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In this paper, the nonlinear dynamic analysis of porous annular sandwich plates 
reinforced with graphene platelets (GPLs) under different boundary conditions is 
investigated. The Gaussian Random Field (GRF) alongside with Halpin-Tsai 
micromechanics model are used for the variational Poisson’s ratio and effective material 
property of the GPLs which are distributed in two forms of symmetric and non-symmetric 
patterns with different porosity dispersion models. Using Von-Karman nonlinear relations 
and different plate theories, the time-dependent governing equations are obtained and 
then solved using the dynamic relaxation (DR) method combined with implicit Newmark’s 
integration technique. Finally, some key elements namely: GPL weight fractions and 
distributions, porosity coefficients and dispersions, different loadings, boundary 
conditions, and the effects of thickness-to-radius ratio are discussed in detail. The results 
show that with an increase in porosity, the difference between the results of FSDT and 
MHSDT greatens. Also, a significant increase in plate stiffness is observed by adding a small 
amount of GPL to the porous core of the sandwich plate. 

 

1. Introduction 

The strength and stability of structures have 
always been two important principles in science 
that have attracted the attention of many 
scientists and researchers. For this purpose, for 
instance, in the construction of high-speed trains, 
space rockets, defense industries, and space 
shuttles they have tried to make materials as 
advanced and more resistant to various 
conditions. Due to their high tensile strength, 
sandwich structures have always been of great 
importance to manufacturers they are generally 
made of two or multi-layered composites usually 
with a central core fabricated of foams like 
polystyrene, honeycombs, balsa woods or other 
equivalent substances and two face sheets made 
of epoxies, glass, carbon, sheet metals or any 
other similar material.  

Dynamic analysis of structures and plates 
with annular and circular geometries by various 
methods and theories has been carried out by 
many scientists and scholars because of their 
exclusive geometry and specific behavior under 
any sort of static and dynamic loadings and 

conditions. Working on determination of the 
dynamic response of large rectangular plates, 
Beskot and Leung [1]  obtained the effects of 
viscoelastic damping values with the 
combination of FD, FE, and Laplace transform. 
Nath et al. [2] used the Chebyshev polynomial 
collocation point to couple with the Newmark k-
β scheme for the time-dependent equations on 
plates and shells. Smaill [3] presented the 
importance of plate nonlinearity for the dynamic 
response of circular plates on Pasternak elastic 
foundations. Various numerical works are 
offered by Sirnivasan and Ramachandra [4] for 
different bore sizes on axisymmetric dynamic 
responses of annular and circular bimodulus 
plates. A study on the failure and dynamics of 
circular plates was done by Shen and Jones [5]. 
Day and Rao [6] studied the transient response of 
circular membranes and plates with the use of 
numerical Laplace transforms and finite 
difference in conjunction with numerical 
inversion technique, they presented the influence 
of interior and exterior viscoelastic damping on 
the responses. Bassi et al. [7] obtained pulsated 
results for sandwich plates using the FE method 
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and Galerkin’s models. Submitting a new semi-
analytical method for analyzing the vibrations of 
circular plates, Peng et al. [8] showed the 
accuracy of the proposed method among 
equivalent procedures. Damped schematics of a 
thick uniform plate under explosion loadings 
were  analyzed including the rotary inertia 
influences by Aiyesimi et al. [9]. With the 
utilization of the FSDT of the Reddy plates, 
Eipakchi and Khadem Moshir [10] represented 
the viscoelastic resolutions for the transient 
response of annular plates. These are just a few of 
the limited and relevant aspects of the dynamic 
analysis of circular and annular plates with 
various material properties in the free literature 
done by individuals implementing various 
solving methods, showing the importance of such 
types of geometry in various engineering issues.  

Failure and difficulties in achieving satisfying 
results have always been major obstacles for 
scientists, thus with the introduction of 
functionally graded materials, they have created 
a new direction of discovery to lead individuals in 
the field of engineering to facilitate and overcome 
the obstacles ahead. An FG structure consists of 
variations in compositional properties through 
the volume with specific functions of the material, 
frequently maintaining a ceramic matter 
embedded in a metallic matrix which will lead to 
the increase in thermal resistance, corrosion 
persistence, toughness in strength, and stiffness 
of the material. Moreover, even with the 
manufacturing of sandwich materials, one can 
consider another way of strengthening them for 
the tensile and compressive stresses. In this way, 
sandwich structures are usually considered from 
two-layer to multi-layer composites, and for 
example, in three-layer plates, the middle layer is 
considered from a type of foam or FG mode, and 
the outer plates are from one metal material. 
Using the sinusoidal shear deformation theory of 
plates, Zenkour [11] investigated the critical 
buckling and natural frequency of FGM sandwich 
plates. Subjecting FG circular plates under low-
velocity impact loadings, Dai et al. [12] studied 
the significance of the primary velocity of a 
striking ball in the responses of the plate using 
the Newmark method. Three years later, Dai [13] 
investigated the transient response of an FG 
multi-layered circular plate with central disks to 
demonstrate the difference in geometry 
parameters of single-layer and sandwich plates. 
Dynamical bending of stepped variational width 
annular and circular functionally graded plates 
has been examined by Molla-Alipour [14] 
employing a semi-analytical method on the basis 
of power series. Effects of porosity on bending, 
buckling, free vibrations and dynamic instability 
behaviors of different FG plates and sandwich 
structures [15-21] are done by some researchers 

on several geometries of beams, plates, and 
cylindrical shells with the application of various 
theories namely: FE, FD, DQM, Chebyshev-Ritz, 
HSDT, and isogeometric analysis. Babaei et al. 
[22], acquired natural frequencies and responses 
of FG annular sector plates and cylindrical shells 
with the acquisition of 3D elasticity theory. 
Implementing the kinetic dynamic relaxation 
method and FSDT formulations, Esmaeilzadeh et 
al. [23] developed a non-local strain gradient 
model for the numerical investigation of bilateral 
FG nanoplates with porous properties. Under 
pulse loadings, using a Kelvin-Voigt model, forced 
motions of viscoelastic FG porous beams are 
investigated by the use of the adopted FE method 
for the first time by Akbas et al. [24].  

With further observations, porosity a well-
noted item used in many works is one useful 
factor to overrule the flaws in mechanical 
properties of structures, despite their advantages 
such as ductility reductant, creep resistance, 
adhesion regressive and owning light weighting 
features, they contain a major defect which 
causes decreasing structural stiffness and 
strength. Thus, scientists and researchers have 
come to the conclusion of embedding certain 
structures with micro and nano fillers to 
overcome this deficiency. Free vibrations and 
buckling of graphene platelets (GPLs) reinforced 
FGM porous beams is the subject of an article 
surveyed by Kitipornchai et al. [25] based on the 
theory of Timoshenko beams and Ritz method for 
the natural fundamental frequency of the 
nanocomposite structure. On the same geometry 
with the same material properties, Chen et al. 
[26] studied the nonlinear responses and post-
buckling behavior of GPL-reinforced material 
using the Von Karman nonlinear large 
deflections. Yang et al. [27], based on the 
Chebyshev-Ritz method and first-order shear 
deformation theory of plates, acted on the 
investigation of vibrations and buckling of porous 
nanocomposite plates reinforced by GPLs. Polit et 
al. [28] investigated the stability and bending 
results of porous GPL-reinforced curved beams 
based on the theory of higher-order shear 
deformation of plates by the introduction of 
Navier’s procedure for the analytical results. Li et 
al. [29] studied the nonlinear responses and 
buckling solutions of a porous sandwich 
rectangular plate with Winkler-Pasternak 
foundations reinforced by graphene platelets for 
the observations of porosity effects and GPL 
weight fraction and loading velocity influence on 
the composite structure behavior. Esmaeilzadeh 
and Kadkhodayan [30] aimed the investigation of 
transient behaviors of a moving porous FGM 
sandwich rectangular nanoplate reinforced by 
GPLs and effects of non-local strain gradient 
parameters, porosity, GPL weight fraction, and 
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variant nanoplate velocities are considered in 
this paper. Safarpour et al. [31] considered a 
parametric 3D bending and frequency study on 
annular and circular functionally graded porous 
plates embedded with graphene nanofillers using 
DQM. Based on the theory of elasticity, Rahimi et 
al. [32], discussed on 3D static and vibrations of 
porous FG cylindrical shells in 2019. Zhao et al. 
[33], worked on instability factors affecting 
dynamic response of porous FG arches 
consolidated with GPL, based on Euler-Bernoulli 
classical theory. For the dynamic instable 
territory, a Galerkin approach was applied for the 
derivation of Mathieu-Hill equation. Their results 
show that by adding a small amount of GPL and 
with the use of uniform asymmetric distribution 
of porosities in arch composite plates, one can 
increase stability and resistance to a considerable 
extent. Lieu et al. [34] presented an isogeometric 
Bezier formulation for transient response and 
bending analysis of FG porous plates reinforced 
by GPL, deriving the equations of motions using a 
generalized HSDT in couple with Bezier 
isogeometric formulation and Newmark 
integration method for the time-varying 
equations. Based on modified strain gradient and 
first-order plates theory, Arshid et al. [35] 
studied on bending, buckling, and free vibrations 
of annular micro-scaled functionally graded 
porous plate which is reinforced with graphene 
nanoplatelets using the GDQ method. Results for 
wave propagation through FG-GPL reinforced 
porous rectangular plates were accomplished by 
Gao et al. [36] using three general plate theories 
namely CPT, FSDT, and TSDT. Results show that 
different plate theories can have accurate results 
on a lower number of waves, whilst the FSDT and 
TSDT show better results for a higher number of 
waves. Nejadi et al. [37] considered studies on 
vibrations and stability of sandwich pipes with 
porosities and GPLs using the differential 
quadrature method. In their paper, the essential 
impact of the velocity of fluid flow on the stability 
of the structure is illustrated. TAO and Dai [38] 
investigated the post-buckling of cylindrical 
sandwich porous shells with GPL reinforcement 
based on higher order shear deformation theory. 
Results show with more addition of GPL to the FG 
core, one can acquire much strength in post 
buckling behaviors. In 2020, Khayat et al. [39], 
analyzed uncertain dissemination over smart 
porous sandwich GPL reinforced cylindrical 
shells based on HSDT in conjunction with a 
Fourier differential quadrature method. Nguyen 
et al. [40-44] conducted several researches 
investigating the influence of porosity coefficient, 
weight fraction of GPLs, electrical voltage, 
material length scale parameter, boundary 
condition and dynamic loads on FG porous plates 
that are reinforced with GPLs. They proposed an 

efficient numerical model based on refined plate 
theory and isogeometric analysis to predict the 
static and dynamic characteristics of functionally 
graded microplates reinforced with graphene 
platelets. One disadvantage of the GPLs, that can 
be significantly challenging, is called the GPLs 
agglomeration phenomenon that can negatively 
impact the properties of the resulting 
nanocomposite material. The phenomenon 
occurs due to the strong van der Waals forces 
between the GPLs, which can lead to the 
formation of large aggregates. The presence of 
these aggregates can reduce the effective surface 
area and increase the stress concentrations in the 
nanocomposite, leading to a decrease in 
mechanical strength and an increase in 
brittleness. Nguyen et al. [45] studied the 
transient performance of agglomerated graphene 
platelets reinforced porous sandwich plates 
based on higher-order shear deformation plate 
theory and using a NURBS-based isogeometric 
analysis framework. 

Through recent years, the combination of 
graphene nanofillers and porosity has been the 
focus of many researchers. Therefore, many 
works including bending, buckling, and post-
buckling, free and forced vibrations are done and 
developed on various circular, rectangular, and 
shell geometries using various numerical 
solution and integration methods. With further 
observations and surveys through open 
literature, there was no evidence of dealing with 
nonlinear dynamics of FG annular porous plates 
reinforced with graphene platelets. This paper 
aims the study of dynamic analysis of annular 
functionally graded porous GPL-reinforced 
sandwich plates using FSDT and MHSDT with two 
GPL distribution patterns and two porosity 
dispersions, under a simple harmonic and an 
impact loading with clamped and simply 
supported boundary conditions. GPLs 
reinforcement phase in this work is distributed 
through the core of the sandwich plate. In 
sandwich plate structures, the distribution of the 
GPLs reinforcement phase in the core layer can 
enhance mechanical properties, such as 
compressive and shear strength [29]. Moreover, 
distributing GPLs in the core layer can create a 
highly interconnected network within the core 
material and the mechanical properties and 
resistance to fatigue and impact of the sandwich 
structure can be improved [30]. The time-
dependent equations are derived by the 
implementation of the principle of minimum 
potential energy and then solved using 
Newmark’s direct integration method in 
combination with the viscous dynamic relaxation 
technique, which has not been previously 
employed in the literature for analyzing the 
dynamic behavior of sandwich structures. 
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Finally, the effects of porosity coefficient and 
dispersions, GPL weight fraction and 
dispensations and thickness-to-radius ratios are 
illustrated.  

2. Theoretical Modeling of Material 
Properties  

As seen in Fig. 1, the annular FG sandwich 
graphene-reinforced porous plate is shown with 
an inner radius 𝑟𝑖  and outer radius 𝑟𝑜 , the total 
thickness of ℎ (including ℎ𝑐= core and ℎ𝑓= face 

layers thicknesses) in 𝑟 and 𝑧 directions, 
originated the Cartesian coordinate is assumed at 
the center of the plate. The whole thickness of the 
plate includes ℎ𝑐 + 2ℎ𝑓 . 

 
Fig. 1. Geometrical illustration of annular graphene-

reinforced porous sandwich plate 

Figure 2 represents two GPL distributions, 
namely A and B with different porosity 
dispersion patterns as I and II for symmetric and 
asymmetric material. The volume fraction of the 
GPL as 𝑉𝑔𝑝𝑙  is assumed to be varying along the 𝑧 

axis, with maximum values of 𝑆𝑖𝑖  and 𝑆𝑖𝑗  (see 

relation (7)).  

According to Fig. 2, E(z), G(z), and ρ(z) which 
are named elasticity moduli, shear moduli, and 
mass density of the porous GPL-reinforced 
sandwich plate, respectively, are defined as 

below for non-uniform graphene distributions 
[46]: 

𝐸(𝑧) = 𝐸∗(1 − 𝑒0𝜙(𝑧)), 

𝐺(𝑧) =
𝐸(𝑧)

2(1 + 𝜈(𝑧))
, 

𝜌(𝑧) = 𝜌∗(1 − 𝑒𝑚𝜙(𝑧)). 

(1) 

in which 𝜙(𝑧) is defined as [47]: 

𝜙(𝑧) = 𝑐𝑜𝑠 (
𝜋𝑧

2ℎ𝑐
+

𝜋

4
),   

For asymmetric porosity dispersion 

𝜙(𝑧) = 𝑐𝑜𝑠 (
𝜋𝑧

ℎ𝑐
).  

For symmetric porosity dispersion 

(2) 

Also, 𝑒0 denotes porosity coefficient 
(0 < 𝑒0 < 1) and 𝑒𝑚 is the representative of the 
mass density coefficient. On the basis of the 
closed-cell cellular solid structures under the 
Gaussian Random Field scheme (GRF), it can be 
expressed to determine the mass density 
coefficient as [48]:  

𝑒𝑚 =
1.121(1 − √1 − 𝑒0𝜙(𝑧)

2.3
)
𝜙(𝑧)
⁄ . (3) 

Furthermore, based on the micromechanical 
model of Halpin-Tsai, the effective elastic moduli 
of the porous core can be defined as [49]: 

𝐸∗ =
3

8
(
1+𝜍𝑙

𝑔𝑝𝑙
𝜄𝑙
𝑔𝑝𝑙

𝑉𝑔𝑝𝑙

1−𝜄𝑙
𝑔𝑝𝑙

𝑉𝑔𝑝𝑙
)𝐸𝑚  

        +
5

8
(
1+𝜍𝑤

𝑔𝑝𝑙
𝜄𝑤
𝑔𝑝𝑙

𝑉𝑔𝑝𝑙

1−𝜄𝑤
𝑔𝑝𝑙

𝑉𝑔𝑝𝑙
)𝐸𝑚. 

(4) 

where 𝜍𝑔𝑝𝑙and 𝜄𝑔𝑝𝑙  are the GPL property factors, 
also 𝐸𝑚  depict the young’s moduli of the metallic 
matrix. For the unknown values of the GPL 
factors, we have [49]: 

 
Fig. 2. GPL distributions and porosity dispersion patterns 
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𝜍𝑙
𝑔𝑝𝑙

=
2𝑙𝑔𝑝𝑙

𝑡𝑔𝑝𝑙
, 

𝜍𝑤
𝑔𝑝𝑙

=
2𝑤𝑔𝑝𝑙

𝑡𝑔𝑝𝑙
, 

𝜄𝑙
𝑔𝑝𝑙

=
(
𝐸𝑔𝑝𝑙

𝐸𝑚
⁄ ) − 1

(
𝐸𝑔𝑝𝑙

𝐸𝑚
⁄ ) + 𝜍𝑙

𝑔𝑝𝑙
, 

𝜄𝑤
𝑔𝑝𝑙

=
(
𝐸𝑔𝑝𝑙

𝐸𝑚
⁄ ) − 1

(
𝐸𝑔𝑝𝑙

𝐸𝑚
⁄ ) + 𝜍𝑤

𝑔𝑝𝑙
. 

(5) 

where 𝑙𝑔𝑝𝑙 , 𝑤𝑔𝑝𝑙  and 𝑡𝑔𝑝𝑙 are the average length, 

width, and thickness of the GPLs, respectively. 
Also, based on the GRF scheme, the varying 
Poisson’s ratio of the core is obtained by [50]: 

𝜈(𝑧) = 0.221𝜙(𝑧)𝑒𝑚 
          +𝜈∗(0.342(𝜙(𝑧)𝑒𝑚)

2 − 1.21𝜙(𝑧)𝑒𝑚 + 1) 

 (6) 

As depicted in Fig. 2, for different GPL 
distribution patterns, the volume fraction 
distribution (𝑉𝑔𝑝𝑙) along the z direction is given 

by [51]: 

𝑉𝑔𝑝𝑙

= {

𝑠𝑖𝑖 [1 − 𝑐𝑜𝑠(
𝜋𝑧

ℎ𝑐
)] ,

𝑠𝑖𝑗 [1 − 𝑐𝑜𝑠(
𝜋𝑧

2ℎ𝑐
+
𝜋

4
)] .

 

GPL 
distribution A 

GPL 
distribution B 

(7) 

in which the relationship between the volume 
fraction and weight fraction of the GPLs is defined 
by [52]: 

𝑊𝑔𝑝𝑙

𝑊𝑔𝑝𝑙 +
𝜌𝑔𝑝𝑙
𝜌𝑚

−
𝜌𝑔𝑝𝑙
𝜌𝑚

𝑊𝑔𝑝𝑙

×∫ [1 − 𝑒𝑚𝜙(𝑧)]𝑑𝑧

ℎ𝑐
2

−ℎ𝑐
2

= ∫ 𝑉𝑔𝑝𝑙[1 − 𝑒𝑚𝜙(𝑧)]𝑑𝑧

ℎ𝑐
2

−ℎ𝑐
2

 
(8) 

Utilizing the rule of mixture, 𝜌∗ and 𝜈∗ the 
mass density and Poisson’s ratio of the GPL-
reinforced platelets, respectively, can be 
calculated as below [53]: 

𝜌∗ = 𝜌𝑔𝑝𝑙𝑉𝑔𝑝𝑙 + 𝜌𝑚𝑉𝑚 , 

𝜈∗ = 𝜈𝑔𝑝𝑙𝑉𝑔𝑝𝑙 + 𝜈𝑚𝑉𝑚 , 

𝑉𝑚 = 1 − 𝑉𝑔𝑝𝑙. (9) 

in which 𝜌𝑔𝑝𝑙 , 𝜈𝑔𝑝𝑙 , 𝑉𝑔𝑝𝑙 , 𝜌𝑚, 𝜈𝑚 and 𝑉𝑚  are mass 

density, Poisson’s ratio, and volume fraction of 
GPLs and metals, respectively. 

 
Fig. 3. Modules of elasticity and Poisson’s ratio along the 

thickness of the sandwich plate for different GPLs 
distributions and porosity patterns  

Modules of elasticity and Poisson’s ratio of the 
sandwich plate are illustrated in Fig. 3 for 
different GPLs distributions and porosity 
patterns using the properties expressed in Table 
3. 

3. Fundamental Equations 

Based on the modified higher-order shear 
deformation theory (primarily proposed by 
[54]), the displacement field of the plate is 
described by: 

MHSDT =  

{

𝑈(𝑟, 𝑧, 𝑡) = 𝑢(𝑟, 𝑡) + 𝑧𝜑𝑟(𝑟, 𝑡) + 𝑓(𝑧)𝜓𝑟(𝑟, 𝑡),

𝑉(𝑟, 𝑧, 𝑡) = 0,

𝑊(𝑟, 𝑧, 𝑡) = 𝑤(𝑟, 𝑡).                                          (10)

 

where the displacements of the composite plate 
are formed of 𝑈, 𝑉, and 𝑊 in the orthogonal 
coordinate system. Moreover, 𝑢 and 𝑤 are the 
displacements along r and z axes and also 𝜑𝑟 is 
the rotation terms of the middle surface (i.e.,  
z = 0). Furthermore, the term 𝜓𝑟  in MHSDT is a 
mathematical parameter that cannot be 
physically defined.  

Besides, f(z) is a functional term that can be 
presumed as required in calculation. It should be 
noted that considering f(z) as 0, one can consider 
the first-order shear deformation theory of the 
plates (FSDT) for the displacement field. 

The simplicity and efficiency of using this 
theory are considering various functions in the 
displacement field and obtaining accurate results 
for different conditions. 
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Considering the Von-Karman nonlinear large 
deflection relation, the strain field 
accommodating with the displacement field of 
equation (10) is defined as follows: 

{

𝜀𝑟
𝜀𝜃
𝛾𝑟𝑧
} = 

{
 
 
 
 

 
 
 
 
𝜕𝑢

𝜕𝑟
+
1

2
(
𝜕𝑤

𝜕𝑟
)
2

+ 𝑧
𝜕𝜑𝑟
𝜕𝑟

+ 𝑓(𝑧)
𝜕𝜓𝑟
𝜕𝑟

𝑢

𝑟
+ 𝑧

𝜑𝑟
𝑟
+
𝑓(𝑧)

𝑟
𝜓𝑟

𝜕𝑤

𝜕𝑟
+ 𝜑𝑟 + 𝑓

′(𝑧)𝜓

, 

  
−ℎ𝑐
2
− ℎ𝑓 < 𝑧 <

ℎ𝑐
2
+ ℎ𝑓. (11) 

in which normal strain fields 𝜀𝑟 and 𝜀𝜃 are 
directed towards 𝑟 and 𝜃, respectively, and 𝛾𝑟𝑧 is 
the shear strain term. According to Hook’s law, 
the stress field for the core and face layers, are: 

[

𝜎𝑟
𝜎𝜃
𝜎𝑟𝑧
] = 

[
 
 
 
 
 
 𝑄11 =

𝐸𝑓

1 − 𝜈𝑓
2 𝑄12 =

𝜈𝑓𝐸𝑓

1 − 𝜈𝑓
2 0

𝑄21 =
𝜈𝑓𝐸𝑓

1 − 𝜈𝑓
2 𝑄22 =

𝐸𝑓

1 − 𝜈𝑓
2 0

0 0 𝑄66 = 𝐺𝑓 =
𝐸𝑓

2(1 + 𝜈𝑓)]
 
 
 
 
 
 

 [

𝜀𝑟
𝜀𝜃
𝛾𝑟𝑧
]  

For Face layers                                                    (12) 

[

𝜎𝑟
𝜎𝜃
𝜎𝑟𝑧
] = 

[
 
 
 
 
 
 𝑄11 =

𝐸(𝑧)

1 − 𝜈(𝑧)2
𝑄12 =

𝜈(𝑧)𝐸(𝑧)

1 − 𝜈(𝑧)2
0

𝑄21 =
𝜈(𝑧)𝐸(𝑧)

1 − 𝜈(𝑧)2
𝑄22 =

𝐸(𝑧)

1 − 𝜈(𝑧)2
0

0 0 𝑄66 = 𝐺(𝑧) =
𝐸(𝑧)

2(1 + 𝜈(𝑧))]
 
 
 
 
 
 

[

𝜀𝑟
𝜀𝜃
𝛾𝑟𝑧
] 

For GPL porous core (13) 

Stress and moment resultants are defined as: 

(𝑁𝑖 , 𝑀𝑖 , 𝑅𝑖) = 

{∫ (1, 𝑧, 𝑓(𝑧))𝜎𝑖𝑑𝑧 +
ℎ𝑓+

ℎ𝑐
2⁄

ℎ𝑐
2⁄

∫ (1, 𝑧, 𝑓(𝑧))𝜎𝑖𝑑𝑧 +
ℎ𝑐

2⁄

−ℎ𝑐
2⁄

∫ (1, 𝑧, 𝑓(𝑧))𝜎𝑖𝑑𝑧
−ℎ𝑐

2⁄

−ℎ𝑐
2⁄ −ℎ𝑓

},      𝑖 = 𝑟, 𝜃 , 
(14) 

(𝑄𝑟𝑧 , 𝑅𝑟𝑧)

= {∫ (𝜎𝑟𝑧 , 𝑓
′(𝑧)𝜎𝑟𝑧)𝑑𝑧

ℎ𝑓+
ℎ𝑐

2⁄

ℎ𝑐
2⁄

+∫ (𝜎𝑟𝑧 , 𝑓
′(𝑧)𝜎𝑟𝑧)𝑑𝑧

ℎ𝑐
2⁄

−ℎ𝑐
2⁄

+∫ (𝜎𝑟𝑧 , 𝑓
′(𝑧)𝜎𝑟𝑧)𝑑𝑧

−ℎ𝑐
2⁄

−ℎ𝑐
2⁄ −ℎ𝑓

}. 
(15) 

Substituting equations (11 − 13) into 
(14 − 15) leads to the following constitutive 
relations: 

𝑁𝑟 = 𝐴 {
𝜕𝑢

𝜕𝑟
+ 1 2⁄ (

𝜕𝑤

𝜕𝑟
)
2

+ 𝜈
𝑢

𝑟
} +

𝐵 {
𝜕𝜑𝑟

𝜕𝑟
+ 𝜈

𝜑𝑟

𝑟
} + 𝐶 {

𝜕𝜓𝑟

𝜕𝑟
+ 𝜈

𝜓𝑟

𝑟
} , 

 

𝑁𝜃 = 𝐴 {𝜈
𝜕𝑢

𝜕𝑟
+ 𝜈 2⁄ (

𝜕𝑤

𝜕𝑟
)
2

+
𝑢

𝑟
} +

𝐵 {𝜈
𝜕𝜑𝑟

𝜕𝑟
+

𝜑𝑟

𝑟
} + 𝐶 {𝜈

𝜕𝜓𝑟

𝜕𝑟
+

𝜓𝑟

𝑟
} , 

 

𝑀𝑟 = 𝐵 {
𝜕𝑢

𝜕𝑟
+ 1 2⁄ (

𝜕𝑤

𝜕𝑟
)
2

+ 𝜈
𝑢

𝑟
} +

𝐹 {
𝜕𝜑𝑟

𝜕𝑟
+ 𝜈

𝜑𝑟

𝑟
} + 𝐺 {

𝜕𝜓𝑟

𝜕𝑟
+ 𝜈

𝜓𝑟

𝑟
} , 

 

𝑀𝜃 = 𝐵 {𝜈
𝜕𝑢

𝜕𝑟
+ 𝜈 2⁄ (

𝜕𝑤

𝜕𝑟
)
2

+
𝑢

𝑟
} +

𝐹 {𝜈
𝜕𝜑𝑟

𝜕𝑟
+

𝜑𝑟

𝑟
} + 𝐺 {𝜈

𝜕𝜓𝑟

𝜕𝑟
+

𝜓𝑟

𝑟
} , 

 

𝑅𝑟 = 𝐶 {
𝜕𝑢

𝜕𝑟
+ 1 2⁄ (

𝜕𝑤

𝜕𝑟
)
2

+ 𝜈
𝑢

𝑟
} +

𝐺 {
𝜕𝜑𝑟

𝜕𝑟
+ 𝜈

𝜑𝑟

𝑟
} + 𝐻 {

𝜕𝜓𝑟

𝜕𝑟
+ 𝜈

𝜓𝑟

𝑟
} , 

 

𝑅𝜃 = 𝐶 {𝜈
𝜕𝑢

𝜕𝑟
+ 𝜈 2⁄ (

𝜕𝑤

𝜕𝑟
)
2

+
𝑢

𝑟
} +

𝐺 {𝜈
𝜕𝜑𝑟

𝜕𝑟
+

𝜑𝑟

𝑟
} + 𝐻 {𝜈

𝜕𝜓𝑟

𝜕𝑟
+

𝜓𝑟

𝑟
} , 

 

𝑄𝑟𝑧 = 𝐷 {𝜑 +
𝜕𝑤

𝜕𝑟
} + 𝐸{𝜓}, 

 

𝑅𝑟𝑧 = 𝐸 {𝜑 +
𝜕𝑤

𝜕𝑟
} + 𝐼{𝜓}. 

 
 

(16) 
 
 
 

(17) 
 
 
 
 

(18) 
 
 
 

(19) 
 
 
 

(20) 
 
 
 

(21) 
 
 

(22) 
 
 

(23) 

Where the elastic constants are expressed as: 

(𝐴𝑖𝑗 , 𝐵𝑖𝑗 ,𝐶𝑖𝑗 ,𝐹𝑖𝑗 , 𝐺𝑖𝑗 ,𝐻𝑖𝑗)=

(∫ 𝑄𝑖𝑗 𝑓
(1)ℎ𝑓+

ℎ𝑐
2⁄

ℎ𝑐
2⁄

(1, 𝑧, 𝑓(𝑧), 𝑧2, 𝑧𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧 +

∫ 𝑄𝑖𝑗 𝑐
(2)

ℎ𝑐
2⁄

−ℎ𝑐
2⁄

(1, 𝑧, 𝑓(𝑧), 𝑧2 , 𝑧𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧 +

∫ 𝑄𝑖𝑗 𝑓
(3)

−ℎ𝑐
2⁄

−ℎ𝑐
2⁄ −ℎ𝑓

(1, 𝑧, 1, 𝑧, 𝑓(𝑧), 𝑧2 , 𝑧𝑓(𝑧), 𝑓2(𝑧))𝑑𝑧) 

𝑖𝑗 = 11,12,22 

 
 
 
 
 
 
 
 

(24) 

(𝐷, 𝐸,𝐼)=

(∫ 𝑄66 𝑓
(1) (1, 𝑓′(𝑧), 𝑓′(𝑧)2)

ℎ𝑓+
ℎ𝑐

2⁄

ℎ𝑐
2⁄

𝑑𝑧 +

∫ 𝑄66 𝑐
(2) (1, 𝑓′(𝑧), 𝑓′(𝑧)2)

ℎ𝑐
2⁄

−ℎ𝑐
2⁄

𝑑𝑧 +

∫ 𝑄66 𝑓
(3) (1, 𝑓′(𝑧), 𝑓′(𝑧)2)

−ℎ𝑐
2⁄

−ℎ𝑐
2⁄ −ℎ𝑓

𝑑𝑧). 

 
 
 
 
 
 
 

(25) 

in which 𝑄(𝑛) expresses the stiffness matrix of the 
layer number (n) as follows: 

𝑄(𝑛) = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

]

𝑛

. (26) 

The equations of motion can be obtained by 
implementation of the principle of minimum 
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potential energy, which is expressed by the 
following integral: 

𝛿𝛱 = ∫ (𝛿𝑈 + 𝛿𝑊 − 𝛿𝐾)𝑑𝑡 = 0.
𝜏

0

 (27) 

in which 𝛿𝑈, 𝛿𝑊, and 𝛿𝐾 are strain energy 
changes due to internal loads, work changes due 
to external loads, and virtual kinetic energy 
changes, respectively.  

Changes in strain energy, virtual work, and 
kinetic energy of the whole system are defined as: 

{
 
 
 
 

 
 
 
 
𝛿𝑈 = ∫ ∫(𝜎𝑟𝛿𝜀𝑟 + 𝜎𝜃𝛿𝜀𝜃 + 𝜎𝑟𝑧𝛿𝛾𝑟𝑧)

𝑉

𝑑𝑉𝑑𝑡,
𝜏

0

𝛿𝑊 = ∫ ∫ ∫ (𝐹(𝑡))

2𝜋

0

𝑟𝑜

𝑟𝑖

𝜏

0

𝛿𝑤𝑟𝑑𝑟𝑑𝜃𝑑𝑡,

𝛿𝐾 =
1

2
∫ ∫ 𝜌𝛿 [(

𝜕𝑢

𝜕𝑡
)
2

+ (
𝜕𝑤

𝜕𝑡
)
2

]

𝑉

𝑑𝑉𝑑𝑡
𝜏

0

.

 

 

 

 

 

 

(28) 

For instance, by substituting strain 
components in terms of displacement field into 
the variations in strain energy relation yields: 

𝛿𝑈 =∭ (𝜎𝑟𝛿 (
𝜕𝑢

𝜕𝑟
+

1

2
(
𝜕𝑤

𝜕𝑟
)
2

+
𝑉

𝑧
𝜕𝜑𝑟

𝜕𝑟
+ 𝑓(𝑧)

𝜕𝜓𝑟

𝜕𝑟
) + 𝜎𝜃𝛿 (

𝑢

𝑟
+ 𝑧

𝜑𝑟

𝑟
+

𝑓(𝑧)

𝑟
𝜓) + 𝜎𝑟𝑧𝛿 (

𝜕𝑤

𝜕𝑟
+ 𝜑𝑟 +

𝑓′(𝑧))) 𝑟𝑑𝑟𝑑𝜃𝑑𝑧  . 

 

 

 

 

 

(29) 

By integrating over the thickness of Eq. (29) 
and substituting the stress and moment results, 
the following equation for the total thickness of 
the plate will be obtained: 

𝛿𝑈 = ∬ ((𝑁𝑟𝛿
𝜕𝑢

𝜕𝑟
+𝑁𝑟

𝜕𝑤

𝜕𝑟
𝛿
𝜕𝑤

𝜕𝑟
+

𝐴

𝑀𝑟𝛿
𝜕𝜑𝑟

𝜕𝑟
+ 𝑅𝑟𝛿

𝜕𝜓𝑟

𝜕𝑟
) + (𝑁𝜃𝛿

𝑢

𝑟
+

𝑀𝜃𝛿
𝜑𝑟

𝑟
+ 𝑅𝜃𝛿

𝜓𝑟

𝑟
) + (𝑄𝑟𝑧𝛿

𝜕𝑤

𝜕𝑟
+

𝑄𝑟𝑧𝛿𝜑𝑟 + 𝑅𝑟𝑧𝛿𝜓𝑟)) 𝑟𝑑𝑟𝑑𝜃  . 

 

 

 

 

 

(30) 

Integrating from each term of relation (30) 
and implementing the fractional integration 
technique, results in the below relation in which 
the singleton integrals show the boundary 
conditions and the dual integrals represent the 
governing equations: 

𝛿𝑈

= −∬

{
 
 
 
 

 
 
 
 [𝑁𝑟 + 𝑟

𝜕𝑁𝑟
𝜕𝑟

− 𝑁𝜃] 𝛿𝑢 +

[𝑟
𝜕𝑀𝑟

𝜕𝑟
+𝑀𝑟 −𝑀𝜃 − 𝑟𝑄𝑟𝑧] 𝛿𝜑𝑟 +

[𝑟
𝜕𝑅𝑟
𝜕𝑟

+ 𝑅𝑟 − 𝑅𝜃 − 𝑟𝑅𝑟𝑧] 𝛿𝜓𝑟 +

[
𝜕

𝜕𝑟
(𝑟𝑁𝑟

𝜕𝑤

𝜕𝑟
+ 𝑟

𝜕𝑄𝑟𝑧
𝜕𝑟

+ 𝑄𝑟𝑧)] 𝛿𝑤}
 
 
 
 

 
 
 
 

𝑑𝑟𝑑𝜃

𝐴

 

     +∮

{
 

 
[𝑟𝑁𝑟𝑑𝜃]𝛿𝑢 + [𝑟𝑀𝑟𝑑𝜃]𝛿𝜑𝑟

+[𝑟𝑅𝑟𝑑𝜃]𝛿𝜓𝑟

+ [𝑟𝑁𝑟
𝜕𝑤

𝜕𝑟
+ 𝑟𝑄𝑟𝑧] 𝛿𝑤 }

 

 

𝛤

𝑑𝛤 

(31) 

By introducing mass inertia terms as follows: 
𝐼𝑗 =

∫ 𝜌𝑓(1, 𝑧, 𝑧
2 , 𝑓(𝑧), (𝑧. 𝑓(𝑧)), (𝑓(𝑧))2)

ℎ𝑓+
ℎ𝑐

2⁄

ℎ𝑐
2⁄

𝑑𝑧 +

∫ 𝜌(𝑧)
ℎ𝑐

2⁄

−ℎ𝑐
2⁄

(1, 𝑧, 𝑧2, 𝑓(𝑧), (𝑧. 𝑓(𝑧)), (𝑓(𝑧))2)𝑑𝑧 +

∫ 𝜌𝑓(1, 𝑧, 𝑧
2, 𝑓(𝑧), (𝑧. 𝑓(𝑧)), (𝑓(𝑧))2)

−ℎ𝑐
2⁄

−ℎ𝑐
2⁄ −ℎ𝑓

𝑑𝑧 

j = 1, 2, 3, 4, 5,6 

 
 
 
 
 
 
 
 
 
 
 

(32) 

The kinetic energy changes can be expressed 
by: 

∫ 𝛿𝐾𝑑𝑡 = ∫ {∬ [𝐼1𝑈̇𝛿𝑈̇
𝐴𝑇

𝑇

0

− 𝐼2𝑈̇𝛿𝜑̇𝑟 − 𝐼4𝑈̇𝛿𝜓̇𝑟
+ 𝐼2𝜑̇𝑟𝛿𝑈̇ + 𝐼3𝜑̇𝑟𝛿𝜑̇𝑟
+ 𝐼5𝜑̇𝑟𝛿𝜓̇𝑟 − 𝐼4𝜓̇𝑟𝛿𝑈̇

+ 𝐼5𝜓̇𝑟𝛿𝜑̇𝑟
+ 𝐼6𝜑̇𝑟𝛿𝜑̇𝑟

+ 𝐼1𝑊̇𝛿𝑊̇] 𝑑𝐴}𝑑𝑡. 

 

 

 

 

(33) 

Finally, substituting Eq. (28) into Eq. (27) and 
giving zero to 𝛿𝑢, 𝛿𝜑𝑟 , 𝛿𝜓𝑟  and 𝛿𝑤, the equations 
of motion will result in [55]: 
𝜕𝑁𝑟
𝜕𝑟

+ (
𝑁𝑟 − 𝑁𝜃

𝑟
) = 

(𝐼1
𝜕2𝑢

𝜕𝑡2
+ 𝐼2

𝜕2𝜑𝑟

𝜕𝑡2
+ 𝐼4

𝜕2𝜓𝑟

𝜕𝑡2
),  

𝜕𝑀𝑟

𝜕𝑟
− 𝑄𝑟𝑧 + (

𝑀𝑟 −𝑀𝜃

𝑟
) = 

(𝐼2
𝜕2𝑢

𝜕𝑡2
+ 𝐼3

𝜕2𝜑𝑟

𝜕𝑡2
+ 𝐼5

𝜕2𝜓𝑟

𝜕𝑡2
),  

𝜕𝑅𝑟
𝜕𝑟

− 𝑅𝑟𝑧 + (
𝑅𝑟 − 𝑅𝜃

𝑟
) = 

(𝐼4
𝜕2𝑢

𝜕𝑡2
+ 𝐼3

𝜕2𝜑𝑟

𝜕𝑡2
+ 𝐼6

𝜕2𝜓𝑟

𝜕𝑡2
),  

𝜕𝑄𝑟𝑧
𝜕𝑟

+
𝑄𝑟𝑧
𝑟
+ (𝑁𝑟

𝜕2𝑤

𝜕𝑟2
+
𝑁𝜃
𝑟

𝜕𝑤

𝜕𝑟
) 

+𝐹(𝑡) = (𝐼1
𝜕2𝑤

𝜕𝑡2
). 

 
 
 
 
 
 
 
 
 
 
 
 
 

(34) 

We could also obtain the static equilibrium 
equations in terms of displacement field 𝑢, 𝑤, 𝜑𝑟 
and 𝜓𝑟  as follows: 
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𝐴11 (
𝜕2𝑢

𝜕𝑟2
+ (

1

2
)
𝜕

𝜕𝑟
(
𝜕𝑤

𝜕𝑟
)
2

) +

𝐴12 (
𝜕

𝜕𝑟
(
𝑢

𝑟
)) + 𝐵11

𝜕2𝜑𝑟

𝜕𝑟2
+

𝐵12 (
𝜕

𝜕𝑟
(
𝜑𝑟

𝑟
)) + 𝐶11 (

𝜕2𝜓𝑟

𝜕𝑟2
) +

𝐶12 (
𝜕

𝜕𝑟
(
𝜓𝑟

𝑟
)) +

1

𝑟
{(
𝜕𝑢

𝜕𝑟
+

(
1

2
) (

𝜕𝑤

𝜕𝑟
)
2

) (𝐴11 − 𝐴12) +
𝑢

𝑟
(𝐴12 −

𝐴22) +
𝜕𝜑𝑟

𝜕𝑟
(𝐵11 − 𝐵12) +

𝜑𝑟

𝑟
(𝐵12 −

𝐵22) +
𝜕𝜓𝑟

𝜕𝑟
(𝐶11 − 𝐶12) +

𝜓𝑟

𝑟
(𝐶12 −

𝐶22)} = 0, 

 
 
 
 
 
 
 
 
 
 
 
 

(35) 

𝐵11 (
𝜕2𝑢

𝜕𝑟2
+ (

1

2
)
𝜕

𝜕𝑟
(
𝜕𝑤

𝜕𝑟
)
2

) +

𝐵12 (
𝜕

𝜕𝑟
(
𝑢

𝑟
)) + 𝐹11

𝜕2𝜑𝑟

𝜕𝑟2
+

𝐹12 (
𝜕

𝜕𝑟
(
𝜑𝑟

𝑟
)) + 𝐺11 (

𝜕2𝜓𝑟

𝜕𝑟2
) +

𝐺12 (
𝜕

𝜕𝑟
(
𝜓𝑟

𝑟
)) +

1

𝑟
{(
𝜕𝑢

𝜕𝑟
+

(
1

2
) (

𝜕𝑤

𝜕𝑟
)
2

) (𝐵11 − 𝐵12) +
𝑢

𝑟
(𝐵12 −

𝐵22) +
𝜕𝜑𝑟

𝜕𝑟
(𝐹11 − 𝐹12) +

𝜑𝑟

𝑟
(𝐹12 −

𝐹22) +
𝜕𝜓𝑟

𝜕𝑟
(𝐺11 − 𝐺12) +

𝜓𝑟

𝑟
(𝐺12 −

𝐺22)} − 𝐷 (𝜑𝑟 +
𝜕𝑤

𝜕𝑟
) − 𝐸(𝜓) = 0, 

 
 
 
 
 
 
 
 
 
 
 

 
(36) 

𝐶11 (
𝜕2𝑢

𝜕𝑟2
+ (

1

2
)
𝜕

𝜕𝑟
(
𝜕𝑤

𝜕𝑟
)
2

) +

𝐶12 (
𝜕

𝜕𝑟
(
𝑢

𝑟
)) + 𝐺11

𝜕2𝜑𝑟

𝜕𝑟2
+

𝐺12 (
𝜕

𝜕𝑟
(
𝜑𝑟

𝑟
)) + 𝐻11 (

𝜕2𝜓𝑟

𝜕𝑟2
) +

𝐻12 (
𝜕

𝜕𝑟
(
𝜓𝑟

𝑟
)) +

1

𝑟
{(
𝜕𝑢

𝜕𝑟
+

(
1

2
) (

𝜕𝑤

𝜕𝑟
)
2

) (𝐶11 − 𝐶12) +
𝑢

𝑟
(𝐶12 −

𝐶22) +
𝜕𝜑𝑟

𝜕𝑟
(𝐺11 − 𝐺12) +

𝜑𝑟

𝑟
(𝐺12 −

𝐺22) +
𝜕𝜓𝑟

𝜕𝑟
(𝐻11 − 𝐻12) +

𝜓𝑟

𝑟
(𝐻12 −

𝐻22)} − 𝑒 (𝜑𝑟 +
𝜕𝑤

𝜕𝑟
) − 𝐼(𝜓) = 0, 

 
 
 
 
 
 
 
 
 

 
 
 
 

(37) 

{[𝐴11 (
𝜕𝑢

𝜕𝑟
+ (

1

2
) (

𝜕𝑤

𝜕𝑟
)
2

)]
𝜕2𝑤

𝜕𝑟2
} +

𝐴12 (
𝑢

𝑟
) + 𝐵11 (

𝜕𝜑𝑟

𝜕𝑟
) + 𝐵12 (

𝜑𝑟

𝑟
) +

𝐶11 (
𝜕𝜓𝑟

𝜕𝑟
) + 𝐶12 (

𝜓𝑟

𝑟
) + {[𝐴12 (

𝜕𝑢

𝜕𝑟
+

(
1

2
) (

𝜕𝑤

𝜕𝑟
)
2

)]
1

𝑟

𝜕𝑤

𝜕𝑟
} + 𝐴22 (

𝑢

𝑟
) +

𝐵12 (
𝜕𝜑𝑟

𝜕𝑟
) + 𝐵22 (

𝜑𝑟

𝑟
) + 𝐶12 (

𝜕𝜓𝑟

𝜕𝑟
) +

𝐶22 (
𝜓𝑟

𝑟
) + 𝐷 (

𝜕𝜑𝑟

𝜕𝑟
+

𝜕2𝑤

𝜕𝑟2
) + 𝐷 (

𝜑𝑟

𝑟
+

𝜕𝑤

𝑟𝜕𝑟
) + 𝐸 (

𝜕𝜓𝑟

𝜕𝑟
+

𝜓𝑟

𝑟
) = 0. 

 
 
 
 
 

 
 
 
 
 
 

(38) 

To complete the formulations, equations 
(35 − 38) should be joined with a set of initial 
and boundary conditions, as below: 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑎𝑡 𝑡 = 0: {

𝑢 = 0
𝜑 = 0
𝜓 = 0
𝑤 = 0

 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠:

{
 
 
 

 
 
 
𝐶𝑙𝑎𝑚𝑝𝑒𝑑 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝑎𝑡 𝑟𝑖 , 𝑟𝑜: {

𝑢 = 0
𝜑 = 0
𝜓 = 0
𝑤 = 0

𝑆𝑖𝑚𝑝𝑙𝑦 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝑎𝑡 𝑟𝑖 , 𝑟𝑜: {

𝑢 = 0
𝑤 = 0
𝑀𝑟 = 0
𝑅𝑟 = 0

 

4. Solving Procedure 

To discretize the time-dependent equations of 
motion of annular GPL-reinforced porous 
sandwich composite plate, the implicit Newmark 
method is utilized in this paper, and in order to 
solve the partial differential equations of motion, 
the viscous dynamic relaxation method (V-DR) 
with central finite difference technique is 
exploited. 

4.1. Newmark Direct Integration Method 

The main aim of the Newmark approach is to 
discretize the time-varying equations using a 
reduced Taylor series by determination of 
accelerations and velocities in real forms at the 
next time step (𝑡𝑗+1) as: 

𝜒̈𝑗+1 = {(𝜒𝑗+1 − 𝜒𝑗)
1

𝛽(𝛥𝑡𝑗)
2 −

𝜒̇𝑗 (
1

𝛽𝛥𝑡𝑗
) − 𝜒̈𝑗 (

1

2𝛽
− 1)}, 

𝜒̇𝑗+1 = {(𝜒𝑗+1 − 𝜒𝑗)
𝛾

𝛽𝛥𝑡𝑗
− 𝜒̇𝑗 (

𝛾

𝛽
− 1) −

𝜒̈𝑗𝛥𝑡𝑗 (
𝛾

2𝛽
− 1)}. 

 
 
 
 

(40) 
 
 
 

(41) 

where 𝛾 and 𝛽 are Newmark’s constant 
parameters which can be determined to gain 
integration stability and accuracy, taken as 0.5 
and 0.25 (average acceleration method), Δ𝑡 is the 
time interval, the difference of current and prior 
real-time displacement, velocity, and 
acceleration, respectively. Also, 𝜒 represents the 
displacements (𝜒 = 𝑢, 𝜑, 𝜓, 𝑤) at 𝑡𝑗+1 and 𝑡𝑗 . 

Placing equations (40) and (41) into (34) the 
equilibrium equations will become: 

𝜕𝑁𝑟
𝜕𝑟

+ (
𝑁𝑟 − 𝑁𝜃

𝑟
) 

−𝐴1 (𝐼1𝑢𝑗+1 + 𝐼2𝜑𝑟𝑗+1 + 𝐼4𝜓𝑟𝑗+1) = 

− 〈

𝐼1(𝐴1𝑢𝑗 + 𝐴2𝑢̇𝑗 + 𝐴3𝑢̈𝑗)

+𝐼2 (𝐴1𝜑𝑟𝑗 + 𝐴2𝜑̇𝑟𝑗 + 𝐴3𝜑̈𝑟𝑗)

+𝐼4 (𝐴1𝜓𝑟𝑗 + 𝐴2𝜓̇𝑟𝑗 + 𝐴3𝜓̈𝑟𝑗)

〉 , 

 
 
 
 
 
 
 
 
 
 
 

(42) 
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𝜕𝑀𝑟

𝜕𝑟
− 𝑄𝑟𝑧 + (

𝑀𝑟 −𝑀𝜃

𝑟
)

− 𝐴1 (𝐼2𝑢𝑗+1

+ 𝐼3𝜑𝑟𝑗+1 + 𝐼5𝜓𝑟𝑗+1)

= 

− 〈

𝐼2(𝐴1𝑢𝑗 + 𝐴2𝑢̇𝑗 + 𝐴3𝑢̈𝑗)

+𝐼3 (𝐴1𝜑𝑟𝑗 + 𝐴2𝜑̇𝑟𝑗 + 𝐴3𝜑̈𝑟𝑗)

+𝐼5 (𝐴1𝜓𝑟𝑗 + 𝐴2𝜓̇𝑟𝑗 + 𝐴3𝜓̈𝑟𝑗)

〉 , 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(43) 
 

𝜕𝑅𝑟
𝜕𝑟

− 𝑅𝑟𝑧 + (
𝑅𝑟 − 𝑅𝜃

𝑟
)

− 𝐴1 (𝐼4𝑢𝑗+1

+ 𝐼3𝜑𝑟𝑗+1 + 𝐼6𝜓𝑟𝑗+1)

= 

− 〈

𝐼4(𝐴1𝑢𝑗 + 𝐴2𝑢̇𝑗 + 𝐴3𝑢̈𝑗)

+𝐼3 (𝐴1𝜑𝑟𝑗 + 𝐴2𝜑̇𝑟𝑗 + 𝐴3𝜑̈𝑟𝑗)

+𝐼6 (𝐴1𝜓𝑟𝑗 + 𝐴2𝜓̇𝑟𝑗 + 𝐴3𝜓̈𝑟𝑗)

〉 , 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(44) 
 

𝜕𝑄𝑟𝑧
𝜕𝑟

+
𝑄𝑟𝑧
𝑟
+ (𝑁𝑟

𝜕2𝑤

𝜕𝑟2
+
𝑁𝜃
𝑟

𝜕𝑤

𝜕𝑟
)

− 𝐴1(𝐼1𝑤𝑗+1) = 

−𝐼1(𝐴1𝑤𝑗 + 𝐴2𝑤̇𝑗 + 𝐴3𝑤̈𝑗) − 𝐹(𝑡) . 
 

 
 
 
 
 
 

(45) 
 

where the following are Newmark coefficients: 

𝐴1 =
1

𝛽(𝛥𝑡𝑗)
2 , 𝐴2 =

1

𝛽𝛥𝑡𝑗
 , 𝐴2 =

1

2𝛽
− 1. 

(46) 

Hence, for the sake of briefness, the following 
shrunken term should be written for the 
equations of motion: 

[𝐾𝑗+1]
𝑛
{𝜒𝑗+1}

𝑛
= {𝑃(𝑡𝑗+1)}

𝑛
. (47) 

in which {𝑃(𝑡𝑗+1)}
𝑛

and [𝐾𝑗+1]
𝑛

 are the equivalent 

load vector and stiffness matrix at 𝑛𝑡ℎ DR 
iteration. 

4.2. Viscous Damping Dynamic Relaxation 
Method 

Based on the dynamic relaxation method, to 
obtain stable solutions, the governing equations 
of motion (47) will be converted from a static 
space into a fictitious dynamic one via the 
transformation of boundary value into initial 
value problems. The conversion would happen 
through the addition of damping and inertia 
terms to equilibrium equations [56]: 

[𝑀]{𝜒̈}𝑛 + [𝐶]{𝜒̇}𝑛 + [𝐾𝑗+1]
𝑛
{𝜒𝑗+1}

𝑛

= {𝑃(𝑡𝑗+1)}
𝑛
. (48) 

in which [𝑀] and [𝐶] in the above relation are 
fictitious diametrical mass and damping matrices 
respectively, also {𝜒̈}𝑛 and {𝜒̇}𝑛 are the 
acceleration and velocity, respectively. Accurate 

estimations of mass matrix and damping factors 
are the criteria of convergence and stability in the 
DR method, thus based on the theorem of 
Gershgorin, they will be estimated as [56]: 

𝑚𝑖𝑖
𝑑 ≥

1

4
[𝜏𝑛]2∑ |𝑘𝑖𝑙|

𝑁
𝑙=1 , (49) 

𝑐𝑖
𝑛 = 2(

(𝜒𝑖
𝑛)𝑇{𝑃(𝑡𝑗+1)}

𝑛

𝑖

(𝜒𝑖
𝑛)𝑇𝑚𝑖𝑖

𝑑𝜒𝑖
𝑛 )

0.5

. 
(50) 

where in, 𝑑 is 𝑢, 𝜑, 𝜓 and w also known as 
freedom degrees of structure, 𝑐𝑖

𝑛 is critical 
damping coefficient at 𝑖𝑡ℎ spatial node, 𝜏𝑛 depicts 
fictitious incremental time which is generally 
taken as unity and the element of the stiffness 
matrix is determined as 𝑘𝑖𝑙 . To calculate the 
stiffness matrix, we have: 

𝐾 =
𝜕([𝐾𝑗+1]

𝑛
{𝜒𝑗+1}

𝑛
)

𝜕𝜒
 . (51) 

in which 𝜒 = 𝑢, 𝜑, 𝜓 𝑎𝑛𝑑 𝑤 are vectors of 
approximate solution. A set of finite difference 
statements should be written in order to finalize 
the iterative procedure by using the acceleration 
and velocity terms as follows: 

𝜒̈𝑛 = (
𝜒̇𝑛+0.5 − 𝜒̇𝑛−0.5

𝜏𝑛
), 

(52) 

𝜒̇𝑛−0.5 = (
𝜒𝑛−𝜒𝑛−1

𝜏𝑛
). (53) 

The velocities at the next time step can be 
defined as [57]: 

𝜒̇𝑖
𝑛+0.5 =

(2𝑚𝑖𝑖
𝑑 − 𝜏𝑛𝑐𝑖

𝑛)

(2𝑚𝑖𝑖
𝑑 + 𝜏𝑛𝑐𝑖

𝑛)
𝜒̇𝑖
𝑛−0.5

+
2𝜏𝑛

(2𝑚𝑖𝑖
𝑑 + 𝜏𝑛𝑐𝑖

𝑛)
(𝑅)𝑛. 

 
 
 
 

(54) 

Now out of balance force vector and kinetic 
energy of the system can be calculated as: 

(𝑅)𝑛 = {𝑃(𝑡𝑗+1)}
𝑛
− [𝐾𝑗+1]

𝑛
{𝜒𝑗+1}

𝑛
, 

(55) 

𝐾𝐸𝑛+1 =∑{𝜒̇𝑗
𝑛+0.5}

2
.

𝑁

𝑗=1

 

(56) 
In each time step by applying integration on 

velocities, the displacements will be calculated 
by: 

𝜒𝑛+1 = 𝜒𝑛 + 𝜏𝑛+1𝜒̇𝑛+0.5. (57) 

The V-DR process is continued with iterative 
steps to fulfill desired convergence criteria, i.e., 
𝐾𝐸𝑛+1 ≤ 10−12and  (𝑅)𝑛 ≤ 10−6. The following 
flowchart (Fig. 4) explains the V-DR method in 
combination with the Newmark direct 
integration technique: 
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Fig. 4. Newmark direct integration in combination with the Dynamic relaxation method 

5. Numerical Results 

5.1. Validation 

As a first example to prove the accuracy of the 
present study in this section, the maximum 
deflection of a circular FG plate based on FSDT is 
compared with those of Reddy et al. [58]. The 
plate is subjected to a uniform distributed load 
with clamped and simply supported boundary 
conditions. The effect of different power law 
indices with three thickness-to-radius ratios are 
presented in the following. The material 
properties and uniform load which are used in 
this example are: 

𝑞̅ = 𝐹0𝑟𝑜
4 𝐸𝑚ℎ

4⁄ , 

𝑊𝑚𝑎𝑥 = 64𝑤𝐷𝑐 𝐹0𝑟𝑜
4⁄ ,  

𝐷𝑐 = 𝐸𝑐ℎ
3 12(1 − 𝜈2)⁄ ,  

𝐹0 = 0.14 𝐺𝑝𝑎, 

𝜈 = 0.288, 

𝐸𝑐 = 151.0 𝐺𝑝𝑎,  

𝐸𝑚 𝐸𝑐⁄ = 0.396. 

 
 
 
 
 
 
 
 
 

 
(58) 

Tables 1 and 2 show the great consistency of 
the viscous damping DR method with those 
gained by Reddy et al. [58]. 

Table 1. Comparison of nondimensional maximum 
deflection in simply supported condition with Ref. [58] 

 Thickness radius ratio, ℎ 𝑟𝑜⁄  

 Reddy et al. [58] Present study 

n 0.1 0.15 0.2 0.1 0.15 0.2 

0 10.481 10.623 10.822 10.469 10.623 10.820 

2 5.539 5.610 5.708 5.534 5.609 5.706 

4 5.153 5.217 5.307 5.155 5.219 5.308 

8 4.810 4.870 4.954 4.810 4.864 4.955 

10 4.712 4.772 4.855 4.711 4.764 4.857 

50 4.291 4.338 4.428 4.286 4.338 4.430 

100 4.223 4.280 4.359 4.220 4.278 4.358 

1000 4.158 4.214 4.293 4.155 4.218 4.292 

10e05 4.151 4.207 4.285 4.150 4.204 4.285 
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Table 2. Comparison of nondimensional maximum 
deflection in clamped supported condition with Ref. [58] 

 Thickness radius ratio, ℎ 𝑟𝑜⁄  

 Reddy et al. [58] Present study 

n 0.1 0.15 0.2 0.1 0.15 0.2 

0 2.639 2.781 2.979 2.635 2.778 2.971 

2 1.444 1.515 1.613 1.441 1.511 1.614 

4 1.320 1.384 1.473 1.317 1.374 1.476 

8 1.217 1.278 1.362 1.215 1.275 1.360 

10 1.190 1.250 1.333 1.188 1.240 1.333 

50 1.080 1.137 1.216 1.078 1.134 1.219 

100 1.063 1.119 1.199 1.054 1.118 1.198 

1000 1.047 1.103 1.182 1.048 1.107 1.182 

10e05 1.045 1.101 1.180 1.042 1.101 1.180 

For a second example to prove the validity 
and precision of the Newmark integration 
method, the results of forced vibration analysis 
under impulsive loading with simply supported 
boundary conditions are compared with those 
reported by Ref. [59]. Since there is no evidence 
based on dynamic analysis of annular FG 
sandwich porous plates reinforced by graphene 
platelets in open literature, the following sample 
is presented in which the plate is degraded into a 
single layer FG annular plate conforming a 
power-law function with varying Poisson’s ratio 
based on Mori-Tanaka scheme through different 
material grading indices whose material 
properties are: 

𝐸𝑚 = 70𝐺𝑝𝑎,  

𝜈𝑚 = 0.3,  

𝜌𝑚 = 2702 𝑘𝑔 𝑚3⁄ , 

𝐸𝑐 = 427𝐺𝑝𝑎,  

𝜈𝑐 = 0.17,  

𝜌𝑐 = 3100 𝑘𝑔 𝑚3⁄ . 

 
 
 
 
 
 
 
 

(59) 

Figure 5 shows normalized nondimensional 

deflection 
𝑤

ℎ
 at normalized radius point 

𝑅 =
(𝑟𝑜+𝑟𝑖)

2
 versus nondimensional time 𝑇 =

𝑡

Δ𝑡
 

with Δ𝑡 = 0.01. The results show the efficiency 
and accuracy of the procedure and are found to 
be in great consistency with the analytical 
solution of Ref. [59]. 

 
Fig. 5. Comparison study for the dynamic behavior of simply 
supported FG annular plate with different power law indices 

under impulsive loading. 
𝑟𝑜
ℎ⁄ = 6,

𝑟𝑖
ℎ⁄ = 3, 

 𝐹(𝑡) = 𝑞0 = 0.42𝐺𝑝𝑎, (𝑡 < ∞) 

To carry out the convergence study to state 
the number of spatial nodes, the following results 
are achieved for both boundary conditions based 
on FSDT and MHSDT. For instance, non-
dimensional deflection of clamped-clamped 
porous GPL reinforced annular plate under an 
impulsive loading (𝑞0 = 500𝑘𝑝𝑎, 𝑡 < ∞) is 
illustrated in Fig. 6 in terms of time for different 
node numbers. From the results, the 40 and 30 
nodes for FSDT and MHSDT, respectively, are 
considered for the analysis of the entire process 
because their responses have acceptable 
precision with suitable time of analysis. 

 
Fig. 6. Illustrations of the number of spatial nodes with GPL 
distribution A, Porosity dispersion II and 𝑊𝑔𝑝𝑙 = 1 𝑤𝑡.  %, 

𝑒0 = 0.2, ℎ 𝑟𝑜⁄ = 0.15 for (a) FSDT and (b) MHSDT 

It is noticed that the same number of nodes 
are used for simply supported conditions with 
ℎ
𝑟𝑜⁄ = 0.3 and different GPL distributions, 

porosity coefficients, and loadings. From Fig. 6 
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and similar analyses for convergence study, it can 
be concluded that modified-higher order theory 
can achieve more efficient and accurate results 
with fewer number of nodes. 

5.2. Parametric Study 

This section is devoted to investigating the 
influence of some substantial factors namely 
porosity dispersion and coefficients, GPL 
distribution and weight fractions, aspect ratio, 
and boundary conditions  under two types of 
loadings on dynamic results of the GPL-
reinforced porous FGM annular sandwich plate. 
The isotropic face sheets are assumed to be 
completely interconnected with the porous core 
and have the same properties as the metallic 
matrix of the core. Implemented material 
properties of the sandwich plate are taken from 
[49] shown in Table 3: 

Table 3. The material property of GPL-reinforced porous 
core and isotropic face sheets [49] 

 
Elasticity 
moduli 
(Gpa) 

Density 
(Kg/m3) 

Poisson’s 
ratio 

GPL 
(core) 

1010 1062.5 0.186 

Aluminum 
(Face sheets 
and metallic 
matrix) 

68.3 2689.8 0.34 

To carry out the parametric study, an annular 
graphene platelet reinforced porous sandwich 
plate with different aspect ratios and geometric 

parameters with ℎ
𝑟𝑜⁄ = 0.3 (ℎ𝑐 = 0.02𝑚, 

ℎ𝑓 = 0.005𝑚) and ℎ
𝑟𝑜⁄ = 0.15 (ℎ𝑐 = 0.01𝑚, 

ℎ𝑓 = 0.0025𝑚), 𝑟0 = 0.1𝑚 and 𝑟𝑖 = 0.02𝑚 are 

assumed in this section. Also, two types of 
loadings, an impact, and a simple harmonic 
excitation, are applied on the upper surface of the 
sandwich plate as follows: 

𝐼𝑚𝑝𝑎𝑐𝑡 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝐹(𝑡) = {
𝑞0𝑡, 𝑡 ≤ 𝑡𝑝
0, 𝑡 > 𝑡𝑝

, 

𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝐹(𝑡)
= 𝑞0𝑠𝑖𝑛(20)𝑡, 𝑡 < ∞. 

 
(60) 

 
 

(61) 

For all cases, the non-dimensional dynamic 
deflections are computed with the following 
loading specifications at normalized point R 
which are defined below: 

𝑅 =
(𝑟𝑜+𝑟𝑖)

2
,  

𝑇 =
𝑡

𝛥𝑡
,  

𝑡𝑝 = 0.3, 

𝑞0 = 500𝑘𝑝𝑎.  

 
 
 
 
 
(62) 

Also, the GPL parameters are taken as 
𝑙𝑔𝑝𝑙 = 2.5𝜇𝑚, 𝑤𝑔𝑝𝑙 = 1.5𝜇𝑚 and 𝑡𝑔𝑝𝑙 = 1.5𝑛𝑚.  

The effect of thickness-to-radius ratio for the 
FSDT and MHSDT subjected to an impact loading 
with S-S and C-C boundary conditions and 
 Δ𝑡 = 0.004 are illustrated in figures 7 and 8 for 
impact and harmonic loadings, respectively. As 
shown in Figures 7 and 8, the difference between 
FSDT and MHSDT becomes greater as the 
thickness of the FG sandwich annular plate is 
increased. One reason for this occurrence is the 
lack of accuracy in FSDT for thicker plates due to 
the consideration of shear strain as linear, hence 
with higher-order displacement fields, one can 
achieve displacements with higher accuracy. 
Also, it can be observed that the mentioned 
differences are more noticeable in S-S boundary 
conditions compared to C-C ones.  

 
Fig. 7. Effects of aspect ratio on the dynamic behavior of 
sandwich annular plate subjected to impact loading with 

𝑒0 = 0.2, 𝑊𝑔𝑝𝑙 = 0.5 𝑤𝑡.%, for (a), (b){ℎ 𝑟𝑜⁄ = 0.15}  

and (c), (d) {ℎ 𝑟𝑜⁄ = 0.3} 
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Fig. 8. Effects of aspect ratio on the dynamic behavior of 

sandwich annular plate subjected to harmonic loading with 

𝑒0 = 0.2, 𝑊𝑔𝑝𝑙 = 0.5 𝑤𝑡.%, for (a), (b){ℎ 𝑟𝑜⁄ = 0.15}  

and (c), (d) {ℎ 𝑟𝑜⁄ = 0.3} 

Nondimensional deflection versus 
dimensionless time (Δ𝑡 = 0.004) for two 
graphene distributions A and B with different 
porosity dispersions namely I and II under 
impact and harmonic loadings are shown in 
figures 9 and 10, respectively. As seen in Figures 
9 and 10, the effect of weight fraction 𝑤𝑡.% on the 
dynamic behavior of sandwich porous plate is 
also considered for both theories of MHSDT and 
FSDT with different thickness-to-radius ratios 
and boundary conditions. As shown in Fig. 9,  
adding 0.8 𝑤𝑡.% to the porous core of the 
sandwich plate, the flexural rigidity will increase 
with the addition of 0.8 𝑤𝑡.% to the porous core 
of sandwich plate, the flexural rigidity will 
increase significantly, for instance, this increase 
is about 27.2% for porosity dispersion II in FSDT 
and 25% in MHSDT. Similarly, using porosity 

dispersion I, this increase is about 14.2% and 
14.8% for FSDT and MHSDT, respectively. As 
illustrated in Fig. 10 for GPL distribution B and 
clamped-clamped supported porous sandwich 
annular plate with h⁄r_o =0.15 under a harmonic 
loading, with the addition of only 0.8 wt.% to the 
porous plate, an increase in bending rigidity is 
observed. In this case, the values of 16.2% and 
13.6% are seen for dispersions II and I in FSDT 
and the ones of 17.9% and 13.9%, respectively, in 
MSHDT. Also, as observed by adding more GPL to 
the porous core leads to a great decrease in the 
amplitude of vibrational waves of the whole 
structure in which the results for MHSDT are 
observed to be more accurate amongst the FSDTs 
by revealing more stable peak point kinetic 
energy at the end of each Dynamic Relaxation 
algorithm. Furthermore, as figures 9 and 10 
illustrate, for thicker plates, porosity dispersion II 
combined with GPL distributions A and B reveal 
higher deflection changes in the maximum 
porosity coefficient between MHSDT and FSDT. 
The greater the porosity coefficient, the more 
reduction in the stiffness of the plate, therefore 
the following particularly discusses the effect of 
the porosity coefficient on the dynamic history of 
porous sandwich annular plate reinforced by 
graphene platelets. 
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Fig. 9. Effect of GPL weight fraction on the dynamic behavior 
of an S-S edged porous sandwich plate subjected to an 

impact loading using graphene distribution A 

 with ℎ 𝑟𝑜⁄ = 0.3 

 
Fig. 10. Effect of GPL weight fraction on dynamic behavior of 
a C-C edged porous sandwich plate subjected to a harmonic 

loading using graphene distribution B with ℎ 𝑟𝑜⁄ = 0.15 

Figure 11 shows the dynamic behavior of a C-
C edged porous sandwich plate subjected to 
impact and harmonic loadings in graphene 
distribution A and porosity dispersions I, II with 
ℎ
𝑟𝑜⁄ = 0.3 based on both FSDT and MHSDT. The 

GPL weight fraction is considered a constant 
amount of 0.6% in this section and the porosity 
coefficient is changing from 0.2 to 0.8. The 
stiffness of the plate shows better reinforcement 
behavior in graphene distribution A combined 
with porosity dispersion II as the porosity 
coefficient greatens. 

Figure 12 discusses the dynamic response of 
an S-S conditioned graphene-reinforced 
sandwich annular plate under impact loading 

with ℎ 𝑟𝑜⁄ = 0.15 based on both theories with GPL 

distribution B and porosity distributions I and II. 
It shows that the same as clamped boundary 
conditions, the porosity dispersion II has a bigger 
influence on the strengthening of the porous core 
in simply supported conditions. Comparing the 
time history results in figures 7 to 12 with respect 
to the strength reinforcing of the plates leads to 
the following best order of composition of 
porosity and GPL distributions which is (GPL A-
Porosity II), (GPL B-porosity II), (GPL A-Porosity 
II) and (GPL B-Porosity I).  

 



Jafary and Golmakani / Mechanics of Advanced Composite Structures 11 (2024) 131 - 148 

145 

 

Fig. 11. Effect of porosity on the dynamic behavior of a C-C-
edged porous sandwich plate subjected to impact and 

harmonic loadings with graphene distribution A 

 and ℎ 𝑟𝑜⁄ = 0.3 

 
Fig. 12. Effect of porosity on the dynamic behavior of an S-S-
edged porous sandwich plate subjected to an impact loading 

with graphene distribution B and ℎ 𝑟𝑜⁄ = 0.15 

Ultimately, in order to assess the relative 
efficacy of each combined GPL and porosity 
pattern, the outcomes of an impulsive loading on 

the plate are presented in Figure 13. The figure 
demonstrates that the optimal reinforcement 
capacity is achieved through the implementation 
of GPL distribution A in conjunction with porosity 
dispersion II. 

 
Fig. 13. Effect of GPL distributions and porosity patterns in 

terms of time history for C-C edged porous  

sandwich plate with ℎ 𝑟𝑜⁄ = 0.3 

6. Conclusions and Remarks 

This paper investigates the dynamic analysis 
of annular functionally graded porous GPL-
reinforced sandwich plates based on both 
MHSDT and FSDT and different boundary 
conditions. According to closed-cell cellular 
solids with Gaussian Random Field and Halpin-
Tsai micromechanics, the effective material 
properties of the porous core are developed. The 
Newmark direct integration technique in 
combination with the viscous Dynamic 
Relaxation method is applied to solve time-
dependent equations of motion. In fact, the 
primary and innovative aspect of this approach 
lies in the combination of the viscous dynamic 
relaxation method with the Newmark integration 
method, which has not been previously employed 
in the literature for sandwich structures. 
Additionally, the utilization of the modified 
higher-order shear deformation theory, two 
graphene distributions, and two porosity 
dispersions containing various GPL weight 
fractions and pore coefficients are considered for 
the porous core. Considering the dynamic 
behavior of porous sandwich plates under impact 
and harmonic loads with S-S and C-C boundary 
conditions and different aspect ratios, some 
remarkable points are concluded as follows: 

• An increase of more than 27 % in plate 
stiffness is observed by adding only 0.8 wt.% 
GPL to the porous core of the sandwich plate. 

• Both symmetric (II) and asymmetric (I) 
porosity dispersions play a significant role in 
the dynamic behavior of the plate, however 
symmetric porosity dispersion (II) owns the 
most influence in deflection decrease. Also, 
among GPL distributions A and B, the non-
uniform symmetric graphene distribution A 
acts as the best strengthener pattern. 
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• A combination of (GPL A-Porosity II), (GPL B-
porosity II), (GPL A-Porosity II), and (GPL B-
Porosity I), respectively, leads to the best 
order of strength reinforcing results for the 
plates. 

• With an increase in porosity, the difference 
between the results of FSDT and MHSDT 
greatens. 
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