terms 72.60 57.87 50.54 43.99 38.27 35.40 105.47 80.31 69.25 60.71 54.85 51.19 

12 terms 72.60 57.87 50.54 43.99 38.27 35.40 105.47 80.31 69.25 60.71 54.85 51.19 

 
P 
R 
E 
S 
E 
N 
T 

2 terms 

2 

65.84 53.73 47.93 42.53 38.56 36.26 84.44 71.85 67.07 57.54 53.00 46.47 

4 terms 52.59 45.49 41.77 38.28 35.01 33.21 77.87 64.49 58.33 53.37 49.71 43.50 

6 terms 52.59 45.49 41.77 38.28 35.01 33.21 77.87 64.49 58.33 53.37 49.71 43.50 

8 terms 52.59 45.49 41.77 38.28 35.01 33.21 77.87 64.49 58.33 53.37 49.71 43.50 

10 terms 52.59 45.49 41.77 38.28 35.01 33.21 77.87 64.49 58.33 53.37 49.71 43.50 

12 terms 52.59 45.49 41.77 38.28 35.01 33.21 77.87 64.49 58.33 53.37 49.71 43.50 

P 
R 
E 
S 
E 
N 
T 

2 terms 

5 

70.08 57.76 52.26 48.19 44.99 42.83 72.02 63.73 58.76 54.86 50.79 45.23 

4 terms 51.98 41.84 38.48 35.30 32.78 32.14 65.21 56.65 52.64 49.84 47.03 41.54 

6 terms 39.38 36.46 34.88 33.37 31.93 31.08 57.16 51.59 48.86 46.57 44.78 39.75 

8 terms 39.38 36.46 34.88 33.37 31.93 31.08 57.16 51.59 48.86 46.57 44.78 39.75 

10 terms 39.38 36.46 34.88 33.37 31.93 31.08 57.16 51.59 48.86 46.57 44.78 39.75 

12 terms 39.38 36.46 34.88 33.37 31.93 31.08 57.16 51.59 48.86 46.57 44.78 39.75 

P 
R 
E 
S 
E 
N 
T 

2 terms 

10 

59.26 49.61 46.84 44.47 42.48 41.04 59.91 54.90 52.10 48.86 45.82 43.77 

4 terms 43.03 38.76 35.56 33.48 31.75 30.62 54.24 50.09 47.95 45.54 44.02 43.36 

6 terms 34.54 33.00 32.17 31.40 30.68 30.20 49.87 46.79 45.24 43.91 42.81 41.97 

8 terms 34.54 33.00 32.17 31.40 30.68 30.20 49.87 46.79 45.24 43.91 42.81 41.97 

10 terms 34.54 33.00 32.17 31.40 30.68 30.20 49.87 46.79 45.24 43.91 42.81 41.97 

12 terms 34.54 33.00 32.17 31.40 30.68 30.20 49.87 46.79 45.24 43.91 42.81 41.97 
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