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This study aims to investigate the effect of functionally graded materials (FGMs) on the 

internal resonances of nanorods in torsional vibration. The von-Kármán type nonlinearity 

is considered and the governing equation of motion is derived using Hamilton's principle 

based on the surface elasticity theory. It is assumed that the properties of the functionally 

graded (FG) nanorod vary through the radius direction based on power-law distribution. 

Then, the multi-mode Galerkin method is implemented to convert the partial differential 

equation to an ordinary differential one. In the next step, the method of multiple scales is 

used to derive the natural frequencies as well as the conditions in which the internal 

resonances occur. The results are presented for two types of end conditions, fixed-fixed 

and fixed-free, and the effects of variations of various parameters like length, radius, and 

amplitude of vibration on natural frequencies are investigated. This research shows that 

functionally graded materials differ in the state of happening the internal resonances in the 

presence of the surface energy. 

 

1. Introduction 

Functionally graded materials (FGMs) are 
non-homogeneous materials made up by 
changing volume fractions of two (or more) 
various materials in the chosen spatial 
directions. The gradual change in materials 
results in an inhomogeneous composite with 
smooth and constant mechanical, electrical, and 
thermal properties. These variations remove 
inter-plane issues and lead to stress distribution 
with a smooth profile, upper fracture toughness, 
and better thermal resistance, which captured 
significant attention in numerous engineering 
applications. Due to these excellent properties, 
FG structures have been used in different 
engineering fields like mechanical, aerospace, 
chemical, and biomechanics. [1-13]. 

By growing in material fabrication and 
nanostructures, FG materials are increasingly 
used in many micro- and nano-applications such 
as micro/nano-electromechanical systems 
(M/NEMS), micro switches, and microelectronics 
[14-22]. In this matter, numerous experimental 
investigations have been done to study the 

mechanical behavior of micro and 
nanostructures [23-25]. The results from the 
experimental studies have shown that since 
classical continuum mechanics theories are not 
size-dependent, various novel continuum 
mechanics theories are needed to study nano-
scaled structures and predict their behavior. 
Thus, to account for the intrinsic characteristics 
of materials at micro and nanostructures various 
theories have been suggested to explain the 
elastic behaviors of these micro and nano-scale 
systems such as surface elasticity theory, 
nonlocal elasticity theory, modified couple stress 
theory, and strain gradient theory. As surface 
energy is less significant than bulk energy at the 
macroscale, its effect is not taken into account. 
The surface effects become significant because 
nano-scaled objects have a high surface-to-
volume ratio. Consequently, it is important to 
consider surface energy while doing a 
mechanical study of nanostructures. Gurtin et al. 
[26, 27] presented a mathematical theory for the 
accurate prediction of mechanical behaviors of 
nano-scaled structures to examine the impact of 
surface stress on the mechanics of 

http://macs.journals.semnan.ac.ir/
mailto:rnazemnezhad@du.ac.ir
mailto:mrnazemnezhad@gmail.com
https://doi.org/10.22075/macs.2023.29907.1479
https://orcid.org/0000-0002-4869-983X


Nazemnezhad et al. / Mechanics of Advanced Composite Structures 11 (2024) 41 - 58 

42 

nanostructures. As a result, in recent years, the 
number of research reports on this subject 
dramatically grew [28-33]. 

Baron et al. developed a continuous model for 
nanobeams that takes into account both surface 
effects and material heterogeneity [34]. 
A theoretical model was presented by Wang and 
Feng to study the effects of surface elasticity and 
residual surface tension on the natural frequency 
of microbeams [35]. The Gurtin and Murdoch 
theory was used by Ansari and Sahmani to 
study the buckling and bending of nanobeams. 
From their work, explicit formulas 
for various beam theories were derived [36]. A 
modified continuum model was developed by 
Ansari et al. to predict the post-buckling 
deflection of nanobeams [37]. The generalized 
differential quadrature (GDQ) method was used 
to solve governing differential equations. 
Abbasion et al. [38] presented a comprehensive 
model to study how surface elasticity and 
residual surface tension affect the natural 
frequency of microbeam flexural vibrations 
when shear deformation and rotary inertia 
effects are considered. Based on the nonlocal 
elasticity theory, Wang presented an analytical 
model to predict surface effects on fluid-
conveying nanotubes' free vibration [39]. Their 
findings showed that the surface effects with 
positive elastic constant or positive residual 
surface tension tend to increase critical flow 
velocity and the natural frequency. The influence 
of surface effects on the vibration 
of nanotubes was studied by Farshi et al. based 
on the Timoshenko beam model [40]. The 
influence of surface elasticity and surface stress 
on the static bending of nanowires was 
investigated by He and Lilley [41]. 
Three different boundary conditions i.e. 
clamped-free, simply supported, and clamped–
clamped was taken into account using the Euler–
Bernoulli beam theory. Civalek et al. studied the 
size-dependent stability analysis of restrained 
nanobeam with functionally graded material via 
nonlocal Euler–Bernoulli beam theory using the 
Fourier series [42]. Uzun and Yayli reformulated 
a new stability model for the nano-sized beam 
resting on a one-parameter elastic foundation. 
The stability solution was based on the nonlocal 
strain gradient elasticity theory [43]. 

In recent times, the influence of surface 
effect on the nonlinear free vibration behaviors 
of nanobeams has been done in some research. 
The nonlinear free vibration of nanobeams was 
investigated by Nazemnezhad et al. [44]. They 
considered surface effects and used Euler–
Bernoulli beam theory. Based on the Gurtine-
Murdoch continuum theory, the nonlinear free 
vibration behavior of Timoshenko nanobeams 

was studied by Ansari et al. [45]. Nonlinear free 
vibration of functionally graded nanobeams was 
studied by Asgharifard Sharabiani et al. using the 
Euler-Bernoulli beam theory [46]. Yayli 
investigated various points including buckling, 
thermal buckling, axial vibration, lateral 
vibration, and longitudinal vibration [47-53]. 

Torsional vibration becomes significant in 
some devices, such as nanoelectromechanical 
systems, nano-scaled shafts, and nano 
servomotors as nanotubes are exposed to 
external torques. Studies on the free torsional 
vibration of nanotubes are few. Lim et al. [54] 
developed a new elastic nonlocal stress model as 
well as analytical solutions for the torsional 
dynamics of circular nanorods/nanotubes. Free 
torsional vibration behaviors of nanotubes made 
of a bi-directional functionally graded (FG) 
material with properties that changed 
continuously along the radius and length 
directions investigated by Li and Hi [55]. Based 
on the nonlocal elasticity theory, Murmu et al. 
[56] examined the torsional vibration of single-
walled carbon nanotube–buckyball systems. One 
end of the single-walled carbon nanotube 
(SWCNT) was fixed and the other end was used 
to attach the Buckyball. Civalek et al. investigated 
static and free torsional vibration of functionally 
graded (FG) nanorods using the Fourier sine 
series and boundary conditions were described 
by the two elastic torsional springs at the ends 
[57]. Size-dependent static and free torsional 
vibration responses of functionally graded 
porous nanotubes were examined by Uzun and 
Yayli by using the Fourier sine series and Stokes’ 
transformation [43, 58]. Nazemnezhad and 
Fahimi studied the torsional vibration of 
nanobeams with a periphery crack 
and various end conditions [59]. Various 
boundary conditions, the surface shear modulus, 
the surface stress, and the surface density are 
considered on the torsional vibration of 
nanobeams. In another research, Nazemnezhad 
et al. [60] studied the effects of surface energy on 
the nonlinear torsional vibrations and internal 
resonances of nanorods. In the research, the 
second-order term for the angle of rotation is 
considered for the displacement field. They 
reported the conditions wherein the internal 
resonances occur. The effect of the surrounding 
elastic matrix on the axial and torsional 
vibrations of embedded single-walled boron 
nitride nanotube (SWBNNT) was studied by 
Uzun et al. The SWBNNT was modeled as a 
nanorod and the nonlocal strain gradient theory 
was utilized to derive the size-dependent 
equation of motion. Also, a one-parameter 
foundation model was employed to simulate the 
surrounding elastic matrix [61, 62]. The torsional 
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vibration of nanorods with torsional elastic 
boundary conditions via non-local elasticity 
theory was presented by Yayli [63]. 

The above literature survey shows that the 
linear and nonlinear torsional vibrations of 
nanorods in the presence of surface energy are 
investigated. The material properties of 
nanorods were assumed to be homogenous. 
Therefore there is a crucial question: What is the 
torsional behavior of nanorods in the case of 
functionally graded materials? It can be said that 
answering this question is the main goal of the 
present study. 

2. Properties of FG Nanorod 

Figure 1 shows an FG nanorod with inner 
radius Ri and outer radius Ro made from a graded 
mixture of aluminum and silicon. 

The inner surface (r = Ri) of the FG section 
nanorod is a pure Al and the outer surface (r = Ro) 
is a pure Si. The properties of the FG nanorod 
vary through the radius direction based on 
power-law distribution that is stated as [60] 

𝐹(𝑟) = (𝑓𝑟𝑖 − 𝑓𝑟𝑜) (
𝑅𝑜 − 𝑟

𝑅𝑜 − 𝑅𝑖
)
𝑝

+ 𝑓𝑟𝑜 (1) 

where F(r) = E, 𝜌, G, 𝜌𝑠, 𝜇𝑠, 𝜆𝑠; and p is the volume 
fraction index which is a non-negative value. 

3. Governing Equations 

A nanorod with length L and diameter D is 
considered (Fig. 1). The cross-section of the 
nanorod is on the xy plane and the origin of the 
coordinate is set on the left side. The nanorod 
displacement component for torsional vibration 
is given as [64, 65] 

𝑈𝑥 = 0 (2) 

𝑈𝑦 = −𝑧𝜃(𝑥, 𝑡) (3) 

𝑈𝑧 = 𝑦𝜃(𝑥, 𝑡) (4) 

In the Eqs. (2)-(4), 𝜃(𝑥, 𝑡) is angular 
displacement about the center of twist, t denotes 
the time, and 𝑈𝑥 , 𝑈𝑦 , and 𝑈𝑧 are the displacement 

components in the x, y, and z directions, 
respectively. 

The geometrically nonlinear strain-
displacement relationships can be represented 
using von-Kármán theory as follows 

𝜀𝑥𝑥 =
1

2
(𝑦2 + 𝑧2) (

𝜕𝜃

𝜕𝑥
)
2

, 

(5) 

𝜀𝑦𝑦 =
1

2
𝜃2, 

𝜀𝑧𝑧 =
1

2
𝜃2, 

𝜀𝑥𝑦 =
1

2
(−𝑧

𝜕𝜃

𝜕𝑥
+ 𝑦𝜃

𝜕𝜃

𝜕𝑥
), 

𝜀𝑥𝑧 =
1

2
(𝑦

𝜕𝜃

𝜕𝑥
+ 𝑧𝜃

𝜕𝜃

𝜕𝑥
), 

𝜀𝑦𝑧 = 0. 

where 𝜀 is the strain. After obtaining the strains 
in the FG nanorod, the stress components in the 
bulk and the surface of the FG nanorod should be 
obtained. 

3.1.  Stress Components 

The stress components (𝜎𝑖𝑗) of the FG 

nanorod bulk are expressed based on the 
classical theory of elasticity as follows [66]  

 

Fig. 1. Schematic of FG nanorod. 
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𝜎𝑥𝑥 = 
𝐸(𝑟)

(1 + 𝜈)(1 − 2𝜈)
 

         ⨯ [(
1 − 𝜈

2
) (𝑦2 + 𝑧2) (

𝜕𝜃

𝜕𝑥
)
2

+ 𝜈(𝜃2)] 

(6) 

𝜎𝑦𝑦 = 
𝐸(𝑟)

(1 + 𝜈)(1 − 2𝜈)
 

       ⨯ [(
𝜈

2
) (𝑦2 + 𝑧2) (

𝜕𝜃

𝜕𝑥
)
2

+ (
1

2
) (𝜃2)] 

𝜎𝑧𝑧 = 
𝐸(𝑟)

(1 + 𝜈)(1 − 2𝜈)
 

       ⨯ [(
𝜈

2
) (𝑦2 + 𝑧2) (

𝜕𝜃

𝜕𝑥
)
2

+  (
1

2
) (𝜃2)] 

𝜎𝑥𝑦 = 
𝐸(𝑟)

(1 + 𝜈)(1 − 2𝜈)
 

       ⨯ [(
1 − 2𝜈

2
)(−𝑧 (

𝜕𝜃

𝜕𝑥
) + 

1

2
 𝑦 (𝜃

𝜕𝜃

𝜕𝑥
))] 

𝜎𝑥𝑧 = 
𝐸(𝑟)

(1 + 𝜈)(1 − 2𝜈)
 

       ⨯ [(
1 − 2𝜈

2
)(𝑦 (

𝜕𝜃

𝜕𝑥
) + 

1

2
 𝑧 (𝜃

𝜕𝜃

𝜕𝑥
))] 

𝜎𝑦𝑧 =  0. 

To obtain the surface stress components, the 
Gurtin-Murdoch theory called the surface 
elasticity theory [66, 67] is used. The constitutive 
equations of the surface stresses are expressed 
based on the  surface theory as follows 

𝜎𝑠𝑖𝑗 = 𝜎𝑠0  𝛿𝑖𝑗 + 2(𝜇𝑠 − 𝜎𝑠0)𝜀𝑖𝑗  

        +(𝜆𝑠 + 𝜎𝑠_0)𝑈𝑘,𝑘𝛿𝑖𝑗 + 𝜎𝑠_0𝑈𝑖𝑗  
(7) 

where 𝜎𝑠_0 is the surface residual stress under 
unstrained conditions, 𝜆𝑠 and 𝜇𝑠 are surface 
Lamé constants. 𝑈𝑖  is the displacement 
component of the surfaces and δij represents the 
Kronecker delta. 

Substituting Eqs. (2)-(4) and (5) into Eq. (7), 
the surface stress components (𝜎𝑠_𝑖𝑗) for the FG 

nanorod are obtained as 

𝜎𝑠_𝑥𝑥 = 𝜇𝑠(𝑟)(𝑦
2 + 𝑧2) (

𝜕𝜃

𝜕𝑥
)
2

, 

(8) 

𝜎𝑠_𝑦𝑦 = 𝜇𝑠(𝑟)𝜃
2, 

𝜎𝑠_𝑧𝑧 = 𝜇𝑠(𝑟)𝜃
2, 

𝜎𝑠_𝑥𝑦 = 2𝜇𝑠(𝑟) [−𝑧
𝜕𝜃

𝜕𝑥
+
1

2
𝑦𝜃

𝜕𝜃

𝜕𝑥
], 

𝜎𝑠_𝑥𝑧 = 2𝜇𝑠(𝑟) [𝑦
𝜕𝜃

𝜕𝑥
+
1

2
𝑧𝜃

𝜕𝜃

𝜕𝑥
], 

𝜎𝑠_𝑦𝑧 = 0, 

3.2. Governing Equations of Motion 

To derive the equations of nonlinear torsional 
vibration of FG nanorods including the surface 
energy effect Hamilton’s principle (Eq. (9)) is 
used. 

𝛿 ∫ (𝑈 − 𝑇)𝑑𝑡 = 0
𝑡2

𝑡1

 (9) 

in Eq. (9), T and U are the kinetic and strain 
energies, respectively, and are given as 

𝑇 = 𝑇𝑏 + 𝑇𝑠 

  =
1

2
∫ 𝜌(𝑟) {(

𝜕𝑈𝑦

𝜕𝑡
)

2

+ (
𝜕𝑈𝑧
𝜕𝑡
)
2

}
𝑉

𝑑𝑉 

  +
1

2
∫ 𝜌𝑠(𝑟) {(

𝜕𝑈𝑦

𝜕𝑡
)

2

+ (
𝜕𝑈𝑧
𝜕𝑡
)
2

}
𝐴

𝑑𝐴 

(10) 

𝑈 = 𝑈𝑏 + 𝑈𝑠 

=
1

2
∫ {𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝑦𝑦𝜀𝑦𝑦 + 𝜎𝑧𝑧𝜀𝑧𝑧
𝑉

+ 𝜎𝑥𝑦𝜀𝑥𝑦
+ 𝜎𝑥𝑧𝜀𝑥𝑧} 𝑑𝑉 

+
1

2
∫ {𝜎𝑠𝑥𝑥𝜀𝑥𝑥 + 𝜎𝑠𝑦𝑦𝜀𝑦𝑦 + 𝜎𝑠𝑧𝑧𝜀𝑧𝑧
𝐴

+ 𝜎𝑠𝑥𝑦𝜀𝑥𝑦

+ 𝜎𝑠𝑥𝑧𝜀𝑥𝑧} 𝑑𝐴 

(11) 

where 𝜌 and 𝜌𝑠 are the bulk and surface density, 
respectively, A is the cross-sectional area, V is the 
volume, 𝑇𝑏  and 𝑇𝑠 are the bulk and surface kinetic 
energies, respectively, and 𝑈𝑏 and 𝑈𝑠 are the bulk 
and surface strain energies, respectively. 

Substituting Eqs. (10) and (11) into Eq. (9) 
and employing Hamilton's principle result in the 
nonlinear governing equation of motion for 
torsional vibration of FG nanorod and 
corresponding boundary condition as follows 

𝛼1 (
𝜕𝜃

𝜕𝑥
)
2

(
𝜕2𝜃

𝜕𝑥2
) + 𝛼2𝜃

3 + 𝛼3 (
𝜕2𝜃

𝜕𝑥2
) 

+𝛼4𝜃 (
𝜕𝜃

𝜕𝑥
)
2

+ 𝛼4𝜃
2 (
𝜕2𝜃

𝜕𝑥2
) 

+𝛼5 (
𝜕2𝜃

𝜕𝑡2
) = 0 

(12) 

(𝛼6 (
𝜕𝜃

𝜕𝑥
)
3

− 𝛼3 (
𝜕𝜃

𝜕𝑥
) + 𝜃3 (

𝜕𝜃

𝜕𝑥
)) 𝛿𝜃 |

𝑙

0

= 0 

(13) 

where, 𝛼𝑖s (𝑖 = 1,… ,7) are given as 
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𝛼1 = −3∫ 2𝜋𝑟(𝑦2 + 𝑧2)𝜇𝑠(𝑟)
𝑅𝑜

𝑅𝑖

𝑑𝑟 

      −
3

2
∫ 2𝜋𝑟(1 − 𝜈)(𝑦2 + 𝑧2)2𝐴𝑑𝑟
𝑅𝑜

𝑅𝑖

 

(14) 

𝛼2 = 2∫ 2𝜋𝑟𝜇𝑠(𝑟)𝑑𝑟
𝑅𝑜

𝑅𝑖

+∫ 2𝜋𝑟𝐴𝑑𝑟
𝑅𝑜

𝑅𝑖

 

𝛼3 = −2∫ 2𝜋𝑟(𝑦2 + 𝑧2)2𝜇𝑠(𝑟)
𝑅𝑜

𝑅𝑖

𝑑𝑟 

      −
1

2
∫ 2𝜋𝑟(𝑦2 + 𝑧2)(1 − 2𝜈)𝐴𝑑𝑟
𝑅𝑜

𝑅𝑖

 

𝛼4 = −
1

2
∫ 2𝜋𝑟(𝑦2 + 𝑧2)2𝜇𝑠(𝑟)
𝑅𝑜

𝑅𝑖

𝑑𝑟 

     −∫ 2𝜋𝑟(𝑦2 + 𝑧2)𝜈𝐴𝑑𝑟
𝑅𝑜

𝑅𝑖

 

     −
1

8
∫ 2𝜋𝑟(1 − 2𝜈)(𝑦2 + 𝑧2)𝐴𝑑𝑟
𝑅𝑜

𝑅𝑖

 

𝛼5 = −∫ 2𝜋𝑟(𝑦2 + 𝑧2)𝜌(𝑟)𝑑𝑟
𝑅𝑜

𝑅𝑖

 

      −∫ 2𝜋𝑟(𝑦2 + 𝑧2)𝜌𝑠(𝑟)𝑑𝑟
𝑅𝑜

𝑅𝑖

 

𝛼6 = ∫ 2𝜋𝑟(𝑦2 + 𝑧2)𝜇𝑠(𝑟)
𝑅𝑜

𝑅𝑖

𝑑𝑟 

      +
1

2
∫ 2𝜋𝑟(1 − 𝜈)(𝑦2 + 𝑧2)2𝐴𝑑𝑟
𝑅𝑜

𝑅𝑖

 

3.3. Linear Torsional Vibration of FG 
Nanorods 

To obtain linear mode shapes and 
frequencies, the nonlinear parameters in Eqs. 
(12) and (13) should be ignored. This results in 

𝛼3
𝜕2𝜃

𝜕𝑥2
+ 𝛼5

𝜕2𝜃

𝜕𝑡2
= 0 (15) 

[𝛼3 (
𝜕𝜃

𝜕𝑥
)] 𝛿𝜃 |

𝑙

0
= 0 (16) 

The solution of Eq. (15) can be obtained by 
the separation-of-variables method using the 
following equation 

𝜃(𝑥, 𝑡) = 𝛷(𝑥)𝑒−𝑖𝜔𝐿𝑡  (17) 

where, 𝜔𝐿 is the natural linear torsional 
frequency, 𝛷(𝑥) is the linear mode shape, and 

𝑖 = √−1 is the imaginary unit. 

Substituting Eq. (17) into Eq. (15) and (16) 
yields the following equations 

𝛼3
𝑑2𝛷

𝑑𝑥2
− 𝛼5𝜔𝐿

2 = 0 (18) 

[𝛼3
𝑑𝜙

𝑑𝑥
] 𝛿𝛷 |

𝑙

0
= 0 (19) 

Solving Eq. (18) by considering the conditions 
given in Eq. (19) results in the FG nanorod’s 
mode shapes and its natural frequencies with 
fixed–fixed (fi-fi) and fixed–free (fi-fr) boundary 
conditions as below  

• fi-fi end condition: 

𝛷𝑛(𝑥) = 𝐶1𝑆𝑖𝑛 (
𝑛𝜋

𝑙
𝑥) (20) 

𝜔𝐿)𝑛 = (
𝑛𝜋

𝑙
)√
𝛼3
𝛼5

 (21) 

• fi-free end condition: 

𝛷𝑛(𝑥) = 𝐶1𝑆𝑖𝑛 (
(2𝑛 − 1)𝜋

2𝑙
𝑥) (22) 

𝜔𝐿)𝑛 = (
(2𝑛 − 1)𝜋

𝑙
)√
𝛼3
𝛼5

 (23) 

3.4. Nonlinear Torsional Vibration of FG 
Nanorods 

In the case of nonlinear torsional vibration of 
FG nanorod, to convert the partial differential 
equation (Eq. (12)) to an ordinary differential 
equation, the multi-mode Galerkin technique 
(Eq. (24)) is applied. 

[θ(𝑥, 𝑡) =∑𝛷𝑖(𝑥)𝑞𝑖(𝑡)

𝑁

𝑖=1

] (24) 

In Eq. (24), 𝑞(𝑡) denotes a time-dependent 
function to be determined and 𝛷(𝑥) is the 
normalized linear mode shape function which 
can be obtained from Eqs. (20) and (22). Putting 
Eq. (24) into Eq. (12) yields 
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(𝛼1∑∑∑
𝑑𝛷𝑖
𝑑𝑥

𝑁

𝑖=1

𝑑𝛷𝑗

𝑑𝑥

𝑁

𝑗=1

𝑑2𝛷𝑘
𝑑𝑥2

𝑁

𝑘=1

)𝑞𝑖𝑞𝑗𝑞𝑘

+ (𝛼2∑∑∑𝛷𝑖

𝑁

𝑖=1

𝛷𝑗

𝑁

𝑗=1

𝛷𝑘

𝑁

𝑘=1

)𝑞𝑖𝑞𝑗𝑞𝑘

+ (𝛼3∑
𝑑2𝛷𝑖
𝑑𝑥2

𝑁

𝑖=1

) 𝑞𝑖

+ (𝛼4∑∑∑𝛷𝑖

𝑁

𝑖=1

𝑑𝛷𝑗

𝑑𝑥

𝑁

𝑗=1

𝑑𝛷𝑘
𝑑𝑥

𝑁

𝑘=1

)𝑞𝑖𝑞𝑗𝑞𝑘

+ (𝛼4∑∑∑𝛷𝑖

𝑁

𝑖=1

𝛷𝑗

𝑁

𝑗=1

𝑑2𝛷𝑘
𝑑𝑥2

𝑁

𝑘=1

)𝑞𝑖𝑞𝑗𝑞𝑘

+ (𝛼5∑𝛷𝑖

𝑁

𝑖=1

) 𝑞�̈� = 0 

(25) 

In the next step, the following dimensionless 
parameters are defined 

where qmax denotes the maximum amplitude of 
the time-dependent function 𝑞(𝑡). 

Using the dimensionless parameters in Eq. 
(25), multiplying Eq. (25) by the normalized 
linear mode shape 𝛷(𝑋), and integrating from 
X = 0 to X = 1, results in the following equation 

{
𝛼1
𝛼5𝐿

2
∑∑∑(𝛽1)𝑚𝑖𝑗𝑘

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑘=1

+
𝛼2𝐿

2

𝛼5
∑∑∑(𝛽2)𝑚𝑖𝑗𝑘

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑘=1

+
𝛼4
𝛼5
∑∑∑(𝛽3)𝑚𝑖𝑗𝑘

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑘=1

+
𝛼4
𝛼5
∑∑∑(𝛽4)𝑚𝑖𝑗𝑘

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑘=1

} 𝑞𝑚𝑎𝑥
2𝑞�̅�𝑞�̅�𝑞𝑘̅̅ ̅

+ 𝜔𝑚
2�̅�𝑚 + �̈̅�𝑚 = 0 

(27) 

in which the parameters (𝛽1)𝑚𝑖𝑗𝑘 , (𝛽2)𝑚𝑖𝑗𝑘 , 

(𝛽3)𝑚𝑖𝑗𝑘  and (𝛽4)𝑚𝑖𝑗𝑘  are specified as: 

(𝛽1)𝑚𝑖𝑗𝑘 = ∫ (𝛷𝑚
𝑑𝛷𝑖
𝑑𝑋

𝑑𝛷𝑗

𝑑𝑋

𝑑2𝛷𝑘
𝑑𝑋2

)𝑑𝑋
1

0

 

(𝛽2)𝑚𝑖𝑗𝑘 = ∫ (𝛷𝑚𝛷𝑖𝛷𝑗𝛷𝑘)𝑑𝑋
1

0

 

(𝛽3)𝑚𝑖𝑗𝑘 = ∫ (𝛷𝑚𝛷𝑖
𝑑𝛷𝑗

𝑑𝑋

𝑑𝛷𝑘
𝑑𝑋
)𝑑𝑋

1

0

 

(𝛽4)𝑚𝑖𝑗𝑘 = ∫ (𝛷𝑚𝛷𝑖𝛷𝑗
𝑑2𝛷𝑘
𝑑𝑋2

)𝑑𝑋
1

0

 

(28) 

and the following relations are used  

{
 
 
 

 
 
 ∫ 𝛷𝑚̅̅ ̅̅ (𝑥)𝛷�̅�(𝑥)𝑑𝑋 = 𝛿𝑖𝑚

1

0

                

∫ 𝛷𝑚̅̅ ̅̅ (𝑥)
𝑑2𝛷�̅�(𝑥)

𝑑𝑋2

1

0

𝑑𝑋 = −𝜆𝑚
2 𝛿𝑖𝑚

𝜔𝑚
2 = −

𝛼3𝜆𝑚
2

𝛼5𝐿
2
                                   

 (29) 

where in Eqs. (28) and (29) 𝜆𝑚 and �̅�𝑚(𝑋) are 
defined as  

• 𝜆𝑚 = 𝑚𝜋; 

�̅�𝑚 = √2𝑆𝑖𝑛(𝜆𝑚𝑋) 

(fi-fi end conditions) 

(30) 

• 𝜆𝑚 = (2𝑚 − 1)
𝜋

2
; 

�̅�𝑚 = √2𝑆𝑖𝑛(𝜆𝑚𝑋) 

(fi-free end conditions) 

(31) 

4. Solution Method 

The multiple scale method is employed to 
solve the nonlinear equation, Eq. (27). To this 
end, the small dimensionless parameter ε is 
introduced. Therefore, Eq. (27) can be rewritten 
as follows 
�̈̅�𝑚 + 𝜔𝑚

2�̅�𝑚

+ 𝜀 {
𝛼1
𝛼5𝐿

2
∑∑∑(𝛽1)𝑚𝑖𝑗𝑘

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑘=1

+
𝛼2𝐿

2

𝛼5
∑∑∑(𝛽2)𝑚𝑖𝑗𝑘

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑘=1

+
𝛼4
𝛼5
∑∑∑(𝛽3)𝑚𝑖𝑗𝑘

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑘=1

+
𝛼4
𝛼5
∑∑∑(𝛽4)𝑚𝑖𝑗𝑘

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑘=1

} 𝑞𝑚𝑎𝑥
2𝑞�̅�𝑞�̅�𝑞𝑘̅̅ ̅

= 0 

(32) 

To use the method of multiple scales, the 
solution of Eq. (32) can be represented by an 
expansion having the following form 

�̅�𝑚(𝑡𝑖; 𝜀) = �̅�𝑚0(𝑡0, 𝑡1) + 𝜀�̅�𝑚1(𝑡0, 𝑡1) 

                  +𝜀2�̅�𝑚2(𝑡0, 𝑡1) + ⋯ 
(33) 

in Eq. (33), t0 = t denotes time scale that shows 
oscillatory effect and 𝑡𝑛 = 𝜀

𝑛𝑡. 

Substituting Eq. (33) into Eq. (32) and setting 
the coefficients with a similar power equal to 
zero leads to the following set of differential 
equations: 

𝑋 =
𝑥

𝐿
 ;  �̅� =

𝑞

𝑞𝑚𝑎𝑥
;  �̅� =

𝛷

𝐿
 (26) 
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𝜀0:       𝐷0
2�̅�𝑚0 + 𝜔𝑚

2�̅�𝑚0 = 0 (34) 

𝜀1:      𝐷0
2�̅�𝑚1 + 𝜔𝑚

2�̅�𝑚1 = −2𝐷0𝐷1�̅�𝑚0 + (𝛽)𝑚𝑚𝑚𝑚𝑞𝑚𝑎𝑥
2�̅�𝑚0

3 (35) 

𝜀2:      𝐷0
2�̅�𝑚2 +𝜔𝑚

2�̅�𝑚2 = −(𝐷1
2 + 2𝐷0𝐷1)�̅�𝑚0 − 2𝐷0𝐷1�̅�𝑚1 −

          −𝑞𝑚𝑎𝑥
2�̅�𝑚0

2 {∑ �̅�𝑗1 ((
𝛼1

𝛼5𝑙
2 ((𝛽1)𝑚𝑗𝑚𝑚 + (𝛽1)𝑚𝑚𝑗𝑚 + (𝛽1)𝑚𝑚𝑚𝑗)) + (

𝛼2𝑙
2

𝛼5
((𝛽2)𝑚𝑗𝑚𝑚 +

𝑛
𝑗=1

          (𝛽2)𝑚𝑚𝑗𝑚 + (𝛽2)𝑚𝑚𝑚𝑗)) + (
𝛼4

𝛼5
((𝛽3)𝑚𝑗𝑚𝑚 + (𝛽4)𝑚𝑗𝑚𝑚 + (𝛽3)𝑚𝑚𝑗𝑚 + (𝛽4)𝑚𝑚𝑗𝑚 +

           (𝛽3)𝑚𝑚𝑚𝑗 + (𝛽4)𝑚𝑚𝑚𝑗)))} 

(36) 

 
where 

(𝛽)𝑚𝑚𝑚𝑚 = (
𝛼1

𝛼5𝑙
2
(𝛽1)𝑚𝑚𝑚𝑚 +

𝛼2𝑙
2

𝛼5
(𝛽2)𝑚𝑚𝑚𝑚 +

𝛼4

𝛼5
((𝛽3)𝑚𝑚𝑚𝑚 + (𝛽4)𝑚𝑚𝑚𝑚)) and 𝐷𝑖 =

𝜕

𝜕𝑡𝑖
. 

A general solution for Eq. (34) can be given as 

�̅�𝑚0 = 𝐴𝑚𝑒
𝑖𝜔𝑚𝑡0 + �̅�𝑚 𝑒

−𝑖𝜔𝑚𝑡0 , 

�̅�𝑛0 = 0    𝑓𝑜𝑟   𝑛 ≠ 𝑚. 
(37) 

Am and �̅�𝑚 are a complex function and the 
complex conjugate of Am, respectively; These 
functions can be determined by eliminating the 
secular terms from �̅�1. For this purpose, �̅�𝑚0 and   

�̅�𝑛0  from Eq. (37) should be substituted into Eq. 

(35).  

This results in 

𝐷0
2�̅�𝑚1 + 𝜔𝑚

2�̅�𝑚1 = 

−(𝐷1𝐴𝑚)(2𝑖𝜔𝑚𝑒
𝑖𝜔𝑚𝑡0) 

+𝑞𝑚𝑎𝑥
2 (

𝛼1
𝛼5𝐿

2
((𝛽1)𝑚𝑚𝑚𝑚𝐴𝑚

3𝑒3𝑖𝜔𝑚𝑡0

+ 3(𝛽1)𝑚𝑚𝑚𝑚𝐴𝑚
2�̅�𝑚𝑒

𝑖𝜔𝑚𝑡0)

+
𝛼2𝐿

2

𝛼5
((𝛽2)𝑚𝑚𝑚𝑚𝐴𝑚

3𝑒3𝑖𝜔𝑚𝑡0

+ 3(𝛽2)𝑚𝑚𝑚𝑚𝐴𝑚
2�̅�𝑚𝑒

𝑖𝜔𝑚𝑡0)

+
𝛼4
𝛼5
(((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚)𝐴𝑚
3𝑒3𝑖𝜔𝑚𝑡0

+ 3((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚)𝐴𝑚
2�̅�𝑚𝑒

𝑖𝜔𝑚𝑡0)) + 𝐶𝐶 

(38) 

𝐷0
2�̅�𝑛1 +𝜔𝑚

2�̅�𝑛1

= 𝑞𝑚𝑎𝑥
2 (

𝛼1
𝛼5𝐿

2
((𝛽1)𝑚𝑚𝑚𝑚𝐴𝑚

3𝑒3𝑖𝜔𝑚𝑡0

+ 3(𝛽1)𝑚𝑚𝑚𝑚𝐴𝑚
2�̅�𝑚𝑒

𝑖𝜔𝑚𝑡0)

+
𝛼2𝐿

2

𝛼5
((𝛽2)𝑚𝑚𝑚𝑚𝐴𝑚

3𝑒3𝑖𝜔𝑚𝑡0

+ 3(𝛽2)𝑚𝑚𝑚𝑚𝐴𝑚
2�̅�𝑚𝑒

𝑖𝜔𝑚𝑡0)

+
𝛼4
𝛼5
(((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚)𝐴𝑚
3𝑒3𝑖𝜔𝑚𝑡0

+ 3((𝛽3)𝑚𝑚𝑚𝑚

+ (𝛽4)𝑚𝑚𝑚𝑚)𝐴𝑚
2�̅�𝑚𝑒

𝑖𝜔𝑚𝑡0)) + 𝐶𝐶 

(39) 

In Eq. (39) CC denotes the complex conjugate 
of the past terms. The resonance effect in these 
equations must be eliminated, so we do 

−𝐷1𝐴𝑚(2𝑖𝜔𝑚𝑒
𝑖𝜔𝑚𝑡0) 

+3𝑞𝑚𝑎𝑥
2{(𝛽)𝑚𝑚𝑚𝑚𝐴𝑚

2�̅�𝑚𝑒
𝑖𝜔𝑚𝑡0} = 0 

(40) 

Now, the solution of Eqs. (38) and (39) are 
expressed as 

�̅�𝑚1 = 

        −
𝑞𝑚𝑎𝑥

2

8𝜔𝑚
2
((𝛽)𝑚𝑚𝑚𝑚)𝐴𝑚

3𝑒3𝑖𝜔𝑚𝑡0 + 𝐶𝐶 
(41) 

�̅�𝑛1 = 

      
3𝑞𝑚𝑎𝑥

2

(𝜔𝑛
2 − 𝜔𝑚

2)
((𝛽)𝑚𝑚𝑚𝑚)𝐴𝑚

2𝐴𝑚̅̅ ̅̅ 𝑒
𝑖𝜔𝑚𝑡0 

     +
𝑞𝑚𝑎𝑥

2

(𝜔𝑛
2 − 9𝜔𝑚

2)
((𝛽)𝑚𝑚𝑚𝑚)𝐴𝑚

3𝑒3𝑖𝜔𝑚𝑡0 

          +𝐶𝐶 

(42) 

To solve Eq. (40), 𝐴𝑚is expressed in the polar 
form 
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𝐴𝑚 =
1

2
𝑎𝑚𝑒

𝑖𝑏𝑚 (43) 

where a and b are real parameters. 
Substituting Eq. (43) into Eq. (40) and 

separating the real and imaginary sections equal 
to zero, leads to the following equations 

𝑰𝒎: 𝜔𝑚(𝐷1𝑎𝑚) = 0           
𝑦𝑖𝑒𝑙𝑑𝑠
→    

𝑎𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(44) 𝑹𝒆: − 𝑎𝑚𝜔𝑚(𝐷1𝑏𝑚) +
3𝑞𝑚𝑎𝑥

2𝑎𝑚
3

8
(𝛽)𝑚𝑚𝑚𝑚 = 0  

𝑦𝑖𝑒𝑙𝑑𝑠
→     

𝑏𝑚 =
3𝑞𝑚𝑎𝑥

2𝑎𝑚
2

8𝜔𝑚
(𝛽)𝑚𝑚𝑚𝑚𝑡1 + 𝑏𝑚0 

where 𝑏𝑚0 is a constant. Putting the results of 
Eqs. (44) into Eq. (43), 𝐴𝑚 is obtained as 

𝐴𝑚

= 
1

2
𝑎𝑚𝑒

𝑖(
3𝑞𝑚𝑎𝑥

2𝑎𝑚
2

8𝜔𝑚
(𝛽)𝑚𝑚𝑚𝑚𝑡1+𝑏𝑚0)

=
1

2
𝑎𝑚𝑒

𝑖(
3𝑞𝑚𝑎𝑥

2𝑎𝑚
2

8𝜔𝑚
(𝛽)𝑚𝑚𝑚𝑚𝜀𝑡+𝑏𝑚0) 

(45) 

Substituting Eqs. (45), (42), (41), and (37) 
into Eq. (33) results in [69] 
�̅�𝑚
= 𝐴𝑚𝑒

𝑖𝜔𝑚𝑡0

+ 𝜀 (−
𝑞𝑚𝑎𝑥

2

8𝜔𝑚
2
((𝛽)𝑚𝑚𝑚𝑚)𝐴𝑚

3𝑒3𝑖𝜔𝑚𝑡0)

+ 𝐶𝐶 

(46) 

�̅�𝑛

= 𝜀 (
3𝑞𝑚𝑎𝑥

2

(𝜔𝑛
2 −𝜔𝑚

2)
((𝛽)𝑚𝑚𝑚𝑚)𝐴𝑚

2𝐴𝑚̅̅ ̅̅ 𝑒
𝑖𝜔𝑚𝑡0

+
𝑞𝑚𝑎𝑥

2

(𝜔𝑛
2 − 9𝜔𝑚

2)
((𝛽)𝑚𝑚𝑚𝑚)𝐴𝑚

3𝑒3𝑖𝜔𝑚𝑡0)

+ 𝐶𝐶 

 (47) 

Eqs. (46) and (47) can be rewritten as 

�̅�𝑚 = 𝑎𝑚 cos(𝜃) 

+𝜀 [−
𝑞𝑚𝑎𝑥

2

32𝜔𝑚
2
𝑎𝑚

3(𝛽)𝑚𝑚𝑚𝑚] cos(3𝜃) + O(𝜀
2) 

 (48) 

�̅�𝑛 = 𝜀 ((
3𝑞𝑚𝑎𝑥

2

4(𝜔𝑛
2−𝜔𝑚

2)
𝑎𝑚

3(𝛽)𝑚𝑚𝑚𝑚) cos(𝜃) +

(
𝑞𝑚𝑎𝑥

2

4(𝜔𝑛
2−9𝜔𝑚

2)
𝑎𝑚

3(𝛽)𝑚𝑚𝑚𝑚) cos(3𝜃)) +O(𝜀2) 

 (49) 

where 

𝜃 = 𝜔𝑚
𝑛𝑙𝑡 + 𝑏𝑚0 

𝜔𝑚
𝑛𝑙 = 𝜔𝑚 + 𝜀

3𝑞𝑚𝑎𝑥
2𝑎𝑚

2

8𝜔𝑚
(𝛽)𝑚𝑚𝑚𝑚 

(50) 

𝜔𝑚
𝑛𝑙  denotes the nonlinear and 𝜔𝑚 is the linear 

natural frequency. Since 𝜀 represents a 
bookkeeping device, we put it equal to unity and 
for satisfying the initial conditions 
(�̅�𝑚(0) = 0, �̇̅�𝑚(0) = 0 ) in Eq. (44), the error 
related to the second-order expansion should be 
taken into account. These yields 𝑏𝑚0 = 0, 𝑎𝑚 = 1.  

Eq. (49) displays that internal resonances 
occur in two cases, one-to-one (𝜔𝑛 = 𝜔𝑚), and 
three-to-one (𝜔𝑛 = 3𝜔𝑚). 

5. Numerical Results 

Before the presentation of graphical and 
numerical results, a comparative study is 
conducted to verify the applicability and 
accuracy of the present formulation. Due to the 
lack of a similar problem and solution, the 
accuracy of the present solution is verified by 
comparing the results with those of Setoodeh et 
al. [66]. The Young’s modulus and density of the 
nanorod were taken as 70 GPa and 2700 kg/m3, 
respectively while the Poisson’s ratio (ϑ) is 0.23. 
In Table 1 natural frequencies of FGM nanorods 
are listed for various vibration amplitudes, mode 
numbers, and nanorod lengths. As shown in 
Table 1, the reliability of the present formulation 
and results is confirmed. However, a slight 
difference between reported frequencies can be 
observed, which is attributed to different 
methods of solution. In the current study, the 
technique of multiple scales has been used to 
characterize the dynamic characteristics of the 
nanorod, while Setoodeh et al. [66] used the 
Homotopy Analysis Method to identify linear and 
nonlinear torsional free vibration of functionally 
graded micro/nano-tubes. 

In the following, the linear and nonlinear 
frequencies of nanorods are presented by 
considering the surface effects, the frequency 
number, the amplitude of nonlinear vibrations, 
and the radius and the length of the nanorod. In 
Table 2, the bulk and the surface elastic 
properties of aluminum (Al) and silicon (Si) are 
presented. The crystallographic directions of 
aluminum and silicon are [1 1 1] and [1 0 0], 
respectively. 

The ratio of frequency is calculated as follows 
to demonstrate how surface components affect 
the natural torsional frequencies of nanorods: 

𝐹𝑅 =
𝑓𝑠
𝑓𝑐

 
 

(51) 

in which 𝑓𝑠 is the natural torsional frequency of 
nanorods with surface energy effects and 𝑓𝑐 is the 
natural torsional frequency of nanorods without 
surface energy effects. It can be seen from this 
equation if the frequency ratio is less than one, 
then the surface parts have a decremental effect 
and vice versa. Furthermore, as the frequency 
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ratio is one, the natural torsional frequency is not 
affected by the surface components. 

Firstly, the effect of surface energy 
parameters on the torsional vibration of FG 
nanorods is investigated in Table 3. Listed in 
Table 3 are linear and nonlinear torsional 
frequencies of FG nanorod for various 
amplitudes of vibration, nanorod radii, mode 
numbers, and end conditions, i.e. fi-fi and fi-fr. 
Based on this table, the following results can be 
obtained. In both linear and nonlinear vibrations 
surface density has a decreasing effect on the 
natural frequencies of the nanorod. This 
reduction effect is independent of the amplitude 

of vibrations, mode number, and type of 
boundary condition but it depends on the radius 
of the nanotube and the FG power index. It is seen 
from Table 3, that as the FG power index grows, 
the reducing effect of the surface density 
parameter rises. This is due to the increase in the 
amount of surface density with increasing the FG 
power index and since increasing the density 
increases the kinetic energy, the frequency 
decreases. Another result obtained from Table 3 
is the reduction in the reducing effect of surface 
density by growing the radius of the nanorod. As 
another result of Table 3, it can be mentioned the 
effect of increasing the radius of the nanorod in 
reducing the effect of surface density. 

 

Table 1. Comparison of nonlinear torsional frequencies (GHz) for various lengths and mode numbers 
 (all surface parameters considered to be zero). 

Amplitude of vibration Length (nm) Mode number Setoodeh et al. [68] Present study 
0.001 10 1st 167.422 167.409 
  2nd 363.744 363.430 
 15 1st 109.738 109.736 
  2nd 228.380 228.331 
0.010 10 1st 441.133 434.047 
  2nd 1672.54 1639.00 
 15 1st 212.00 209.533 
  2nd 760.65 746.79 

Table 2. Bulk and the surface elastic properties of aluminum and silicon 

Material 
Bulk elastic properties Surface elastic properties 

𝐺(𝐺𝑝𝑎) 𝜌(𝑘𝑔 𝑚3⁄ ) �̅�(𝑘𝑔 𝑚2⁄ ) �̅�(𝑁 𝑚⁄ ) 

Al (internal surface) 28.5 2700 10-7×5.46 -0.8269 

Si (external surface) 86 1250 10-7×3.17 -2.7779 

Table 3. Linear and nonlinear torsional frequency ratios of FG nanorod 

Boundary 

condition 
Ro (nm) n 𝑞𝑚𝑎𝑥 

Only 𝜌𝑠 Only 𝜇𝑠 Both 𝜌𝑠, 𝜇𝑠 

p p p 
0 1 100 0 1 100 0 1 100 

Fixed-Fixed 

1 

1 

0.00 0.8882 0.8879 0.8676 0.9621 0.9551 0.9560 0.8545 0.8481 0.8294 

0.05 0.8882 0.8879 0.8676 0.9743 0.9740 0.9733 0.8653 0.8648 0.8445 

0.10 0.8882 0.8879 0.8676 0.9896 0.9937 0.9933 0.8789 0.8824 0.8618 

5 

0.00 0.8882 0.8879 0.8676 0.9621 0.9551 0.9560 0.8545 0.8481 0.8294 

0.05 0.8882 0.8879 0.8676 0.9629 0.9563 0.9571 0.8552 0.8491 0.8304 

0.10 0.8882 0.8879 0.8676 0.9650 0.9597 0.9601 0.8571 0.8521 0.8330 

2 

1 

0.00 0.9388 0.9386 0.9263 0.9805 0.9776 0.9780 0.9205 0.9176 0.9059 

0.05 0.9388 0.9386 0.9263 0.9828 0.9806 0.9807 0.9227 0.9204 0.9085 

0.10 0.9388 0.9386 0.9263 0.9877 0.9867 0.9865 0.9272 0.9262 0.9138 

5 

0.00 0.9388 0.9386 0.9263 0.9805 0.9776 0.9780 0.9205 0.9176 0.9059 

0.05 0.9388 0.9386 0.9263 0.9808 0.9779 0.9782 0.9207 0.9178 0.9062 

0.10 0.9388 0.9386 0.9263 0.9814 0.9786 0.9790 0.9213 0.9185 0.9068 

Fixed-Free 

1 

1 

0.00 0.8882 0.8879 0.8676 0.9621 0.9551 0.9560 0.8545 0.8481 0.8294 

0.05 0.8882 0.8879 0.8676 0.9895 0.9937 0.9933 0.8789 0.8823 0.8618 

0.10 0.8882 0.8879 0.8676 1.0021 1.0073 1.0084 0.8900 0.8945 0.8749 

5 

0.00 0.8882 0.8879 0.8676 0.9621 0.9551 0.9560 0.8545 0.8481 0.8294 

0.05 0.8882 0.8879 0.8676 0.9630 0.9566 0.9573 0.8553 0.8494 0.8305 

0.10 0.8882 0.8879 0.8676 0.9655 0.9605 0.9608 0.8575 0.8529 0.8336 

2 

1 

0.00 0.9388 0.9386 0.9263 0.9805 0.9776 0.9780 0.9205 0.9176 0.9059 

0.05 0.9388 0.9386 0.9263 0.9876 0.9867 0.9864 0.9272 0.9261 0.9137 

0.10 0.9388 0.9386 0.9263 0.9957 0.9958 0.9959 0.9348 0.9347 0.9225 

5 

0.00 0.9388 0.9386 0.9263 0.9805 0.9776 0.9780 0.9205 0.9176 0.9059 

0.05 0.9388 0.9386 0.9263 0.9808 0.9779 0.9783 0.9207 0.9178 0.9062 

0.10 0.9388 0.9386 0.9263 0.9814 0.9787 0.9790 0.9213 0.9186 0.9069 
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As the radius of the nanorod increases, the 
energy stored in its volume and surface 
increases, but the rate of the energy stored in the 
volume of the nanorod is more than the energy 
stored on its surface. Therefore, the ratio of the 
total volume energy to the surface energy will be 
greater than before. As a result, the effect of 
surface density becomes less. 

According to Table 3, it can be seen that the 
effect of the Lamé constant on the natural 
frequency of nanorod is a little different from the 
effect of the surface density parameter. It is 
readily apparent from Table 3 that in the case of 
linear vibrations, the surface Lamé constant has 
a decreasing effect on the torsional frequencies of 
the FG nanorod. This decreasing effect is 
independent of the frequency mode number and 
boundary end conditions but depends on the 
value of the power index and the nanorod radius. 
There is no determined relationship between the 
reducing effect of the Lamé constant on the 
natural frequency and the value of the FG power 
index. As the value of the FG index increases from 
0 to 1, the reducing effect of the Lamé constant 
rises. Then, by growing m from 1 to 100, the 
decreasing effect of the Lamé constant on the 
natural frequency reduces. In the end, the 
reduction effect of the Lamé constant on the 
natural frequency of nanorod for m = 0 (i.e. Al 
nanorod) is less than for m = 100 (i.e. Si nanorod). 
The reason for this is the difference in the 
amount of Al and Si Lamé constant. Because the 
dependence of the Lamé constant reduction 
effect on the FG nanorod radius has a reason 
similar to the dependence of the surface density 
reducing effect on the FG nanorod radius, its 
repetition is avoided. 

In general, it can be said that the Lamé 
constant has a reducing influence on the 
torsional frequencies of the FG nanorod in the 
case of nonlinear vibrations. This decreasing 
effect depends not only on the frequency number 
and the boundary conditions but also depends on 
the amplitude of the nonlinear vibrations and the 
radius of the FG nanorod. However, according to 
Table 3, for the high amplitude of vibrations and 
the C-F boundary condition, the Lamé constant 
has an increasing effect. The dependence of the 
Lamé constant effect on the value of the FG index 
is similar to that of linear vibrations. Based on 
Table 3, by increasing the amplitude of nonlinear 
vibrations and assuming that other parameters 
do not change, the decreasing effect of the Lamé 
constant reduces. Because with increasing 
amplitude of vibrations, the strain energy in the 
volume of nanorods increases at a higher rate 
than the strain energy at the surface of the 
nanorod. The rate of this growth is higher in the 
higher frequencies number and for the fi-fi 

boundary condition. Another result shown in 
Table 3 is that like linear vibrations, the 
decreasing effect of the Lame constant decreases 
with the increasing radius of the FG nanorod. 
Finally, it can be seen from Table 3 that the 
reduction effect of the Lamé constant on the 
torsional frequencies of the FG nanorod is higher 
for nanorods with fi-fr end conditions than for 
nanorods with fi-fi end conditions. 

Finally, the decreasing effects of surface 
density and surface Lamé constant on the linear 
and nonlinear torsional frequencies of the FG 
nanotube become apparent as a cumulative 
effect when both variables are considered. Table 
3 displays that the reducing effect of the effective 
surface parameters on the torsional vibration 
behavior of the FG nanorods, in the case of linear 
vibrations, is independent of the boundary 
condition and frequency number. However, in 
the case of nonlinear vibrations, the mentioned 
reduction effect depends on all factors, including 
the type of boundary condition, the radius of the 
nanorod, the amplitude of the vibrations, and the 
frequency number. The manner of dependence 
and the type of effect on the nonlinear torsional 
frequencies of the FG nanotubes are similar to 
those stated for the case only considering the 
effect of the Lamé surface constant, and its 
explanations are omitted to avoid repetition. 

The variation of the torsional frequency of the 
FG nanorod against the nanorod length for 
various FG power indexes, mode numbers, 
vibration amplitude, and type of boundary 
conditions is presented in Figs. 2a-2h. It can be 
found that for shorter nanorods and by 
increasing the FG power index, the decreasing 
effect of surface parameters reduces. The reason 
for the greater decreasing effect of surface 
parameters on the torsional frequencies of 
nanorods with shorter lengths is that the shorter 
the nanorod length, the greater the ratio of 
energy stored at the surface to energy stored at 
volume.  

In addition, it is also observed that as the 
length of the FG nanorod increases, both the 
frequency and the decreasing effect of the surface 
parameters lessen. This behavior is observed for 
different values of the FG power index, vibration 
amplitude, type of boundary condition, and 
frequency number. 

The conditions for occurring internal 
resonances of C-C and C-F nanorods with and 
without the effect of surface parameters are 
listed in Tables 4a and 4b. It is clear that 
considering the surface parameters changes the 
internal resonance ratio, and its value depends 
on the type of boundary condition. Another point 
that can be seen from Tables 4a and 4b is that 
considering the surface parameters and for 
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certain values of m, n, and qmax, internal 
resonances occur for different values of the FG 
power index at different nanometer lengths. For 
a given value of m, n, and p by increasing the 
amplitude of the vibrations, the internal 

resonances of the nanorod occur in shorter 
lengths. On the contrary, for certain values of p, 
n, and qmax as the frequency number increases, 
the internal resonance of the FG nanorod occurs 
at longer lengths. 

  

  

  

  
Fig. 2. Variations of axial frequencies versus the nanorod length, Ro=2.25 nm, Ri=1.25, a) Fi-Fi, n=1, qmax=0; 

 b) Fi-Fi, n=1, qmax=0.05; c) Fi-Fi, n=5, qmax=0; d) Fi-Fi, n=5, qmax=0.05; e) Fi-Fr, n=1, qmax=0; 
 f) Fi-Fr, n=1, qmax=0.05; g) Fi-Fr, n=5, qmax=0; h) Fi-Fr, n=5, qmax=0.05 

 (SD.SL means surface density and surface Lamé constants). 
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Table 4a. Various conditions for occurring internal resonances of fixed-fixed FG nanorod 
 with and without surface effects (Ro=1.5 nm and Ri=0.25 nm). 

n m qmax p Length (nm) 
𝜔𝑛 𝜔𝑚⁄  

Without surface effect With surface effect 

4 1 0.07 0 20.26 3.0000 2.9754 
1 18.57 3.0000 2.9721 

100 20.16 3.0000 2.9715 

4 1 0.08 0 17.79 3.0000 2.9748 

1 16.31 3.0000 2.9718 

100 17.70 3.0000 2.9714 

4 1 0.09 0 15.88 3.0000 2.9754 

1 14.56 3.0000 2.9729 

100 15.80 3.0000 2.9721 

4 1 0.10 0 14.38 3.0000 2.9755 
1 13.19 3.0000 2.9730 
100 14.31 3.0000 2.9718 

5 1 0.07 0 28.34 3.0000 2.9602 
1 25.97 3.0000 2.9556 

100 28.20 3.0000 2.9546 
5 1 0.08 0 24.85 3.0000 2.9596 

1 22.77 3.0000 2.9556 

100 24.72 3.0000 2.8123 
5 1 0.09 0 22.14 3.0000 2.9603 

1 20.29 3.0000 2.9563 

100 22.03 3.0000 2.9548 
5 1 0.10 0 19.99 3.0000 2.9610 

1 18.33 3.0000 2.9562 

100 19.89 3.0000 2.9556 

Table 4b. Various conditions for occurring internal resonances of fixed-free FG nanorod 
 with and without surface effects (Ro=1.5 nm and Ri=0.25 nm). 

n m qmax p Length (nm) 
𝜔𝑛 𝜔𝑚⁄  

Without surface effect With surface effect 

4 1 0.07 0 19.83 3.0000 2.9427 
1 18.17 3.0000 2.9364 

100 19.72 3.0000 2.9369 

4 1 0.08 0 17.37 3.0000 2.9439 

1 15.92 3.0000 2.9370 

100 17.28 3.0000 2.9369 

4 1 0.09 0 15.47 3.0000 2.9440 

1 14.18 3.0000 2.9373 

100 15.39 3.0000 2.9370 

4 1 0.10 0 13.96 3.0000 2.9439 
1 12.79 3.0000 2.9394 

100 13.89 3.0000 2.9364 
5 1 0.07 0 24.15 3.0000 2.9334 

1 22.13 3.0000 2.9257 

100 24.02 3.0000 2.9260 
5 1 0.08 0 21.26 3.0000 2.9153 

1 19.39 3.0000 2.9263 

100 21.05 3.0000 2.9255 
5 1 0.09 0 18.84 3.0000 2.9346 

1 17.27 3.0000 2.9277 

100 18.74 3.0000 2.9269 
5 1 0.10 0 17.00 3.0000 2.9344 

1 15.58 3.0000 2.9279 

100 16.91 3.0000 2.9267 
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The variations of the natural frequencies 
versus vibration amplitude for various cases are 
presented in Figs. 3a-3d. In these figures, the first 
and fifth modes of FG nanorods with fi-fi and fi-fr 
boundary conditions are considered. It is 
observed that for both boundary conditions, 
overall variations of frequencies are the same 
and this trend can be observed in different mode 
numbers. In addition, it is revealed that as the 
amplitude of vibrations increases, the natural 
frequency of FG nanorod rises and the magnitude 
of the increase is greater at higher amplitudes. 
These changes are more obvious at lower mode 
numbers. The other results are the same as those 
reported before, therefore they are not repeated 
here again. 

In the end, the effect of radius variations on 
the natural frequency of FG nanorod is 
investigated in Figs. 4a-4h. By comparing the 
curves in linear and nonlinear vibration modes, it 
is observed that the effect of surface energy on 
linear and nonlinear frequencies is different from 
each other (as explained before in Table 3). Also, 
depending on the different mode numbers, the 
effect of surface energy on the natural 
frequencies of FG nanorod is various. In Figs 4a-
4h, the effect of surface energy on the natural 
frequencies of the nanorod can be seen for 
different values of the FG power index and 
different radii of the nanorod (as seen before in 
Table 3). 

6. Conclusions 

In this study, nonlinear torsional vibrations of 
functionally graded nanorods are investigated 
using surface elasticity theory and the conditions 
for which internal resonances occur. Recently, 
FGMs have been used in micro/nano-structures 
and atomic force microscopes (AFMs). It is 
necessary to enhance the knowledge about the 
mechanical response of the FGMs for the next 
technological revolution since these structures 
are emerging as the new generation of 
micro/nano-tubes offering exciting physical and 
mechanical properties. The main conclusions are 
as follows: 

1. Surface parameters have a reducing 
effect on the torsional frequencies of 
functionally graded nanorods. 

2. Linear and nonlinear frequencies of 
functionally graded nanorods with 
shorter lengths are more sensitive to 
surface parameters for larger power 
index values. 

3. By increasing the amplitude of nonlinear 
vibrations, the frequencies of 
functionally graded nanorods are less 
affected by the surface parameters and 
the amount of this influence depends on 
the power index. 

  

  

Fig. 3. Variations of axial frequencies versus the amplitude of vibration, (L=10 nm, Ro=1 nm, Ri=0.5 nm;  
and SD.SL means surface density and surface Lamé constants.) 
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Fig. 4. Variations of frequency versus the nanorod radius (Ri=0.25 nm, L=20 nm), a) fixed-fixed, n=1, qmax=0; 
 b) fixed-fixed, n=5, qmax=0; c) fixed-fixed, n=1, qmax=0.05; d) fixed-fixed, n=5, qmax=0.05; 

 e) fixed-free, n=1, qmax=0; f) fixed-free, n=5, qmax=0; g) fixed-free, n=1, qmax=0.05;  
h) fixed-free, n=5, qmax=0.05 (SD.SL means surface density and 

 surface Lamé constants). 
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4. Depending on the value of the power 
index, the influence of the surface 
parameters on the torsional frequencies 
of functionally graded nanorods is 
different for various values of nanorod 
radius, frequency number, and types of 
boundary conditions. 

5. Considering the surface parameters 
changes the conditions of the internal 
resonances of the FG nanorod. This 
change is such that the higher the value 
of the power index, the deviation of the 
internal resonance ratio considering the 
surface parameters is greater than the 
internal resonance ratio of the classical 
state (without considering the surface 
parameters). 
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