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Dynamic and buckling of a composite beam reinforced with a combination of 
carbon and aramid fibers is studied in this paper. The beam is under a thermal 
gradient through the thickness. Timoshenko beam is made of a polymer matrix 
(epoxy resin) reinforced with layers of high–strength carbon and high-toughness 
aramid fibers in order to create a balance between stiffness and toughness and 
create a type of structural composite beam with excellent strength and 
toughness. The mechanical and thermal properties of the hybrid composite 
beams are obtained based on the mixed law method. The equations of motion 
are extracted based on the Hamilton principle and then solved by the generalized 
differential quadrature method (GDQ). In this study, a thermal gradient is 
applied to the beam and then the vibration and buckling response of this hybrid 
composite beam are studied. The main contribution of this paper is the vibration 
and buckling responses of a hybrid composite structure strengthened by carbon 
and aramid fibers. The effect of the hybrid ratio as well as the stacking sequence 
on the free vibrations and critical buckling load are presented. The fundamental 
frequency and critical buckling load are largely affected by the stacking 
sequence. The conclusions show that the use of aramid fibers in the composite 
beam reinforced with carbon fibers decreases the natural frequency as well as 
the critical buckling load of the beam. The conclusions also show that for the 
symmetric hybrid composite beam, despite the critical buckling temperature 
being the same, the critical buckling load is different and depends on the location 
of the fibers. 

 

1. Introduction 

By examining research done on hybrid 
composite structures, it can be seen that these 
types of structures are very popular and used 
today compared to conventional composite 
structures due to their attractiveness and 
elimination of defects in their properties. The 
word 'aramid' is a contraction of 'aromatic 
polyamide'. Aramid fibers are organic materials 
used as reinforcement in composite structures 
with relatively low tensile modulus and strength. 

Aramid fibers are strong, with Young's modulus 
of 60 to 140 GPa. and a strength of 4.5 GPa in a 
gauge length of 2.5 cm with an elongation at a 
break of more than 4%. Aramid fibers can be used 
in different industries as follows [1]: 

• In military industries such as making 
bulletproof vests 

• Safety clothing and gloves. 
• Sails for sailboats.  
• Belts and hosing for industrial and 

automotive applications 

https://macs.journals.semnan.ac.ir/
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• Aircraft body parts 
• Electromechanical cables 
• Friction linings such as clutch plates and 

brake plates  
• Gaskets for great thermal and pressure 

applications 
• Adhesives and sealants 

Aramid fibers have better mechanical 
properties compared to steel and glass fibers in 
equal weight.  

The characteristic of aramid fibers is that they 

are resistant to heat and flame and maintain this 

characteristic at high temperatures. Aramid 
fibers have been used commercially since the 
1960s, first in the ballistic industry. The chemical 
structure of the aramid fibers is such that the 
bonds are aligned along the fiber axis and it 
provides extraordinary strength, flexibility, and 
wear resistance. The strong bond between the 
molecules causes the high strength of aramid 
fibers, also due to the high strength against heat 
and solvents, the fiber destruction temperature 
rises to 500°C. Aramid fiber has “inert” properties 
which provide a range of applications. However, 
aramid fibers are sensitive to ultraviolet (UV) 
light, acids, and certain salts [2-4]. Researchers 
experimentally presented the results obtained 
from tests to investigate the feasibility of 
strengthening multi-layered bamboo columns 
using aramid fiber-reinforced polymer 
composites (AFRP) and to investigate the effect of 
slenderness ratio on AFRP reinforced columns 
[5]. Polyamide-carbon fiber composites are 
lightweight and exhibit high strength, modulus, 
fatigue resistance, wear resistance, corrosion 
resistance, and higher electrical conductivity, 
along with impressive thermal, chemical 
inertness, and thermal stability properties [6]. 
Today hybrid composite material has grown a lot 
due to its lightness in the aerospace industry and 
is widely used in wings, cabin body, etc. [7-13]. 
Carbon fiber has an important role in making 
rocket engine shells, light vehicle equipment, 
sports equipment, and so on. However, this high 
resistance and modulus of carbon fibers cause 
great brittleness, low toughness, and low impact 
resistance in the composite [14-17].  Due to the 
lack of an energy-absorbing layer, external forces 
cause stress concentrate, which can overshadow 
the stability of the part. By using composite 
materials, the strengths of different reinforce can 
be combined and the weaknesses that exist in a 
composite material can be eliminated. Therefore, 
in order to eliminate the brittleness defect in the 
composite material, this defect can be eliminated 
by adding fibers that have high ductility and 
toughness [18-20]. 

Among the high-performance organic fibers 
that have high strength and toughness, we can 

mention polyethylene fibers that are used in the 
manufacture of bulletproof armor and protective 
clothing [21-22]. Polyimide fibers with great 
strength and great modulus, are a new kind of 
high-performance organic fiber. Apart from the 
good strength and toughness of polyimide fibers, 
this type of fiber has excellent resistance at high 
and low temperatures as well as ultraviolet rays 
and thermal stability [23-25]. Generally, 
polyimide fibers are known widely for their 
distinctive performance. Previous investigation 
has shown, the existence of polyimide fibers as 
reinforcement in polymer, causes strong surface 
adhesion of fibers with the resin matrix which 
increase the shear strength between the 
polyamide fibers with epoxy resin [26-27]. Cheon 
et al. presented the stab resistance mechanism 
and performance of the carbon, glass, and aramid 
fiber-reinforced polymer and hybrid composites 
[28]. They optimized the stacking sequence of a 
hybrid composite in order to modify the 
weakness of fiber-reinforced polymer. The 
mechanism of the stab resistance and the blade 
perforation for each fiber-reinforced polymer 
were investigated by static stab compressive 
tests. Currently, researchers considered the 
influence of aramid as well as carbon fibers with 
nanocarbon particles on the mechanical 
properties of EPDM rubber thermal insulators 
which can be used in solid rocket motors [29]. 
Kim et al. [30] evaluated carbon fiber and p-
aramid composite for industrial helmets using 
simple cross-ply for protecting human heads. 
They studied mechanical properties such as 
impact absorption, tensile strength, bending 
strength as well as heat resistance.  

Farokhian et al. presented the dynamic 
buckling of a smart sandwich nanotube. The 
nanostructure was composed of a carbon 
nanotube with inner and outer surfaces coated 
with ZnO piezoelectric layers, which play the role 
of sensor and actuator. Nanotube was under a 
magnetic field and the ZnO layers were under an 
electric field [31]. In further research in this field, 
vibration analysis in nanocomposite plates with 
smart layers was studied. The plate was 
reinforced by carbon nanotubes where the Mori-
Tanaka law was utilized for obtaining the 
effective characteristic of structure assuming 
agglomeration effects [32]. Recently, the best 
lamination stacking sequences was predicted for 
the web and both flanges of cantilever double-
tapered beam exposed to an externally uniformly 
distributed force to achieve the maximum lateral 
buckling capacity with optimized mass and 
material cost [33]. Soltani et al. used general 
differential quadrature as a powerful method to 
solve the governing equations for doing a 
comparative study on the lateral stability and 
strength of laminated composite and fiber metal 

https://www.sciencedirect.com/topics/materials-science/structure-composition
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laminated I-shaped cross-section beams [34]. 
Soltani et al. studied Multi-objective optimization 
of lateral stability strength of transversely loaded 
laminated composite beams with varying I-
section. They used classical lamination theory 
and Vlasov’s model for thin-walled cross-sections 
[35]. A simple and novel method was presented 
for discussing the lateral-torsional stability of 
thin-walled symmetric balanced laminated 
beams with varying I-section. The method is 
based on the classic lamination theory and 
Vlasov’s model [36]. Aydin et al. [37] studied 
comparative dynamic analysis of carbon, aramid, 
and glass fiber-reinforced interplay hybrid 
composites. Based on the experimental and 
numerical results, the effective factors in 
determining the natural frequency and damping 
ratio are lamina numbers, orientation angles, and 
fabric types. The novelty of this study is to find 
the right combination of the two types of fiber 
that might improve the brittleness of carbon 
fiber-reinforced polymer and at the same time be 
suitable for vibrations and buckling under 
temperature gradients. To the best of our 
knowledge, the vibration and buckling response 
of a hybrid composite structure strengthened by 
carbon fibers and aramid fiber has not been 
presented yet. Thus this work can be an inspiring 
reference for the design and material selection of 
structural composites. 

2. Theory and Formulation 

The composite beam consists of four layers of 
fibers with an epoxy matrix that includes carbon 
and aramid fibers.  The mixed law is applied to 
obtain the mechanical and thermal properties of 
hybrid composites: 

𝑃𝐻 = 𝑃𝐶𝑉𝐶 + 𝑃𝑃𝑉𝑃  (1) 

where PH denotes the hybrid composite 
properties. PC and PP stand for carbon and aramid 
fibers respectively. VC and VP are volume 
percentages of carbon and aramid fibers 
respectively. 

Fig. 1 shows the different arrangements of 
carbon and aramid fiber layers. As it is known, 
aramid fibers have high toughness and carbon 
fibers have high stiffness, and by combining them 
and making hybrid composites strengthened 
with carbon and aramid fibers (HFRP), the 
defects of the single-fiber composite are 
compensated.  

In this study, we define hybrid ratio as 
follows: 

𝐻𝑦𝑏𝑟𝑖𝑑 𝑟𝑎𝑡𝑖𝑜 = 𝑉𝐶/(𝑉𝐶 + 𝑉𝑃) (2) 

 
Fig. 1. Different arrangements of aramid and  

carbon fiber layers 

The stacking sequence details of the hybrid 
composites with four layers are shown in Table 1. 
In this table, A and C symbols stand for carbon 
and aramid fibers respectively. 

Fig.2 Shows the geometry of the composite 
laminated beam which is made of four layers of 
carbon and aramid fibers. It is assumed that the 
beam is under a thermal gradient T(z)  through 

the thickness direction. The temperature of the 
lower and upper surfaces is TL and TU 
respectively. 

 
Fig. 2. Beam geometry 
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Table 1. Fiber arrangement of hybrid composites 

Hybrid ratio  % Fiber arrangement 
Layer number ratio 

(carbon/aramid) 
Composite type 

0 

 

100 

 

29 

 

55 

 

79 

29 

55 

79 

 

55 

 

 

55 

AAAA 

 

CCCC 

 

ACAA 

 

CACA 

 

CACC 

AAAC 

AACC 

ACCC 

 

ACCA 

 

 

CAAC 

0/4 

 

4/4 

 

1/3 

 

2/2 

 

3/1 

1/3 

2/2 

3/1 

 

2/2 

 

 

2/2 

PFRP 

(Polymer fiber reinforced composite) 

CFRP 

 (Carbon fiber reinforced composite) 

H1-0 

 

H1-1- 

 

H1-2 

H2-1 

H2-2 

H2-3 

 

H3-1 

 

 

H4-1 

 
 

H1 

Alternating composite beam 

 

 

 

H2 

P/C composite beam 

 

 

H3 

P/C/P composite beam 

(Symmetric stacking sequence) 

H4 

C/P/C composite beam 

(Symmetric stacking sequence) 

 

The temperature distribution is obtained by 
solving the one-dimensional stable flow thermal 
conductivity equation: 

−
𝑑

𝑑𝑧
(𝑘

𝑑𝑇

𝑑𝑧
) = 0 (3) 

The thermal boundary conditions are as: 

𝑇(𝑧) = 𝑇𝐿                     𝑎𝑡 𝑧 = −
ℎ

2
 

(4a) 

𝑇(𝑧) = 𝑇𝑈                    𝑎𝑡 𝑧 =
ℎ

2
 

The continuity requirements at the interfaces: 

𝑇(1) = 𝑇(2)           𝑎𝑡        𝑧 = −
ℎ

4
 

(4b) 𝑇(2) = 𝑇(3)             𝑎𝑡        𝑧 = 0 

𝑇(3) = 𝑇(4)            𝑎𝑡         𝑧 =
ℎ

4
 

𝐾(1)
𝑑𝑇

𝑑𝑧
= 𝐾(2)

𝑑𝑇

𝑑𝑧
            𝑧 = −

ℎ

4
 

(4c) 𝐾(2)
𝑑𝑇

𝑑𝑧
= 𝐾(3)

𝑑𝑇

𝑑𝑧
            𝑧 = 0 

𝐾(3)
𝑑𝑇

𝑑𝑧
= 𝐾(4)

𝑑𝑇

𝑑𝑧
              𝑧 =

ℎ

4
 

where the superscript shows the lamina number 
and K is the coefficient of thermal conductivity. 

The distribution of the temperature field for 
each lamina is determined as follows: 

T(m)=a1(m)+ a2(m)∫
1

𝐾(𝑚)

𝑧

𝑧𝑚−1
𝑑𝑧,   m=1,2,3,4 

a1(1)=TL,  a2(1)= a2(2)= a2(3)= a2(4)=
(𝑇𝑈−𝑇𝐿)

(𝑡(1)+𝑡(2)+𝑡(3)+𝑡(4))
 

a1(2)=𝑇𝐿+
(𝑇𝑈−𝑇𝐿).𝑡(1)

(𝑡(1)+𝑡(2)+𝑡(3)+𝑡(4))
 

a1(3)=𝑇𝐿+
(𝑇𝑈−𝑇𝐿).(𝑡(1)+𝑡(2))

(𝑡(1)+𝑡(2)+𝑡(3)+𝑡(4))
 

a1(4)=𝑇𝐿+
(𝑇𝑈−𝑇𝐿).(𝑡(1)+𝑡(2)+𝑡(3))

(𝑡(1)+𝑡(2)+𝑡(3)+𝑡(4))
 

𝑡(𝑚) = ∫
1

𝐾(𝑚)

𝑧

𝑧𝑚−1

𝑑𝑧,                  𝑚 = 1,2,3,4 (5) 
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where m 1 mz , z−  shows the z-coordinate of the 

upper and lower faces of the mth lamina. To 
derive equations of motion, Timoshenko beam 
theory is utilized, which defines the displacement 
components as follows: 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑧 (𝑥, 𝑡) 

(6) 𝑣(𝑥, 𝑡) = 0 

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) 

0u  and 0w  are displacement components in the 

middle face of the beam along the length and 
thickness of the beam, respectively, and   is the 

rotation angle around the y-axis. Hamilton 
principle is applied to derive the governing 
equations  

𝛿 ∫ (𝑇 −
𝑡

0

𝛱 + ϒ𝑝) = 0 (7) 

where T, 𝛱 and ϒ𝑝  are kinetic, elastic, and 

external potential energies respectively. 

/ 2
2 2

/ 2

0

/ 2( ( )(( ) ( ) )

L
h

h

u u
T b z dzdx

x t


−

 
= +

 
   

(8) 
/ 2

/ 2

0

/ 2( ( )

L
h

xx xx xy xy
h

b dz   
−

 = +   

2

0

0

/ 2( ( ) )

L

P x

W
b N dzdx

x


 =


  

( )
( )

( )
( )

( )
11 552

,
1 2 1

E z E z
Q z Q z

 
= =

− +
 

/2

0 11
/2

( ) ( ) ( )
−

= − 
h

x
h

N z Q z T z , 

By inserting Eq. (8) into Eq. (7), the governing 
equations are determined as follows: 

𝐴11

𝜕2𝑈

𝜕𝑥2
+ 𝐵11

𝜕2𝛹

𝜕𝑥2
+

𝜕𝐴11

𝜕𝑥

𝜕𝑈

𝜕𝑥
+

𝜕𝐵11

𝜕𝑥

𝜕𝛹

𝜕𝑥
 

= 𝐼0
𝜕2𝑈

𝜕𝑡2 +𝐼1
𝜕2𝛹

𝜕𝑡2  

𝐵11
𝜕2𝑈

𝜕𝑥2 + 𝐷11
𝜕2𝛹

𝜕𝑥2 − 𝑘𝑠𝐴55 (
𝜕𝑊

𝜕𝑥
+ 𝛹) +

𝜕𝐵11

𝜕𝑥

𝜕𝑈

𝜕𝑥
+

𝜕𝐷11

𝜕𝑥

𝜕𝛹

𝜕𝑥
= 𝐼1

𝜕2𝑈

𝜕𝑡2 +𝐼2
𝜕2𝛹

𝜕𝑡2  

𝑘𝑠𝐴55 (
𝜕2𝑊

𝜕𝑥2
+

𝜕𝛹

𝜕𝑥
) + 𝑁𝑥0

𝜕2𝑊

𝜕𝑥2
 

+𝑘𝑠

𝜕𝐴55

𝜕𝑥
(

𝜕𝑊

𝜕𝑥
+ 𝛹) +

𝜕𝑁𝑥0

𝜕𝑥

𝜕𝑊

𝜕𝑥
 

= 𝐼0

𝜕2𝑊

𝜕𝑡2
 (9) 

The governing equations in the dimensionless 
form are obtained as follows: 

𝑎11
𝜕2𝑈

𝜕𝜉2 + 𝑏11
𝜕2𝛹

𝜕𝜉2 +
𝜕𝑎11

𝜕𝜉

𝜕𝑈

𝜕𝜉
+

𝜕𝑏11

𝜕𝜉

𝜕𝛹

𝜕𝜉
=

𝐼0̅
𝜕2𝑈

𝜕𝜏2 +𝐼1̅
𝜕2𝛹

𝜕𝜏2  

𝑏11
𝜕2𝑈

𝜕𝜉2 + 𝑑11
𝜕2𝛹

𝜕𝜉2 − ղ𝑎55 (
𝜕𝑊̅

𝜕𝜉
+ ղ𝛹)+  

𝜕𝑏11

𝜕𝜉

𝜕𝑈

𝜕𝜉
+

𝜕𝑑11

𝜕𝜉

𝜕𝛹

𝜕𝜉
= 𝐼1̅

𝜕2𝑈

𝜕𝜏2 +𝐼2̅
𝜕2𝛹

𝜕𝜏2  

𝑎55

𝜕2𝑊̅

𝜕𝜉2
+

𝜕

𝜕
(𝑁𝑥0

𝜕𝑊̅

𝜕𝜉
) +

𝜕𝑎55

𝜕𝜉

𝜕𝑊̅

𝜕𝜉
+ 

𝑎55

𝜕𝛹

𝜕𝜉
+ ղ

𝜕𝑎55

𝜕𝜉
𝛹 = 𝐼0̅

𝜕2𝑊̅

𝜕𝜏2
 (10) 

where the dimensional parameters are used as 
follows: 

, , , ,
x W L U

W U
L h h h

  = =  = = =  

5511 11 11

11 55 11 11 2

11 11 11 11

( , , , ) ( , , , )
AA B D

a a b d
A A hA h A

=  

0 1 2

0 1 2 2

0 0 0

( , , ) ( , , )
I I I

I I I
I hI h I

=  

0

0

11

x

x

N
N

A
=  

0

11

It

L A
 =  

0

11

I
L

A
 =   (11) 

A11 and A55 are the elements of the stretching 
matrix.   B11 and D11 are the elements of coupling 
and bending matrices respectively. 

Finally, I0, I1, and I2 are rotary, first and second 
inertia terms respectively. These terms are 
obtained as follows: 

(𝐴11, 𝐵11, 𝐷11) = ∫ 𝑄11(𝑧)(1, 𝑧, 𝑧2)𝑑𝑧

ℎ
2⁄

−ℎ
2⁄

 

𝐴55 = sk ∫ 𝑄55(𝑧)𝑑𝑧

ℎ
2⁄

−ℎ
2⁄

 

(𝐼0, 𝐼1 , 𝐼2) = ∫ 𝜌(𝑧)(1, 𝑧, 𝑧2)𝑑𝑧

ℎ
2⁄

−ℎ
2⁄

 (12) 

sk  is a shear correction factor whose value is 

5/6.  
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Different mechanical boundary conditions are 
used at the ends of the beam, which are clamped-
clamped, hinged-hinged, and clamped-free. For 
clamped end  u,w, ψ=0, for hinged end u,w=0, 
Mx=0 ,  for free end Mx,=0, Qx, Nx=0 

Non-dimensional parameters are as follows: 

: 0Clamped u w= =  =  

11 11
: 0

U
Hinged u w b d




= = +  =


 

11 11

11 11

0

: 0

0

U
a b

W
Free

U
b d

 






 
+ =

 


+  =




+  =



 
 
 
  
 
 
 
 
  

 (13) 

3. Solution of the Equations of Motion 

Numerical approximation methods have 
many applications for partial differential 
equations solutions in various fields of 
engineering. Traditional methods such as finite 
difference and finite element methods are well 
known and their application has been developed. 
In these methods, the use of a large number of 
network points can lead to more accurate results, 
which requires the use of large-capacity 
computers. One of the effective methods for the 
numerical solution is the differential quadrature 
method (DQM).  This method was first used by 
Bellman and Cassette in 1971 for solving partial 
differential equations [38]. The high accuracy of 
the results can be obtained by applying a small 
number of network points. Also, its simplicity has 
made it increasingly popular. Of course, this 
procedure also has disadvantages. As an example, 
we can point to the inefficiency of this method in 
the analysis of structures with loading, material 
properties, or discontinuous geometry. In the 
DQM method, the partial derivative of a function 
at a particular point is equal to the sum of the 
product of the weight coefficients of each point on 
the network in the value of the function of that 
point. Based on the DQM procedure, the 
derivative of a hypothetical point-like function is 
calculated as follows: 

( )

1

( )
( ) ,

1,..., , 1,..., 1

xn N
ni

ik kn
k

x x

f x
c f x

x

i N n N

=


=



= = −


 (14) 

in Eq. (14), 
( )n

ikc  are the weight coefficients.  

The main point of this method is to calculate 
the weight coefficients and how to distribute the 
network points. Belman proposed two methods 
for calculating the weighting coefficients of a 
first-order derivative [38].  

The first method is based on a set of algebraic 
equations. Unfortunately, when the number of 
network points is large, the matrix of this 
algebraic equation becomes bad. For this reason, 
this method is used for problems with a number 
of network points of 13 or less. The second 
method is to use Legendre polynomials of N-th 
degree that grid points are the roots of these 
polynomials. Therefore, the amplitudes of the 
grid points are fixed and the physics of the 
problem is not considered. This limits the DQ 
method in solving structural problems because in 
mechanical problems, various boundary 
conditions may appear and each boundary 
condition needs its own network points. Based on 
Belman's work, Shau and Richard introduced a 
method called the generalized differential 
quadrature method (GDQ), which overcame the 
previous method in obtaining weight coefficients 
of higher-order derivatives with an arbitrary 
distribution of lattice points [39]. In the GDQ 
method, the weighting coefficients of the first-
order derivative are obtained as a simple 
algebraic relation using Lagrangian interpolation 
functions, as well as the weighting coefficients of 
the second-order and higher-order derivatives 
are calculated with a backslash expression 
according to the following equations [39].  
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The selection of network points and how they 
are distributed plays a very effective role in 
achieving the convergence speed of the GDQ 
method. The non-uniform distribution of the 
network usually gives better results than its 
uniform distribution [40]. Bert and Malik showed 
that the distribution of network points varies 
according to the problem and suggested that for 
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structural mechanical problems, the Chebyshev-
Gauss-Lobatto method be used to distribute 
network points in a one-dimensional network 
with points Nx in the interval [a, b] as follows [40]: 

( ) 1
1 cos ,

2 1

1, 2, ...,

i

x

x

b a i
x a

N

i N


− −

= + −
−

=

  
  
  

 
(16) 

Applying GDQ expressed in Eqs.13-15 to the 
governing equations and related boundary 
conditions, will lead to a set of linear algebraic 
relations as follows: 
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where aij and bij are the first and second 
GDQ weighting coefficients respectively. 
Implementing the boundary conditions into 
Eq. 17 leads to the following algebraic 
system. 

[
[𝑆𝑏𝑏] [𝑆𝑏𝑑]

[𝑆𝑑𝑏] [𝑆𝑑𝑑]
] {

{𝑈𝑏}

{𝑈𝑑}
} − 𝑁𝑥𝑜̅̅ ̅̅ ̅̅ [

[0] [0]

[𝐴𝑑𝑏] [𝐴𝑑𝑑]
] 

= ω2 [
[0] [0]

[0] [𝐼𝑖̅]
] {

{𝑈𝑏}

{𝑈𝑑}
} 

(19) 

In Eq. (19), subscripts ‘b’ and ‘d’ refer to the 
points on the boundary and in the interior 
domain respectively. {𝑈𝑏} 𝑎𝑛𝑑 {𝑈𝑑}are the 
displacement component matrices of the points 
on the boundary and the interior domain 
respectively as follows:  

{𝑈𝑏} = {{𝑢𝑏}, {𝑤𝑏}, {𝜓𝑏}}
𝑇

 

{𝑈𝑑} = {{𝑢𝑑}, {𝑤𝑑}, {𝜓𝑑}}
𝑇

 
(20) 

Eliminating the boundary degrees of freedom 
leads to the following equation: 

  2( [ ]){ } 0dS I U− = 0 (21) 

The frequencies of the hybrid composite 
beams can be determined by solving the 
generalized eigenvalue problem Eq. (21). Clearly, 
the square of the lowest positive solution of Eq. 
(21) gives the frequency of beams. To investigate 
the buckling, we take ω =0 in Eq.(19) and we 
reach the following relation which is an 
eigenvalue problem. 

([𝑆] − 𝑁𝑥𝑜̅̅ ̅̅ ̅̅ [𝐴]){𝑈̅̅ ̅
𝑑} = {0} (22) 

The non-dimensional frequency parameter as 
well as the buckling load are obtained by solving 
the eigenvalue problem as Eqs. (21-22). It is 

assumed 
0T(z) T(z) T = −  and 

0T 0 C=  . 
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4. Results and Discussion 

4.1. Convergency and Validation Study 

First of all, we present the convergence of the 
method. For this purpose, a hybrid composite 
beam with a CACA stacking sequence is 
considered. The beam is clamped at both ends. As 
noticed the convergency is fast and the 
dimensionless natural frequency converges at 
N=7. 

Table 2. Convergence study (L=165mm, h=1.3mm) 

N TL=TU=25OC TL=25OC, TU=35OC 

7 

9 

13 

12 

29 

33 

0.2215 

0.2216 

0.2216 

0.2216 

0.2216 

0.2216 

0.2113 

0.2114 

0.2114 

0.2114 

0.2114 

0.2114 

Now, we check the validity and efficiency of 
the GDQ method. Table 3 shows the non-
dimensional natural frequency of an isotropic 
beam with clamped-clamped ends subjected to 
different uniform temperature rises 
𝜇𝑇 = 𝛥𝑇 ⤬ 104 and its comparison with similar 
results in Ref. [35]. As noticed there is good 
agreement between the results.  

For further validation, the dimensionless 
natural frequency of a uniform FGM (functionally 
graded material) beam with clamped-clamped 
ends is compared with similar ones in Table 4. 

Table 3. The non-dimensional natural frequency of 

 an isotropic beam 
50

, 0.3
3

L

h
= =  

7.4074 3.7037 1.2345 0 T 

20.4652 

 
20.9772 
 
2 

22.153 

 
2.1393 
 
0.06 

22.9217 

 
2.8530 
 
0.2 

23.3715 

 
3.2370 

 
0.5 

Present 
 

Ref.[35] 
 

Error % 

Table 4. The dimensionless natural frequency of 
 an FGM beam for different L/h 

Error % Ref.[41] Present  

2.5 

 
 
0.6 

0.02893  
 
 
0.12836 

0.02965 

 
 
0.12754 

15
L

h
=  

7
L

h
=   

4.2. Parametric Study 

After checking the convergence and accuracy, 
we analyze the numerical results. First, the effect 
of the fiber hybrid ratio on thermal and 
mechanical properties is studied. The thermal 
properties of carbon and aramid fibers as 
reinforcement and epoxy resin as the matrix used 
in this study are presented in Table 5.  

Table 6 Shows the influence of the hybrid 
ratio on the mechanical properties of the hybrid 
composite beam. As observed Young's modulus, 
shear's modulus, and thermal conductivity 
coefficient increase with increasing hybrid ratio 
because carbon fibers have a higher stiffness than 
aramid fibers. However thermal expansion 
coefficient decreases by increasing the hybrid 
ratio. The placement of carbon and aramid fibers 
will not affect the mechanical properties. 

Table 5. Thermal properties of reinforcing fibers and epoxy resin 

Rezin epoxy 
(LY 5052-1) 

Aramid fiber 
(Kevlar 49) 

carbon fiber  
(3K TORAY T300) 

 

71 -2 -0.5 
Thermal expansion coefficient

610 (1/ )− C  

0.15 0.31 14 
Conductivity thermal coefficient 

( / . )w m k  

1160 1440 1760 
Density 

3( / )kg m  

3 124 230 
Young’s modulus 

( )E Gpa  

2.96 47.75 96.25 
Shear’s modulus 

( )G Gpa  

59.98 3620 3530 
Tensile strength 

MPa. 
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Table 6. Influence of the hybrid ratio on the mechanical properties of hybrid composite beam 

100% 79% 55% 29% 0% Hybrid ratio 

( )E Gpa  

( )G Gpa  

98.61 

42.25 

85.10 

36.26 

71.63 

30.31 

58.14 

24.34 

44.64 

18.36 

5.96 

40.88 ⨯ 10-6 

4.51 

42.02 ⨯ 10-6 

3.093 

43.36 ⨯ 10-6 

1.649 

44.61 ⨯ 10-6 

0.2048 

45.85 ⨯ 10-6 

( / . )K W m k  

(1/ )C   

 

The effect of length-to-thickness ratio on 
dimensionless frequency for various end 
conditions is presented in Fig.3. This figure is for 
a composite hybrid beam type H4. As expected 
the dimensionless frequency decreases with the 
increase of this ratio.  

 
Fig. 3. Variations of the dimensionless natural frequency 

against length-to-thickness ratio  

Table 7 Shows the influence of the fiber 
arrangement and hybrid ratio on the natural 
frequency. As observed the highest and least 
frequencies are related to the hybrid ratio of 
100% (single composite reinforced with carbon 

fibers CCCC) and 0% (single composite reinforced 
with aramid fibers AAAA) respectively. That is 
because carbon fibers have higher stiffness than 
aramid fibers. Next, the highest frequencies are 

respectively related to the hybrid ratio 79%
with the stacking sequence CACC, hybrid ratio 
55% with stacking sequence CAAC and then 
ACAC, hybrid ratio 79% with stacking sequence 
CCCA, hybrid ratio 55% with stacking sequence 
AACC, hybrid ratio 29% with stacking sequence 
CAAA, hybrid ratio 55% with stacking sequence  
ACCA and finally hybrid ratio 29% with stacking 
sequence ACAA. The placement of the carbon 
fiber is very important.  

The results show that the placement of carbon 
fibers on the upper and lower faces and the 
aramid fibers in the middle layers of the hybrid 
composite beam (CAAC) gives a higher frequency 
than the placement of these fibers in other 
modes. That is because the carbon fibers have a 
higher stiffness and the aramid fibers have higher 
toughness. On the contrary, when the aramid 
fibers are placed on the upper and lower surfaces 
like (ACCA), the toughness will be higher and 
more energy can be observed. In other words, for 
a hybrid ratio of 55%, a symmetrical stacking 
sequence with carbon fibers or aramid fibers on 
the upper and lower faces of the composite 
hybrid beam give the highest natural frequency 
as well as energy absorption respectively. 

Table 7. Influence of fiber arrangement and hybrid ratio on the dimensionless natural frequency 

  
Stacking sequence Type Hybrid ratio (%)  

C-F H-H C-H C-C 

0.0470 

0.0540 

0.0475 

0.0628 

0.0554 

0.0537 

0.0484 

0.0628 

0.0553 

0.0630 

0.0829 

0.0926 

0.0841 

0.1107 

0.0986 

0.0980 

0.0853 

0.1109 

0.0991 

0.1111 

0.1295 

0.1493 

0.1309 

0.1729 

0.1530 

0.1485 

0.1333 

0.1730 

0.1526 

0.1736 

0.1879 

02141 

01899 

02508 

0.2216 

.2157 

0.1934 

0.2509 

0.2208 

0.2519 

AAAA 

CAAA 

ACAA 

CAAC 

ACAC 

AACC 

ACCA 

CACC 

CCCA 

CCCC 

PFRP 
 
 

HFRP 

0% 
 
 
29%  

HFRP 
 
 
  

55% 
 
  

HFRP 
  

79%  
  

CFRP  
100% 
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The influence of thermal gradient on the non-
dimensional natural frequency is presented for 
all types of hybrid composite beams in Fig. 4. It is 
concluded that the frequency has decreased with 
the increase of the temperature because the 
stiffness of the beam decreases with the increase 
of the temperature. This decrease in temperature 
will continue until the critical temperature of 
buckling is reached, and after that, the frequency 
will increase with the increase in temperature. 
The temperature at this point is the critical 
buckling temperature because the natural 
frequency of the beam at this point is very close 
to zero. As noticed the critical buckling 
temperature varies from 70 oK for AAAA to 140 oK 
for CCCC. For H1 type composite beam, this 
temperature increases from 78 oK to 138 oK with 
an increasing volume percentage of carbon fibers. 

For the H2 type, the range of these changes is 
less and between 98 oK and 108 oK. From the 
comparison of two types of H1-CACC with H2-
ACCC, both of which have a hybrid ratio of 79%, it 
is observed that the H1 has a greater critical 
temperature, and this shows that the way the 
fibers are placed is significant in hybrid 
composite beam design. Another interesting 
result that can be obtained from Figs. 4e-4f, 
which is related to H3 and H4 types, is that if the 
fibers are placed symmetrically relative to the 
middle axis of the beam, the critical temperature 
is almost the same. 

 

 

 

 

 

 
Fig. 4. Variations of the dimensionless natural frequency 
against ΔT for different types of hybrid composite beam 
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In the hybrid composites strengthened with 
both types of carbon fibers and aramid fibers in 
H1, and H2 arrangements, the buckling critical 
temperature as well as the buckling critical load 
increase with the increase of the hybrid ratio 
(increasing the volume fraction of carbon fibers).  

Also, depending on the type of stacking 
sequence of the layers, in the case where the 
carbon fibers are on the outer layers (upper and 
lower layers of the beam), the critical 
temperature, as well as the buckling critical load, 
have a larger value, for example, in the hybrid 
ratio of 55%, comparing the two types of H3, H4 
is observed that the buckling critical temperature 
and dimensionless buckling critical load of H4 is 
slightly greater than H3.  

Figures 5-8 present the variations of the 
critical buckling load against the hybrid ratio for 
different H-type hybrid composite beams. As 
noticed in these figures, the critical buckling load 
increases with the increase of the number of 
carbon fibers and that is due to the greater 
strength of carbon fiber compared to aramid 
fiber. Similar to the dimensionless frequency, the 
placement of the fibers has an effect on the 
amount of the critical buckling load. 

The interesting result from Figs 7-8 is that for 
types H3 and H4, where the fiber distribution is 
symmetrical with respect to the middle axis, 
unlike in Figs.4e-4f, where the critical buckling 
temperature was almost the same, here the 
critical buckling load is higher for type H4. As can 
be seen, the highest strength of a hybrid 
composite beam against buckling is related to the 
H1- type with stacking sequence as CACC. 

 

Fig. 5 Variations of critical buckling load against hybrid  
ratio for H1 type hybrid composite beam 

 
Fig. 6. Variations of critical buckling load against hybrid 

 ratio for H2 type hybrid composite beam 

 
Fig. 7. Variations of critical buckling load against hybrid  

ratio for H3 type hybrid composite beam 

 
Fig. 8 Variations of critical buckling load against hybrid 

 ratio for H4 type hybrid composite beam 

Following the above figures, Table 8 shows 
the value of the dimensionless critical buckling 
load for different kinds of hybrid composite 
beams under various end conditions.  

As expected, the largest critical buckling load 
occurs for a clamped-clamped hybrid composite 
beam. 
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Table 8. The dimensionless critical buckling load for different stacking sequence 

Type Stacking sequence 
0Nx  

Boundary conditions 

C-C C-H H-H 

PFRP 

CFRP 

AAAA 

CCCC 

ACAA 

ACAC 

CACC 

AAAC 

AACC 

ACCC 

ACCA 

CAAC 

0.0364 

0.0732 

0.0508 

0.0803 

0.1171 

0.0623 

0.0751 

0.0902 

0.0610 

0.1019 

0.0187 

0.0375 

0.0247 

0.0409 

0.0598 

0.0324 

0.0386 

0.0463 

0.0312 

0.0528 

0.0088 

0.0178 

0.0120 

0.0200 

0.0295 

0.0158 

0.0200 

0.0227 

0.0148 

0.0252 

H1 

 

 

H2 

 

 

H3 

H4 

H1-0 

H1-1 

H1-2 

H2-1 

H2-2 

H2-3 

H3-1 

H4-1 

 

Figs. 9(a-c) present the influence of the 
different fiber arrangement on the mode shapes. 
These figures show the first modes of vibrations 
for the case 1 (ACAA, ACCA, CACC, CCCC) and 
case2 (AAAA, AACC, ACAC, AAAC, CAAC, ACCC), 
second mode for case 3 (AAAA, AACC, CACC, 
CCCC), case 4 (ACAA, ACAC, ACCA, AAAC, CAAC, 
ACCC), and third mode for case 5 (AAAA, ACCA, 
AAAC, CAAC, CCCC) and case 6 (AACC, ACAA, ACAC, 
CACC, ACCC).  

The results show the second and third modes 
of H3 and H4 type (symmetrical stacking 
sequence) are the same, but their first mode is 
almost mirror to each other. 

 

 

 

Fig 9. The shape of the first to three modes. 

5. Conclusions 

Theoretical free vibrations and buckling 
analysis of hybrid composite Timoshenko beam 
strengthened with the high strength carbon 
fibers/high toughness aramid fibers were 
studied under temperature gradient This is the 
first time that this kind of hybrid composite beam 
was analyzed for free vibration and thermal 
buckling under temperature gradient 

The results show that the use of aramid fibers 
in the composite beam reinforced with carbon 
fibers decreases the natural frequency and the 
critical buckling load of the beam. It is also 
concluded that for types H3 and H4, where the 
fiber distribution is symmetrical with respect to 
the middle axis, the critical buckling temperature 
was almost the same, but the critical buckling 
load is higher for type H4. Also, the second and 
third modes of H3 and H4 type (symmetrical 
stacking sequence) are almost the same, but their 
first mode is almost mirror to each other. 

As a result, the highest strength of a hybrid 
composite beam against buckling is related to the 
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H1- type with stacking sequence as CACC. Finally, 
this study can be a guide reference for the design 
and material selection of composite structures. 
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Nomenclature 

𝑃𝐻  Hybrid composite property 
E Young’s modulus 
G Shear modulus 
h Thickness 
IO Rotary inertia term 
I1 First inertia term 
I2 Second inertia term 
K Thermal conductivity coefficient 
L Length 
M Moment resultant 
N Force resultant 
𝑃𝐶  Carbon fiber properties 
𝑃𝐴 Aramid fiber properties 
T Temperature 
u Axial displacement 
𝑉𝐶  Volume percentage of carbon fiber 
𝑉𝑃  Volume percentage of aramid fiber 
w Transverse displacement 
α Thermal expansion coefficient 
ρ Density 
𝜔 Natural frequency 
Ψ Rotation angle 
ν Poisson’s ratio 
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