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In the present paper, the effect of aspect ratio on the initial buckling response of an 

elastically supported rectangular FGM plate, the thin plate spline radial basis function 

(RBF) method can be used. This method involves the use of a thin plate spline to 

interpolate the displacement field of the plate, allowing for accurate analysis of the plate's 

behavior. The higher-order shear deformation theory (HSDT) is used for the analysis of 

the FGM rectangular plate resting on two parameters of elastic foundation. The 

displacement field consists of five unknown variables and approximately parabolic 

distribution of the transverse stress profile through the plate thickness and tangential 

stress-free boundary conditions on the plate surface. The governing differential equations 

(GDEs) of the plate are developed in the framework of Hamilton’s principle. The thin plate 

spline radial basic function-based Meshfree method is used for discretizing the GDEs. To 

demonstrate the accuracy and efficacy of the present approach, the results obtained by the 

present approach are compared with the results given in the literature. The effect of 

various aspect ratios, grading index, span-to-thickness ratio, and two parameters of elastic 

foundations on the normalized buckling load is proposed. Some new results are also 

presented, which may be beneficial for future research works. The novelty of the present 

is the effects of aspect ratio on the elastically supported FGM plates. 

 

1. Introduction 

Functionally graded materials (FGMs) are a 
class of advanced engineering materials that have 
a continuously varying composition and 
structure over their volume. The composition 
and structure of FGMs are designed to change 
gradually from one end to the other, resulting in 
a material with unique properties that can be 
tailored for specific applications. FGMs are 
typically made by combining two or more 
materials with different properties, such as 
metals and ceramics, and then gradually varying 
the composition of each material along a 

specified direction. The resulting material can 
have a wide range of properties, such as high 
strength, toughness, and wear resistance, as well 
as the ability to withstand high temperatures and 
harsh environments.  FGMs have a wide range of 
applications in various fields, such as aerospace, 
automotive, biomedical, and energy. For example, 
FGMs can be used in aircraft engines to improve 
their thermal and mechanical properties, or in 
dental implants to promote bone growth and 
integration with the surrounding tissue. 

Various numerical techniques are being 
widely implemented for buckling analysis of 
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FGMs rectangular plates so for by researchers. In 
this direction, Feldman and Aboudi [1] 
investigated the analytical technique for the 
buckling analysis of FGM plates subjected to a 
uniaxial compression load using classical plate 
theory (CPT). Mohammadi et al. [2] carried out a 
Levy solution for the buckling response of thin 
FGMs rectangular plates via the CPT model. 
Bodaghi and Saidi [3] studied analytical 
techniques for the buckling response of thick 
FGM plates based on HSDT. Thai and Uy [4] 
carried out analytical solutions for the buckling 
response of FGMs plate via refined plate theory. 
Singh and Harsha [5] examined the buckling 
response of FGM plates subjected to various 
types of in-plane loads in the framework of the 
HSDT model. However, these analytical solutions 
are not pertinent for general cases, and they are 
not yet feasible for complex geometry and 
loading conditions. Subsequently, various 
numerical methods are being utilized, such as the 
finite elements method (FEM) [6], meshless 
method, spline finite strip method, and so for. 
Among various numerical methods, the mesh-
free technique has long been utilized as one of the 
most effective numerical methods for the 
buckling response of plates. Bateni et al. [7] 
examined the initial buckling response of FGM 
plates under thermal and mechanical loading via 
the Galerkin method. Bui et al. [8] studied the 
stability response of the plate using the moving 
Kriging interpolation technique. Liew et al. [9] 
studied the buckling and vibration response of 
plates using the reproducing kernel particle 
approximate technique and first-order shear 
deformation theory (FSDT). Kiarasi et al.,[10] 
investigated buckling analysis of sandwich plates 
via analytical approach and classical plate theory. 
Shahani and Kiarasi, [11] studied the post-
buckling response of shells with rectangular 
cutouts under axial loading via the finite element 
method (FEM). Kumari et al. [12] carried out a 
stress analysis of a single hole on an infinite plate 
via Airy’s stress function. Rahul and Singh [13] 
examined the buckling analysis of the FGM plate 
via the RBF technique.Tan et al. [14] investigated 
3D isogeometric analysis and mesh-free coupling 
approach to examine the structural responses for 
FGM structures. Kiarasi et al.[15] investigated the 
buckling response of porous FGM rectangular 
plates subjected to different loading conditions.  
Asemi et al. [16] developed a 3D FEM formulation 
for the buckling response of anisotropic FGMs 
plate with arbitrary orthotropy directions. 
Shahsavari et al. [17] investigated thermal post-
buckling analysis of FGM annular sector plates 
subjected to uniform temperature rise via FEM 
approach. Singh et al. [18] used the molecular 
dynamics approach for the mechanical 
properties of multi-walled carbon nanotubes. 

Khatoonabadi et al., [19] studied shear buckling 
analysis of FGM annular sector plate reinforced 
with graphene nanoplatelets (GPLs) under 
porous medium via FEM pproach. Kumar et al. 
[20] studied the wear response of FGM under the 
influences of centrifugal casting processing. 
Neves et al. [21] examined the structural 
response of sandwich plates via quasi-3D HSDT 
and mesh-free methods. Singh et al. [18] 
investigated the effect of functionalization on the 
mechanical properties of multi-walled carbon 
nanotubes. Rahimi et al. [22] studied the exact 
thermoelastic response of an FGM piezoelectrical 
rotating cylinder with the combination of 
electrical, thermal, and mechanical loads 
simultaneously. Arefi and Rahimi [23] studied the 
2D electro-elastic response of an FGM 
piezoelectric cylinder under internal pressure 
using the FSDT model.Arefi and Rahimi [24] 
investigated different boundary conditions for 
the thermoelastic response of an FG cylinder via 
the FSDT model.Arefi and Zenkour [25] studied 
the nonlocal thermo-magneto-electro-
mechanical bending response of a three-layered 
nanoplate via sinusoidal shear-deformation plate 
theoryFerreira et al. [26] studied the buckling 
and vibration analysis of laminated plates via the 
RBF technique and FSDT model. Rodrigues et al. 
[27] applied Murakami’s zig-zag theory with 
RBF- finite difference collocation method for the 
structural analysis of composite plate. Rahimi et 
al. [28] examined the electro-elastic response of 
FGM piezoelectric cylinder via FSDT 
model.Khoshgoftar et al. [29] examined the 
elastic response of a FGM thick-walled cylindrical 
via FSDT model and analytical approach.Arefi 
and Rahimi [30] investigated nonlinear analysis 
of a FG square plate with two smart layers as a 
sensor and actuator under pressure using Von-
Karman assumption.Ferreira et al.  [31] 
investigated the stability response of isotropic 
and laminated plates via the FSDT model and RBF 
with wavelets. Chilakala et al. [32] used Element 
Free Galerkin Method for the Cracks analysis in 
Automotive Coatings Under Mechanical and 
Thermal Loading. Kumar et al. [33] investigated 
the thermomechanical buckling response of a bi-
directional porous FGM plate using HSDT 
displacement field. Arefi and Rahimi [34] studied 
the nonlinear response of the FGM piezoelectric 
annular plate in the framework of Von-Karman 
assumption.Arefi and Rahimi [35] introduced the 
3D multi-field formulation of a FGM piezoelectric 
thick shell of revolution via tensor analysis 

To represent the correlation between the 
plate and foundation, different types of 
foundation models have been considered so for. 
The plate supported by the elastic foundation is 
increasingly used in many structural applications 
such as the foundation of runways of large 
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aircraft, foundation deep wells, bridges and 
buildings, etc. The easiest one is the Winkler 
model, which considers the establishment as a 
progression of isolated springs without coupling 
impacts among one another [36]. Pasternak 
alters this model by considering a shear spring 
among the isolated springs in Winkler's model, 
known as the two-parameters model [37]. Thai et 
al. [38] examined the structural response of 
elastically supported plates using a simple, 
refined theory. Malekzadeh and Karami [39] 
applied mixed differential quadrature and FEM 
for vibration and stability response of elastically 
supported thick beams.  

Sobhy [40] examined the stability and 
vibration analysis of elastically supported FGM 
sandwich plates. In the above-mentioned 
literature, little work has been done for buckling 
analysis of thin and thick rectangular FGM plates 
supported by the elastic foundation to the best of 
the author’s knowledge. Modified thin plate 
spline RBF-based mesh-free method capable of 
producing a result for rectangles without 
changing the shape parameter.  

In the present work, the influence of the 
aspect ratio of an elastically supported 
rectangular FGM plate is carried out for the initial 
buckling response. The displacement field is 
based on five variables HSDT model. The 
governing differential equations and boundary 
conditions are derived using Hamilton’s 
principle. The thin plate spline RBF-based 
Meshfree method is implemented for discretizing 
the GDE. The accuracy of the present code is 
verified by convergence study and the results 
obtained by the present method are compared 
with reported results available in the literature. 
The aspect ratio of a structure significantly 
affects its buckling behavior. Design 
considerations for buckling stability should take 
into account the aspect ratio to ensure the 
structural integrity and safety of the system. The 
influences of grading index, foundation 
parameters, span-to-thickness ratio, and plate 
aspect ratio on the initial buckling of rectangular 
FGMs are discussed. 

2. Mathematical Formulation 

A FGM plate with dimensions a, b, and h 
indicated as length, width, and thickness, 
respectively, in the coordinates x-y and- z-axis 
are shown in Fig. 1. The reference plane is 
considered from the mid-plane of the plate.  

The volume fraction of the metal side is 
expressed as [41] 

( ) 1 ( )= −m cV z V z

                                                       

(1) 

where n is the volume fraction of metal. The 
material property (Young's modulus, E where 

subscripts m and c represent the metallic and 
ceramic) varying through the thickness of the 
plate is expressed as [42],[43],[44] 

( ) ( )= − +  c m c mE z E E V z E                    (2) 

where  
2

( )
2

n

c

z h
V z

h

+ 
=  
 

 

The effect of variation of Poisson’s ratio (v) is 
assumed as constant. 

 
Fig. 1. The elastically supported FGM plate  

The relationship between the FGM plate and 
supporting foundation is expressed as [45],[46] 

2
2 2

2 2

  
− +    

w s

w w
k w k

x y
                                        (3) 

where the parameters kw and ks are the normal 
and shear stiffness of the foundation, 
respectively. 

2.1. Displacement Field 

Assuming the displacement components u 
and v are the inplane displacements in the x and 
y directions respectively and w is the transverse 
displacement in the z-direction. These 
displacements are small in comparison with the 
plate thickness. The in-plane displacement u in 
the x-direction and v in the y-direction each 
consist of two parts: (a) a displacement 
component analogous to displacement in 
classical plate theory of bending; (b) a 
displacement component due to shear 
deformation which is assumed to be parabolic in 
nature with respect to thickness coordinate.  
The present displacement field is assumed to be 
the HSDT model with five unknown displacement 
variables expressed as [47]: 

( )

0

0

0

0

0

( , )
( , ) (z) ( , )

( , )
( , ) (z) ( , )


= − +




= − +



=

x

y

w x y
u u x y z f x y

x

w x y
v v x y z f x y

y

w w x, y



  (4) 
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where, 
3

z 3
f (z) p z

h 4h

  
 = −    

is a transverse 

shear function where p=0.9 

2.2. Stress-Strain Relations  

The Generalise Hook’s law for the isotropic 
FGM plate is represented as [48];  

11 12
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(5) 

2.3. Governing Differential Equations 

The GDEs of the elastically supported FGM 
plate are produced by the energy principle and 
collecting the coefficients of variables 

0 0 0, , , xu v w     and y  as [49], [54],[55]. 

0 : 0
xyxx

NN
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: 0

ff
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MM
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 (9) 

: 0
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 (10) 

where, b
xxN  and b

yyN are the in-plane axial forces 

along x and y directions, respectively. Uniaxial 

compression along the x-axis is 1, 0b b
xx yyN N= =  

known as Uniaxial -A type and uniaxial 
compression along the y-direction 

0, 1b b
xx yyN N= =  is known as Uniaxial-B type 

and the rest is biaxial compression along the x-

and y-axes as 1, 1b b
xx yyN N= =  shown in Fig. 2. 

 
(a) Uniaxial -A 

 

(b) Uniaxial -B 

 
(c) Biaxial 

Fig. 2. Types of in-plane forces of FGM rectangular plates  

The boundary condition for simply supported 
plate is expressed as [25-26] 

0 0

0 0

0, : 0, 0, 0, 0, 0

0, : 0, 0, 0, 0, 0

= = = = =  =

= = = =  = =

xx xx y

yy x yy

x a N v w M

y b u N w M
 (11) 

3. The Numerical Implementation 

The RBF is a mathematical function that 
depends only on the distance between the input 
points and some fixed center points in a 
multidimensional space. In other words, the 
value of an RBF at any point in the space is 
determined by the distance between that point 
and a set of predefined center points. However, 
the method's accuracy and stability are extremely 
dependent on an appropriate choice of a shape 
parameter ‘c’. The solution of the linear GDEs is 
assumed in terms of modified thin plate spline 

RBF ( ),− jg X X c  expressed as  for nodes 1: N, as; 

2c
2 2 2 2

j j j jx x y y x x y y
log .

a b a b

   
− − − −          

+ +                 
          

   

 

where a and b are the length and breadth of the 
rectangular plate and 'c' is the shape parameter. 
First, the convergence of results is checked by 
shifting the shape parameter. When convergence 
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is achieved within 1% and is stable, the accuracy 
is verified. The unknown field variables 

0 0 0, , , xu v w  and y appearing in governing 

differential equations are assumed in terms of 
radial basis function as [51],[52],[53]: 

( )0

0

1

( , ) ,

=

=  −
N

u
j j

j

u x y g X X c  (12) 

( )0

0

1

( , ) ,
N

v

j j

j

v x y g X X c
=

=  −  (13) 

( )0

0

1

( , ) ,
N

w

j j

j

w x y g X X c
=

=  −  (14) 

( )
1

( , ) ,x

N

x j j

j

x y g X X c


=

 =  −  (15) 

( )
1

( , ) ,y

N

y j j

j

x y g X X c


=

 =  −  (16) 

where, N is the total number of nodes, which is 
equal to the summation of boundary nodes NB 

and domain interior nodes NI, 
u

j  is an unknown 

coefficient, ( )c,XXg j−  is radial basis 

function, 
jXX −  is the distance between the 

nodes and c is the shape parameter.  
The discretized GDEs for buckling analysis are 

written as: 

 I F GL

N 1
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(20) 

 B  F (5 ,5 )
[K ] 0

 
=

NB N
                                         (21) 

The final matrix in the form of unknown 
variables is written as above. For calculating the 
unknown variables, a generalized MATLAB code 
is developed as it is easy for matrix operations to 
find out the unknown variables. 

4. Results and Declaration 

Several numerical examples are presented for 
buckling analysis of FGM rectangular plates with 
different plate aspect ratios and thickness ratios 
for uniaxial and biaxial compressions, along with 
varying parameters of foundation. FGM plate is 
assumed as simply supported, and the material 
properties used in computations are as Ec=360 
GPa, Em=70 GPa, and v=0.3. 

The following non-dimensional critical 

buckling ( )crN  is expressed as 2 3/cr cr mN N a E h=
 

where Ncr is the critical dimensional buckling 
load. 

The Winkler (Kw) and shear foundation 
parameters (Ks) are expressed as 

2

3

ks12(1 )
Ks

Emh

−
=    and  

2

3

kw12(1 )
Kw

Emh

−
=  

where Ks and Kw are the input shear and spring 

foundation parameters.  

4.1. Convergence and Validation  

The convergence and comparison study for 
the normalized buckling with respect to the 
number of nodes is presented in Table 1 for 
a/h=10, a/b=0.5, and ks=0, kw=0. The present 
results are compared with results available in 
literature by  Kulkarni et al. [56] using the 2D 
analytical solution based on HSDT and Sekkal et 
al. [57] using quasi-3D HSDT. It is noted that the 
present results are in perfect agreement with the 
results available in the literature, and they 
converged within 1% and became closer to the 
results of Kulkarni et al. [56] and Sekkal et al. [57] 
at 15X 15. It is clearly observed that the present 
result produced in 15X15 nodes showed 0.04 % 
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average difference the results of Kulkarni et al. 
[56] and 2.40 % average difference the results of  
Sekkal et al. [57] under Uniaxial-B loading and 
0.04 % average difference the results of Kulkarni 
et al. [56] and 2.40 % average difference the 
results of Sekkal et al. [57] under Biaxial loading 
Hence 15X15 nodes are taken for further analysis 
of the numerical study. With the increase of 
power index law, the dimensionless buckling load 
decreases due to more content of metal portion 
being added. In between the uniaxial and biaxial 
loading, biaxial loading provides better lower 
buckling resistance as compared to uniaxial 
loading due to a higher amount of in-plane 
loading. 

4.2. Parametric study 

In this section, the influence of aspect ratio on 
the critical buckling loads of FGM rectangular 
plate with different span-to-thickness ratios for 
a/h =5,10 and 20 under Uniaxial-A load and n=1, 
and ks=0, kw=0 is investigated and shown in Fig. 3. 
For the graph with thickness ratio a/h=5, it is 
noticed that by increasing the aspect ratio (a/b) 
from 0.5 to 0.8, the buckling load start decreases 
and further increases from 0.9 to 1.2. A similar 
nature is observed in aspect ratios from 1.3 to 2.3. 
In addition, with an increase in aspect ratio, the 
peck of normalized buckling shifted toward the 
right for all span-to-thickness ratios. The same 
nature is followed by all the span-to-thickness 
ratios. For the given aspect ratio, the buckling 
load increases with the increase of span span-to-
thickness ratio. 

The influences of aspect ratio with grading 
index on normalized critical buckling of 
rectangular FGM plate under uniaxial-A loading is 
investigated for a/h=10, and Ks=0, Kw=0 and 
shown in Fig. 4. It is interesting that with the 
increase of the gradation index, the buckling load 
decreases. For the same gradation index, with the 
increase of aspect ratio, the buckling load 
decreases from 0.5 to 0.8 and then increases from 
0.9 to 1.2, as discussed in the previous example of 
2.1.1. For the gradation index n=0, the buckling 
load is highest due to the addition of a fully 
ceramic portion in the plate. 

Further, the effect of aspect ratio on 
normalized critical buckling of rectangular FGM 
plate under various loading conditions for 
a/h=10, n=2, Ks=0, Kw=0 is shown in Fig. 5. In 
addition to the above discussion, it is worth 
noting that the nature of changing the critical 
buckling is repeated for Uniaxial-A loading, as 
discussed in section 4.2.2. For uniaxial-B and 
biaxial loading, buckling load decreases 
continuously with the increase of aspect ratio. 
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Fig. 3. Effect of plate length to thickness ratio and aspect 

ratio on normalized critical buckling  
under Uniaxial-A loading. 
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Fig. 4. Effect of aspect ratio and grading index under 

Uniaxial-A load. 

Table 2 represents the contour shape of 
different aspect ratios (b/a=0.5,1,2, and3) on 
normalized buckling of FGM rectangular plate 
under Uniaxial-A, Uniaxial-B, and biaxial loading 
for a/h=10, n=1, and Ks=0, Kw=0. It is very 
interesting that the first mode is observed for a 
small change in aspect ratios(b/a) from 0.5 and 
1.0 for uniaxial-A, while the second and third 
mode is observed for further increase of aspect 
ratio from 2.0 to onward. For uniaxial-B, the 
second and first mode is observed for aspect ratio 
0.5 and 1.0, and the first mode is observed for 
further increasing the aspect ratio from 1 to 3. 
For bi-axial loading, with the increase of aspect 
ratio, the first mode is observed so far. The reason 
for changing the shape contour is due to local 
deformation in the shape of the structure, and 
more than one apex may be created for the given 
specific arrangement of uni-axial compression. 
Among the given different arrangements of 
Uniaxial-A and Uniaxial-B and bi-axial in-plane 
loading, with the increase of aspect ratio, 
buckling load of Uniaxial-A arrangement 
decreases very sharply from 0.1 to 1 and then 
very little change is observed for further increase 
the aspect ratio from 1 to onward. For the 
Uniaxial-B arrangement, with the increase of 
aspect ratio, the buckling load decreases very 
sharply, and a similar trend is observed in bi-axial 
compression also. 

https://www.google.com/search?client=firefox-b-d&channel=crow2&q=arrangement&spell=1&sa=X&ved=2ahUKEwjEsNXb1O3qAhXWXisKHe-SD-kQkeECKAB6BAgUECY
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Table 1. Convergence and validation study of FGM rectangular plate under uniaxial-B and biaxial loading. 

Loading Methods 
Grading Index Avg.%  

2D [51] 
Avg. % 
3D[52] 0 0.5 1 2 5 10 

Uniaxial-B 

9X9 8.9862 5.364 3.7543 2.6877 2.3787 2.3974 8.59 9.32 

11X11 7.4907 4.8546 3.7215 2.8874 2.4262 2.2127 0.59 2.19 

13X13 7.4187 4.8254 3.7123 2.889 2.4182 2.1938 0.09 2.35 

15X15 7.4079 4.8213 3.711 2.8892 2.4168 2.1906 0.04 2.40 

2D [51] 7.4102 4.8234 3.7131 2.8907 2.4152 2.1904 ----- ----- 

3D[52] 7.4126 4.8904 3.8221 3.0168 2.509 2.2374 ----- ----- 

Biaxial  

9X9 7.6392 4.441 3.0673 2.1808 1.9386 1.9807 11.05 11.06 

11X11 5.9935 3.8852 2.9792 2.3121 1.9427 1.7713 0.62 2.13 

13X13 5.9349 3.8604 2.97 2.3115 1.9348 1.7551 0.09 2.34 

15X15 5.9263 3.857 2.9688 2.3114 1.9334 1.7525 0.04 2.40 

2D [51] 5.9281 3.8587 2.9705 2.3125 1.9322 1.7523 ----- ----- 

3D[52] 5.9301 3.9123 3.0577 2.4134 2.0072 1.7899 ----- ----- 

Table 2. Contour shapes of normalized critical buckling for different aspect ratios under various in-plane loadings. 

b/a Uniaxial-A  Uniaxial-B Biaxial  

0.5 

 
13.6801 

 
32.8877 

 
10.9443 
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9.3453 

 
9.3453 

 
4.6727 

2 

 
9.3360 

 
3.7110 

 
2.9688 

3 

 
9.3441 

 
2.9402 

 
2.6462 
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Table 3. Contour shape with the effect of foundation on normalized buckling loads of rectangular FGM plate under in-plane loading.  

Kw Ks Uniaxial -A Uniaxial -B Biaxial 

0 0 

7.5353 
 

2.9558 
 

2.3647 

10 0 

 
7.6281 

 
3.0485 

 
2.4389 

100 0 

 
8.4634 

 
3.8832 

 
3.1066 

0 10 

 
9.3670 

 
4.1004 

 
3.2804 

0 100 

 
22.0088 

 
14.4024 

 
11.5222 
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Table 4. Contour shape of two modes on normalized buckling of FGM plate under uniaxial loading. (n=2, a/h=20). 

Loading b/a=1 b/a=2 

Uniaxial -A 

 
Mode 1= 7.5360  Mode 2= 11.5477 

 
Mode 1= 7.5353 Mode 2= 8.7809 

Uniaxial -B 

 
Mode 1= 7.5360 Mode 2= 11.5477 

 
Mode 1= 2.9558 Mode 2= 7.5339 
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Fig. 5. Effect of aspect ratio under various in-plane loading 

The effect of foundation parameters (Kw and 
Ks) with plate aspect ratios on normalized 
buckling loads of FGM plate under Uniaxial-B 
loading is shown in Fig. 6. It is observed that at a 
constant aspect ratio, buckling load increases by 
increasing Winkler and Pasternak stiffness 
foundation. This is because the foundation 
stiffness increases the overall stiffness of the 
plate. The effect of the Pasternak stiffness 
foundation is more sensitive than the Winkler 

stiffness foundation. It is also observed that the 
nature followed is similar to the impact of plate 
aspect ratio in section 4.2.1. It is interesting that 
for the higher value of shear foundation 
parameters, the peak of normalized critical 
buckling is shifted toward the left due to 
becoming more stronger plate by the action of the 
foundation.  
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Fig. 6. Effect of elastic foundation with aspect ratios on 
normalized buckling loads under Uniaxial-B loading. 
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The effect of foundation parameters with contour 
shape on normalized buckling loads of FGM plate 
under different in-plane loading for a/h=20, n=2, 
and b/a=2shown in Table 3. It is observed that 
with the increase of foundation parameters, 
normalized critical buckling increases due to an 
increase in the stiffness matrix. The effect of 
foundation parameters is more severe in Uni-
axial-A type arrangement due to higher length 
along width direction as compared to other Uni-
axial-B and biaxial compression. Due to the 
higher length along the width direction, there 
would be more than one peak, as shown in the 
first column of the given Table. It is discussed 
earlier; the effect of the shear foundation 
parameter is more crucial on critical buckling 
load as compared to the Winkler foundation 
parameter. 

Table 4 shows the first two modes shape of a 
rectangular FGM plate for a/h=20, n=2, and 
b/a=1 and 2 for uniaxial-A and uniaxial-B loading. 
In between the two loading conditions, with the 
increase of aspect ratio, there would be more 
than one peak in uniaxial-A types of arrangement 
while there would not be any change in uniaxial-
B types of arrangement due to the load acting 
along x-direction with constant length.  

5. Conclusions 

In this study, initial buckling analysis of 
elastically supported rectangular FGM plate 
using a modified RBF-based meshfree method for 
different in-plan loading is carried out. The result 
produced by modified RBF for rectangular plates 
is in good agreement with the published results. 
The displacement field with five unknown 
variables is based on higher-order shear 
deformation theory. The need for shear 
correction factor is not required. The GDEs are 
obtained by deriving the energy principle. The 
following conclusions are noted from the limited 
study: 

• The normalized critical buckling 
decreases with the increase of plate 
aspect ratios in all types of in-plane 
arrangements, and the Uniaxial-A 
arrangement would provide higher 
critical buckling due to the increment of 
length along the width direction. 

• With the increase of thickness ratio, 
critical buckling load increases due to its 
dimensionless parameters. However, the 
dimensional critical buckling load 
decreases due to the plate becoming 
thinner.  

• In the different arrangements of in-plane 
loading, The uniaxial-A provides more 
than one peak for the first buckling mode 
due to increased width.    

• With the increase in the gradation index, 
normalized critical buckling decreases 
due to more amount of metal portion 
added in the FGM.  

• Critical buckling of the plate increases 
when the foundation is attached to the 
plate due to an increment in the overall 
stiffness of the plate. The effect of the 
shear foundation is more severe than the 
spring foundation due to acting in both 
the x and y directions. 

• The effect of shear foundation in the 
Uniaxial-A arrangement is more severe 
for higher values of plate aspect ratios.  

Overall, FGMs offer a unique and versatile 
approach to material design and have the 
potential to revolutionize many industries in the 
future. Buckling analysis of these plates can help 
in optimizing their design and improving their 
performance under different loading and support 
conditions. This can ensure the structural 
integrity and safety of the engineering structures. 
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