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This study focuses on investigating how grid-stiffened composite shells behave under 
external hydrostatic pressure. The critical buckling load is calculated using the first-order 
shear deformation theory (FSDT) and the Ritz method. Various factors, including shell 
thickness, angle of helical stiffeners, rib section area, and the number of stiffeners, are 
examined to understand their impact on the buckling load. To optimize the design, three 
multi-objective optimization algorithms are employed: Nondominated Sorting Genetic 
Algorithm II (NSGAII), Multiobjective Particle Swarm Optimization (MOPSO), and a hybrid 
method that combines NSGAII and MOPSO. The hybrid method intelligently divides the 
population into two groups and uses NSGAII and MOPSO to efficiently explore and exploit 
the solution space. The results yield a Pareto optimal front that showcases diverse 
solutions across different regions, providing decision-makers with the flexibility to select 
the solution that best fits their preferences. The solutions obtained through these 
algorithms are compared based on their diversity and distribution throughout the Pareto 
front. 

 

1. Introduction 

A composite grid structure is a structure of 
composite one-directional tapes that are joined 
together to form a continuous set as two-
dimensional (planar) or three-dimensional 
(spatial). Composite grid structures are more 
capable than metal structures due to strength, 
low weight, flexibility in design, easy 
construction, and the ability to withstand various 
environmental conditions. Shells that have been 
stiffened with grid structures are an appropriate 
alternative for composite, sandwich, or filled 
metal panels. The main objective of using grid 
structures is the optimization of longitudinal 
properties of composite materials in structures. 
Grid structures are being used as a new 
technology in many industries, especially the 
aerospace industry. However, in the past, several 
valuables of research have been conducted on 
this kind of structure. 

Particle Swarm Optimization (PSO) [1] is a 
population-based optimization algorithm 

inspired by the social behavior of bird flocks or 
fish schools. It searches for the optimal solution 
by iteratively updating a group of candidate 
solutions called particles. In multi-objective 
problems, we have multiple conflicting objectives 
that we want to optimize simultaneously. 
Multiobjective Particle Swarm Optimization 
(MOPSO) [2] extends the basic PSO algorithm to 
handle these kinds of problems. Instead of just 
one solution per particle, each particle in MOPSO 
maintains a solution archive that stores a set of 
non-dominated (i.e., Pareto optimal) solutions 
found so far. The goal is to find diverse solutions 
along the Pareto front, where no solution is better 
than another in every objective.  

The Non-Dominated Sorting Genetic 
Algorithm II (NSGAII) [3] is another popular 
evolutionary algorithm designed for multi-
objective optimization problems. Like MOPSO, 
NSGAII also aims to find a set of non-dominated 
solutions. NSGAII works by maintaining a 
population of candidate solutions called 
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individuals. It uses genetic operators such as 
selection, crossover, and mutation to generate 
new offspring individuals. The algorithm then 
applies a non-dominated sorting procedure to 
sort the population into different fronts based on 
their dominance relationships. This helps in 
identifying the Pareto front solutions. By 
iterating and improving the population over 
generations, NSGAII gradually converges into a 
diverse and well-distributed set of non-
dominated solutions. These solutions are spread 
across different regions of the Pareto front, which 
allows decision-makers to choose the solution 
that best suits their preferences.  

Both MOPSO and NSGAII are powerful 
algorithms for solving multi-objective 
optimization problems, and they have their 
unique strengths and weaknesses. They have 
been widely applied in various fields, such as 
engineering, finance, and data mining, where 
decision-makers need to consider multiple 
conflicting objectives. In this paper, a hybrid 
algorithm which is the synergistic combination of 
NSGAII and MOPSO [4] is employed to find the 
optimal structure of grid-stiffened composite 
shells. This hybrid model exhibits substantial 
potential in terms of information exchange, 
parallel processing, enhanced searching 
capabilities, and the ability to generate more 
favorable results when compared to individual 
computational multi-objective models [4]. 

The exploitation and exploration processes in 
NSGAII and MOPSO algorithms differ. While 
NSGAII incorporates crossover, mutation, elitism, 
fast nondominated sorting, and crowding 
distance calculations to improve solution spread 
and preserve diversity, these factors can restrict 
the convergence of NSGAII. On the other hand, 
MOPSO particles operate without genetic 
operators, utilizing a unique information-sharing 
mechanism distinct from NSGAII. They explore 
the solution space by updating velocity and 
inertia weight, with guidance from a leader 
selected from the Pareto optimal solutions stored 
in an external memory called the repository. 
However, the MOPSO algorithm can encounter 
challenges in complex problems, often getting 
trapped in local optima.  

To prevent the capture of global solutions in 
local optima, a hybrid multi-objective algorithm 
must strike a balance between exploitation and 
exploration. The hybrid model aims to enhance 
the overall search mechanism by combining 
NSGAII and MOPSO, which employ distinct 
approaches to explore and exploit the search 
space. In this algorithm, the exploration phase is 
performed by NSGAII, utilizing the top half of the 
population. NSGAII thoroughly explores every 
region of the solution space to obtain a 
comprehensive evaluation of global solutions. On 

the other hand, MOPSO is responsible for the 
exploitation task, employing the lower half of the 
population. By integrating these two 
complementary algorithms, the hybrid model 
effectively combines their strengths in exploring 
and exploiting the search space, resulting in an 
improved overall search mechanism. 

The study focuses on examining a grid 
structure consisting of hexagonal-triangle 
stiffeners within a stiffened composite cylindrical 
shell. By utilizing the smeared method and 
employing linear FSDT (First-order Shear 
Deformation Theory), the critical buckling 
pressure of the structure can be determined. 
Recognizing the industry's emphasis on 
lightweight structures, the study also includes an 
optimization process for the grid structures to 
reduce weight while maximizing the critical 
buckling load. Three multi-objective optimization 
meta-heuristic algorithms, namely NSGAII, 
MOPSO, and a hybrid method combining NSGAII 
and MOPSO, are applied. The outcomes of these 
methods generate Pareto fronts, which offer a 
range of solutions across different regions. This 
enables decision-makers to select the solution 
that best matches their specific preferences and 
requirements. 

The remaining sections of the paper are 
structured as follows. Section 2 provides a 
concise summary of the relevant previous 
studies. Sections 3 and 4 present the equations, 
assumptions, and the equivalent representation 
of composite grid shells.  Section 5 outlines the 
optimization process for grid shells using our 
proposed multi-objective meta-heuristic 
methods, followed by the presentation of 
numerical results. Finally, Section 6 concludes 
the paper.   

2. Related Works 

In this section, we provide a concise overview 
of the studies that are relevant to our topic. 
Genetic algorithms (GAs) are a type of 
evolutionary method that is well-suited for 
addressing optimization problems. Several 
studies have shown that GAs perform effectively 
in finding close-to-optimal solutions for discrete 
optimization problems, including composite 
structures [5-8]. 

Kim [9] conducted research on constructing 
composite grid cylinders, focusing on the analysis 
of their building process, buckling strength, and 
the effects of a vertical compressive force. The 
study explored the impact of this force on 
buckling, rib failure, and the overall stability of 
the structure. In [9], the author's focus shifted to 
grid composite panels rather than grid cylinders. 
Their investigation involved analyzing various 
aspects such as buckling modes, rib failure, shell 
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performance, and the overall failure behavior of 
the entire structure. 

The researchers in [10] conducted a study on 
optimizing a rotating structure featuring variable 
curvature. This structure consisted of a shell and 
a composite grid structure. The primary objective 
of the optimization problem was to minimize the 
weight of the structure. By adjusting the size and 
rib spacing, the aim was to achieve the lowest 
possible weight while ensuring that the structure 
maintained sufficient strength to resist local 
buckling. 

Following that, Zhang and colleagues [11] 
published an article introducing two novel grid 
structures and conducted a comprehensive 
analysis of their mechanical properties. These 
structures were formed by combining existing 
known structures. Furthermore, the authors 
verified the derived properties of these 
structures using the finite element method, 
ensuring their accuracy and reliability. 

In their experimental research, Yazdani and 
colleagues [12] investigated the buckling 
behavior of composite grid shells under axial 
load. Through their study, they deduced that 
increasing the number of helical ribs had a more 
significant impact compared to adding 
circumferential rings or altering the grid type. 
Additionally, they found that shells featuring 
diamond-shaped grids exhibited superior 
performance when subjected to axial loading. 

Jingxuan and colleagues [13] conducted an 
experiment involving the application of axial load 
on an advanced grid-stiffened (AGS) composite 
structure. They focused on assessing the 
structural strength and determining the failure 
threshold of the investigated AGS composite. To 
validate their findings, the results were 
compared with those obtained through finite 
element analysis using ANSYS commercial 
software. In reference [14], an explanation was 
provided regarding grid composite structures, 
their construction methodology, as well as the 
latest advancements, and their applications in the 
space industry. The research highlighted the role 
of ribs within the grid structure, which effectively 
enhanced the structural integrity and 
concurrently reduced its overall weight. 

Weber and Middendorf [15] incorporated the 
interaction between neighboring skin areas 
when determining the local skin buckling load. 
They achieved this by implementing periodic 
boundary conditions at the opposite edges of the 
panel. Additionally, they took into account the 
self-stiffening impact of grid-stiffened structures 
resulting from the interaction with adjacent skin 
areas. This led to a substantial improvement in 
the buckling resistance of these structures. 

Liu and Paavola [16] conducted a 
comprehensive assessment of a universal 

analytical sensitivity analysis approach for 
composite laminated panels and shells. This 
approach was employed for both classical 
laminate plate theory (CLPT) and first-order 
shear deformation theory (FSDT) using finite 
element methods as the basis. 

Deveci [17] utilized a hybrid algorithm to 
optimize the buckling behavior of composite 
laminates while adhering to the Puck failure 
criterion constraint. Their study introduced an 
optimization approach aimed at identifying the 
optimal stacking sequence designs of laminated 
composite plates within various fiber angle 
ranges to achieve maximum resistance against 
buckling. 

Ghasemi et al. [18] introduced an enhanced 
version of the NSGA-II evolutionary algorithm for 
the multi-objective optimization of a composite 
cylindrical shell subjected to external hydrostatic 
pressure. The study considered mass, cost, and 
buckling pressure as fitness functions while 
taking into account failure criteria as 
optimization objectives. Design variables such as 
material type, number of layers, and fiber 
orientations were also considered in the 
optimization process. 

Hajmohammad et al. [19] devised a practical 
analytical method to determine the optimal fiber 
orientation for the design of fiber-reinforced 
polymer pressure vessels (FRPPVs) exposed to 
hydrostatic pressure. They employed a genetic 
algorithm (GA) to obtain the ideal orientation 
pattern that minimizes weight and maximizes 
buckling load. 

Ghasemi et al. [20] introduced a multi-step 
optimization technique for predicting the optimal 
fiber orientation in glass fiber-reinforced 
polymer (GFRP) composite shells. Their method 
combines a refined genetic algorithm (GA) with 
an analytical approach to evaluate the failure 
behavior of the tubular structure. 

Soltani et al. [21] examined the lateral 
buckling analysis and layup optimization of 
tapered thin-walled I-beams with laminated 
composite web and flanges. Their study aimed to 
maximize the lateral-torsional stability strength 
while minimizing the overall mass of the 
structure. The fitness function incorporated 
critical factors such as lateral buckling strength 
and structural mass while considering 
constraints such as ply angle, number of layers 
for the web and flanges, and section wall 
thickness. To achieve optimization, NSGA-II was 
utilized in combination with a well-defined 
objective function. 

Hosseini et al. [22] conducted a study on the 
natural frequency analysis of a partially 
submerged FG composite rectangular plate. The 
investigation focused on analyzing the plate's 
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vibrational characteristics when in contact with a 
bounded fluid medium. 

Arshid et al. [23] examined the thermal 
buckling, bending, and free vibration behavior of 
a porous nanocomposite annular plate at a micro-
scale. The study specifically investigated the 
plate's response to thermal effects, taking into 
account the reinforcement of the plate with 
functionally graded GNPs (graphene 
nanoplatelets).  

Soheil Shamaee et al. [24] analyzed the critical 
buckling pressure and optimal parameters for 
stiffeners under external hydrostatic pressure. 
They also optimized the stiffener parameters 
through a genetic algorithm (GA), resulting in a 
structure with minimum mass and increased 
buckling load compared to non-stiffened 
structures. 

3. Equations and Assumptions 

In this study, we consider a cylindrical shell 
stiffened by grid stiffeners which have length L, 
thickness t, and diameter D. Equations and 
assumptions about this shell are similar to those 
in [24]. Therefore, we won't mention those 
details here, but you can refer to [24] for more 
information. 

The equations below describe the 
displacements in cylindrical coordinates based 
on the first-order shear deformation theory 
(FSDT). The variables u, v, and w represent the 
displacement components at any point on the 

shell, while 𝑢0,𝑣0, and 𝑤0 represent the 
displacement components at the middle level. 

Additionally, 𝜓
𝑥
 and 𝜓

𝜃
 are denote the rotation 

from the 𝑥-axis and θ, respectively [25]. 

(1) 𝑢(𝑥, 𝜃, 𝑧) = 𝑢0(𝑥, 𝜃) + 𝑧𝜓𝑥(𝑥, 𝜃)  

(2) 𝑣(𝑥, 𝜃, 𝑧) = 𝑣0(𝑥, 𝜃) + 𝑧𝜓𝜃(𝑥, 𝜃)  

(3) 𝑤(𝑥, 𝜃, 𝑧) = 𝑤0(𝑥, 𝜃)  

4. Making Equivalent of Composite 
Grid Shells 

Jaunky et al. [26] introduced a smeared 
method for evaluating interactions between the 
shell and the stiffener, while Kidane et al. [27] 
presented a method to study the axial buckling of 
the grid composite cylinder using the same 
theory. The method involves calculating strains 
and forces in the stiffeners to create an equivalent 
representation. By determining a shell with the 
appropriate thickness that matches the stiffness 
of the stiffeners, the individual stiffeners are 
replaced, and the combined structure is treated 
as a unified unit. 

4.1. Force Analysis in the Stiffeners 

{
 
 

 
 𝜀𝑥𝑥 = 𝜀𝑥𝑥

(0)
+ (

𝑡

2
)𝑘𝑥𝑥

𝜀𝜃𝜃 = 𝜀𝜃𝜃
(0)
+ (

𝑡

2
)𝑘𝜃𝜃

𝛾𝑥𝜃 = 𝛾𝑥𝜃
(0)
+ (

𝑡

2
)𝑘𝑥𝜃

  (4) 

{
𝛾𝑥𝑧 = 𝛾𝑥𝑧

(0)

𝛾𝜃𝑧 = 𝛾𝜃𝑧
(0)  (5) 

When the entire structure is loaded, the 
reaction forces in the stiffeners are transformed 
into axial forces in the stiffener section 

(represented as 𝐹𝑙.). However, during this 
loading, the stiffeners also experience shear loads 

and planar shear loads, denoted as 𝐹𝑙𝑡 and 𝐹𝑙𝑧, 
respectively. By solving the strains along and 
perpendicular to the stiffeners, the forces in the 
stiffeners are determined based on the strains. 

(6) 
𝐹𝑙1 = 𝐴𝑠𝑡𝐸𝑙𝜀𝑙1 = 𝐴𝑠𝑡𝐸𝑙(𝑐

2𝜀𝑥𝑥 + 𝑠
2𝜀𝜃𝜃

− 𝑐𝑠𝛾𝑥𝜃) 

(7) 
𝐹𝑙2 = 𝐴𝑠𝑡𝐸𝑙𝜀𝑙2 = 𝐴𝑠𝑡𝐸𝑙(𝑐

2𝜀𝑥𝑥 + 𝑠
2𝜀𝜃𝜃

+ 𝑐𝑠𝛾𝑥𝜃) 

(8) 𝐹𝑙2 = 𝐴𝑠𝑡𝐸𝑙𝜀𝑙3 = 𝐴𝑠𝑡𝐸𝑙(𝜀𝜃𝜃) 

4.2. Moment Analysis of the Stiffener 

The moments exerted on the stiffeners at the 
interface connecting the shell and stiffener result 
from the presence of shear forces. Utilizing the 
method outlined in the preceding section, we can 
determine the applied moment on the edges of 
the unit cell by referring to equations (9), (10), 
and (11). 

Components of shear strains 𝜀𝑙𝑧 can be 
obtained by considering a plane with a normal 
vector Z: 

(9) 

𝑀𝑥  

= (

2𝐴𝑠𝑡𝐸𝑙𝑐
3

𝑎
𝜀𝑥𝑥 +

2𝐴𝑠𝑡𝐸𝑙𝑐𝑠
2

𝑎
𝜀𝜃𝜃 +

2𝐴𝑠𝑡𝐺𝑙𝑡𝑠𝑐
2

𝑎
𝛾𝑥𝜃 −

2𝐴𝑠𝑡𝐺𝑙𝑡𝑠
3

𝑎
𝛾𝑥𝜃

) (
𝑡+h

2
)  

(10) 

𝑀𝜃 

= (

2𝐴𝑠𝑡𝐸𝑙𝑠𝑐
2

𝑏
𝜀𝑥𝑥 +

2𝐴𝑠𝑡𝐸𝑙(𝑠
3+1)

𝑏
𝜀𝜃𝜃

−
2𝐴𝑠𝑡𝐺𝑙𝑡𝑐

3

𝑏
𝛾𝑥𝜃 +

2𝐴𝑠𝑡𝐺𝑙𝑡𝑐𝑠
2

𝑏
𝛾𝑥𝜃

)(
𝑡+ℎ

2
)  

(11) 

𝑀𝑥𝜃  

= (
−
4𝐴𝑠𝑡𝐺𝑙𝑡𝑐𝑠

2

𝑏
𝜀𝑥𝑥 +

4𝐴𝑠𝑡𝐺𝑙𝑡𝑐𝑠
2

𝑏
𝜀𝜃𝜃

+
2𝐴𝑠𝑡𝐸𝑙𝑠𝑐

2

𝑏
𝛾𝑥𝜃

)(
𝑡+ℎ

2
)  

(12) εlz = (sγ
θz
+ cγ

xz
)  
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The shear forces resulting from the shear 
strains are determined using the following 
approach: 

(13) 𝐹𝑙𝑧1 = 𝐴𝑠𝑡𝐺𝑙𝑧𝛾𝑙𝑧1 = 𝐴𝑠𝑡𝐺𝑙𝑧(−𝑠𝛾𝜃𝑧 + 𝑐𝛾𝑥𝑧)  

(14) 𝐹𝑙𝑧2 = 𝐴𝑠𝑡𝐺𝑙𝑧𝛾𝑙𝑧2 = 𝐴𝑠𝑡𝐺𝑙𝑧(𝑠𝛾𝜃𝑧 + 𝑐𝛾𝑥𝑧) 

(15) 𝐹𝑙𝑧3 = 𝐴𝑠𝑡𝐺𝑙𝑧𝛾𝑙𝑧3 = 𝐴𝑠𝑡𝐺𝑙𝑧(𝛾𝜃𝑧)  

By examining the forces, moments, and shear 
forces acting on the unit cell and then performing 
matrix multiplication, we can derive the stiffness 
matrix, as represented in equation (16). Since the 

shell under consideration is a laminated 
composite, the stiffness matrix for the shell can 
be expressed as equation (17) [28-29]. 

It is worth noting that the axial stiffness 𝐴𝑖𝑗 , 

coupled stiffness (bending - axial) 𝐵𝑖𝑗 , bending 

stiffness 𝐷𝑖𝑗 , and shear stiffness 𝐻𝑖𝑗  can be 

determined using equations (18), (19), (20), and 
(21). In these equations, 𝐾0 represents the shear 
correction factor, which is typically assigned a 
value of 5/6 [25]. Ultimately, the composite grid 
shell's equivalent stiffness matrix is obtained by 
summing the stiffness matrix of the shell and the 
stiffness matrix of the stiffeners, as demonstrated 
in equation (22). 

[
 
 
 
 
 
 
 
𝑁𝑥
𝑁𝜃
𝑁𝑥𝜃
𝑀𝑥

𝑀𝜃

𝑀𝑥𝜃

𝑄𝑥
𝑄𝜃 ]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝐴11
𝑠𝑡 𝐴12

𝑠𝑡 𝐴13
𝑠𝑡 𝐵11

𝑠𝑡 𝐵12
𝑠𝑡 𝐵13

𝑠𝑡 0 0

𝐴21
𝑠𝑡 𝐴22

𝑠𝑡 𝐴23
𝑠𝑡 𝐵21

𝑠𝑡 𝐵22
𝑠𝑡 𝐵23

𝑠𝑡 0 0

𝐴31
𝑠𝑡 𝐴32

𝑠𝑡 𝐴33
𝑠𝑡 𝐵31

𝑠𝑡 𝐵32
𝑠𝑡 𝐵33

𝑠𝑡 0 0

𝐵11
𝑠𝑡 𝐵12

𝑠𝑡 𝐵13
𝑠𝑡 𝐷11

𝑠𝑡 𝐷12
𝑠𝑡 𝐷13

𝑠𝑡 0 0

𝐵21
𝑠𝑡 𝐵22

𝑠𝑡 𝐵23
𝑠𝑡 𝐷21

𝑠𝑡 𝐷22
𝑠𝑡 𝐷23

𝑠𝑡 0 0

𝐵31
𝑠𝑡 𝐵32

𝑠𝑡 𝐵33
𝑠𝑡 𝐷31

𝑠𝑡 𝐷32
𝑠𝑡 𝐷33

𝑠𝑡 0 0

0 0 0 0 0 0 𝐻44
𝑠𝑡 𝐻45

𝑠𝑡

0 0 0 0 0 0 𝐻44
𝑠𝑡 𝐻45

𝑠𝑡]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 𝜀𝑥𝑥
(0)

𝜀𝜃𝜃
(0)

𝜀𝑥𝜃
(0)

𝑘𝑥𝑥
𝑘𝜃𝜃
𝑘𝑥𝜃

𝛾𝑥𝑧
(0)

𝛾𝜃𝑧
(0)
]
 
 
 
 
 
 
 
 
 

  (16) 

𝑆𝑠ℎ =

[
 
 
 
 
 
 
 
𝐴11 𝐴12 𝐴13 𝐵11 𝐵12 𝐵13 0 0
𝐴21 𝐴22 𝐴23 𝐵21 𝐵22 𝐵23 0 0
𝐴31 𝐴32 𝐴33 𝐵31 𝐵32 𝐵33 0 0
𝐵11 𝐵12 𝐵13 𝐷11 𝐷12 𝐷13 0 0
𝐵21 𝐵22 𝐵23 𝐷21 𝐷22 𝐷23 0 0
𝐵31 𝐵32 𝐵33 𝐷31 𝐷32 𝐷33 0 0
0 0 0 0 0 0 𝐻44 𝐻45
0 0 0 0 0 0 𝐻54 𝐻55]

 
 
 
 
 
 
 

  (17) 

𝐴𝑖𝑗 = ∫ 𝑄𝑖𝑗

ℎ

2

−
ℎ

2

𝑑𝑧 → 𝐴𝑖𝑗 = ∑ 𝑄̄𝑖𝑗
𝑘 (ℎ𝑘 − ℎ𝑘+1)

𝑁𝑙
𝑘=1   𝑖, 𝑗 = 1,2,6 (18) 

𝐵𝑖𝑗 =
1

2
∫ 𝑄𝑖𝑗𝑧
ℎ

2

−
ℎ

2

𝑑𝑧 → 𝐵𝑖𝑗 = ∑ 𝑄̄𝑖𝑗
𝑘 𝑧(ℎ𝑘

2 − ℎ𝑘+1
2 )

𝑁𝑙
𝑘=1   𝑖, 𝑗 = 1,2,6 (19) 

𝐷𝑖𝑗 =
1

3
∫ 𝑄𝑖𝑗𝑧

2
ℎ

2

−
ℎ

2

𝑑𝑧 → 𝐷𝑖𝑗 = ∑ 𝑄̄𝑖𝑗
𝑘 𝑧2(ℎ𝑘

3 − ℎ𝑘+1
3 )

𝑁𝑙
𝑘=1   𝑖, 𝑗 = 1,2,6 (20) 

𝐻𝑖𝑗 = 𝐾0 ∫ 𝑄𝑖𝑗

ℎ

2

−
ℎ

2

𝑑𝑧 → 𝐻𝑖𝑗 = 𝐾0∑ 𝑄̄𝑖𝑗
𝑘 (ℎ𝑘 − ℎ𝑘+1)

𝑁𝑙
𝑘=1   𝑖, 𝑗 = 4,5 (21) 

𝑆 = 𝑆𝑠ℎ + 𝑆𝑠𝑡    (22) 
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4.3. Analysis of Buckling Load by Rayleigh-Ritz 
Method 

The Ritz method involves obtaining the total 
energy function (Π) by summing the strain 
energy and the work done by external forces. In 
order to achieve equilibrium, the total energy 
function of the structure needs to be minimized. 
Thus, to minimize the total energy and reach 
equilibrium, we differentiate the total potential 
energy with respect to the displacement field 
coefficients 𝐴𝑚𝑛 , 𝐵𝑚𝑛 , and 𝐶𝑚𝑛 . By setting the 
resulting differentials equal to zero, we obtain the 
coefficient matrix [24, 30-31] 

𝛱 = 𝑈 + 𝑉 (23) 

𝜕𝛱

𝜕𝐴𝑚𝑛
=

𝜕𝛱

𝜕𝐵𝑚𝑛
=

𝜕𝛱

𝜕𝐶𝑚𝑛
= 0 (24) 

[

𝐿11 𝐿12 𝐿13
𝐿21 𝐿22 𝐿23
𝐿31 𝐿32 𝐿33

] [

𝐴𝑚𝑛
𝐵𝑚𝑛
𝐶𝑚𝑛

] = 0 (25) 

In order to obtain non-trivial solutions in the 
equation mentioned earlier, the determinant of 

the coefficient matrix must equal zero (|𝐿𝑖𝑗|= 0). 

By expanding this equation, we derive the 
characteristic equation for buckling. Solving this 
equation allows us to determine the buckling 
load for different values of 𝑚 and 𝑛. It's important 
to note that the minimum value of 𝑃 corresponds 
to the critical buckling load. 

5. Optimization of Grid Shells Using 
the Multi-Objective Meta-Heuristic 
Methods 

In this section, we focus on addressing the 
problem of specifying the structure of grid shells 
composite by transforming it into a multi-
objective optimization problem. We then proceed 
to tackle this problem using multi-objective 
meta-heuristic approaches. To begin with, we 
delve into the formulation of multi-objective 
optimization, where multiple objectives need to 
be simultaneously considered and optimized. 
This formulation allows us to effectively handle 
the complexity and trade-offs involved in the 
design of grid shells composite structures. Next, 
we introduce the hybrid multi-objective meta-
heuristic method as our chosen approach for 
solving this problem. This method combines 
different meta-heuristic techniques to broaden 
the search space and improve the efficiency of 
finding optimal solutions. By leveraging the 
strengths of meta-heuristics, we aim to achieve 
better performance in optimizing the specified 
structure of grid shells composite. 

5.1. Problem Formulation 

Nowadays, the industry requires the 
construction of composites that can withstand 
the highest buckling load with the minimum 
weight possible.  

To reduce the weight of our proposed 
composite grid shell, we should first determine 
the objective function based on the weight of the 
structure. Equation (26) presents the weight 
function, which is the sum of the stiffener’s 
weight and the shell's weight. 

𝑤𝑡𝑜𝑡 = 𝑤𝑠𝑡 + 𝑤𝑠ℎ  

        = 𝜌 ((2𝑛𝑠𝑡𝑙𝑠𝑡𝑓𝑡) + (2𝑚𝑠𝑡(2𝜋𝑅𝑓𝑡))) 

        +𝜌(2𝜋𝑅𝐿ℎ)  
(26) 

The other objective function is the buckling 
load. The buckling load could be obtained from 
the analytical solution in Section 4.3. It can be 

determined by solving the equation |𝐿𝑖𝑗|= 0 

which is the determinant of the coefficient matrix 
in equation (25). We refer to this problem as 
MWMB, which stands for Minimum Weight 
Maximum Buckling Load problem.  

The parameters of the objective functions are 
the couple number of helical stiffeners, the unit 
cell number in shell height, and also ribs 
thickness and width. Notably, lower and upper 
bounds for each variable were defined. In Table 
1, variables are presented along with their upper 
and lower bounds. 

Table 1. Variables and their ranges 

Variable Ranges 

𝑛𝑠𝑡 : Couple helical stiffeners number 2 − 12 

𝑚𝑠𝑡 : Unit cell number in height shell 2 − 12 

𝑓(𝑚𝑚) : Rib width 2 − 12 

𝑡(𝑚𝑚)  : Rib thickness 2 − 12 

5.2. Multi-Objective Meta-Heuristic Methods 

In [3], the authors presented an extension of 
the popular and efficient Particle Swarm 
Optimization (PSO) algorithm to handle 
multiobjective optimization problems. This 
extension, known as MOPSO, integrates the 
concept of Pareto dominance into PSO. MOPSO 
introduces a leader particle that guides other 
particles in the swarm, maintains a historical 
record of dominated solutions in an external 
repository, and optionally incorporates a 
mutation operator. These modifications allow 
MOPSO to effectively explore and find a diverse 
set of solutions that achieve trade-offs between 
multiple objectives. 
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In [2], the authors introduced the NSGAII 
algorithm as an efficient solution for 
multiobjective optimization problems. This 
algorithm has gained popularity in the scientific 
literature because of its useful features such as 
elitism, fast nondominated sorting, and the 
crowding distance operator. These features 
contribute to the algorithm's ability to maintain a 
diverse set of solutions that cover a wide range of 
trade-offs between different objectives. 

To tackle complex problems with challenging 
search spaces, hybrid multi-objective 
optimization methods have emerged. These 
methods combine the desirable features of 
different algorithms in order to find optimal 
solutions. Hybrid multiobjective optimization 
methods have been gaining popularity, and a 
general framework for combining evolutionary 
multiobjective optimization algorithms was 
proposed in [32].  

In this research, we combine two stochastic 
multi-objective optimization algorithms, NSGAII 

and MOPSO, to tackle MWMB. These two 
algorithms have different search processes. 
NSGAII utilizes elitism, sorting, and crowding 
distance calculations to improve the spread of 
solutions and maintain diversity among the 
Pareto Optimal solutions.  

The crowding comparisons help prevent the 
algorithm from converging too quickly. On the 
other hand, MOPSO does not use genetic 
operators and has a different information-
sharing mechanism compared to NSGAII. In 
MOPSO, a special solution known as a leader is 
employed to guide the other particles. The 
particles explore the solution space by adjusting 
their velocity and inertia weight. However, 
MOPSO can sometimes get stuck in local optima 
for complex problems. 

The aim of the hybrid model is to enhance the 
overall search process of the algorithm by 
combining NSGAII and MOPSO, which utilize 
different approaches to explore and exploit the 
search space. 

1. Start 

2. Initialize the parameters of the optimization 
problem, 

3. Initialize the parameters of NSGAII, 

4. Initialize the parameters of MOPSO, 

5. Initialize the population and evaluate the 
objective functions, 

6. Perform non-dominating sorting and 
construct the nondomination levels, 

7. Calculate the crowding distance for each 
nondomination level and rank the 
population, 

8. For each generation:  

9. Start NSGAII algorithm  

a) Using the upper half of the population, 

b) Create the offspring based on one-point 
crossover and mutation, 

c) Evaluate the objective functions for 
offspring, 

d) Merge population and offspring, 

e) Perform fast nondomination sorting, 

f) Calculate the crowding distance and rank 
population based on nondomination 
fronts, 

g) Store the nondominated solutions in list 
𝐹1, 

10. Start the MOPSO algorithm 

a) Position and cost of particles are initialized 
based on the lower half of the population, 

b) Store the value of particles as their personal 
best, pBest, 

c) Determine the domination for the particles, 

d) Initialize the external repository , 

e) Create a grid and find the grid index, 

f) For each particle 

g) Select the leader for the external repository, 

h) Update the speed and position of the particle, 

i) Determine domination  

j) Update pBest, 

11. Add nondominated solutions to the repository, 

12. Keep only the nondominated members in the 
repository, 

13. Update grid and grid index, 

14. Combine the population of NSGAII and 
particles of MOPSO, 

15. Perform fast nondomination sorting, 

16. Calculate the crowding distance for each 
nondomination level and rank the population, 

17. Divide the population into two halves, 

18. Increment generation count, 

19. Stop the algorithm when it reaches 
MaxIteration 

Fig. 1. The pseudocode of the hybrid method. 
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One challenge in optimization is the tendency 
to get stuck in local optima, so the hybrid 
algorithm seeks a balance between exploration 
and exploitation to avoid this issue. To prevent 
premature convergence and achieve a well-
distributed Pareto Optimal Front, the population 
is divided into two halves based on the ranking 
generated by the nondomination fronts. The 
better half of the population is further improved 
using the NSGAII algorithm, while the other half 
is treated as swarm particles and optimized using 
MOPSO to ensure their convergence toward the 
best possible solutions 

This algorithm incorporates an exploration 
phase conducted by the efficient and elitist 
NSGAII algorithm, which focuses on the best 
upper half of the population. This exploration 
process allows the hybrid algorithm to obtain a 
good understanding of global solutions. On the 
other hand, the exploitation phase is performed 
by MOPSO, utilizing the lower half of the 
population. MOPSO examines the neighborhoods 
of these lower-ranked particles and adjusts their 
orientations towards potential global solutions. 
By doing so, MOPSO aims to improve the overall 
quality of solutions by exploiting the local search 
space. 

This hybrid algorithm utilizes an efficient 
approach to explore the search space, enabling it 
to strike a better balance between exploiting 
known solutions and exploring new possibilities. 
By effectively managing the compromise 
between exploitation and exploration, the 
algorithm aims to identify the most promising 
solutions. 

NSGAII utilizes an external archive called F1, 
whereas MOPSO uses a repository to store 
solutions. At the end of each iteration, the 
nondominated solution in F1 and the repository 
are combined and sorted before being stored 
back in F1. F1 is filled with solutions from 
different nondominated fronts one at a time until 
the archive is full. The filling process starts with 
the first nondominated front of class one, then 
moves on to the solutions of the second 
nondominated front, and so on. When F1 reaches 
its capacity, the algorithm removes any 
remaining nondominated fronts. During the 
consideration of the last front, the points with the 
highest diversity are selected by using a measure 
called crowding distance values. This selection 
process helps maintain a diverse and 
representative set of solutions in F1. The 
pseudocode of the hybrid method is shown in 
Figure 1.  

As shown in Figure 1, in each generation, the 
population is divided into two halves. The upper 
half of the population undergoes exploration 

using NSGAII, following steps (a)-(g).  The 
offspring are created based on one-point 
crossover and mutation, and then, evaluate the 
objective functions for them. Population and 
offspring are merged and fast nondomination 
sorting is performed. Then, the crowding 
distance is calculated, and the population is 
ranked based on nondomination fronts. Finally, 
the nondominated solutions are stored in list 𝐹1. 
The sub-steps (f)-(j) in step 10 are part of an 
iterative loop that is performed for each particle. 
Firstly, the leader for the external repository is 
selected. Next, the speed and position of the 
particle are updated based on the chosen leader. 
Subsequently, domination is assessed, and pBest 
(personal best) is updated accordingly. 

5.3. Numerical Results 

In this section, we provide the numerical 
results obtained by applying three multi-
objective optimization methods, namely MOPSO, 
NSGAII, and the hybrid method, to solve MWMB. 
The population size and number of generations 
are set to 40 for all methods. The implementation 
of the code is done in MATLAB, and it is available 
upon request if needed. All the parameters are 
given in Table 2.  

Table 2. The parameters of NSGAII, MOPSO, and  
the hybrid method 

NSGAII MOPSO Hybrid method 

nPop=40 nPop=40 nPop=40 

MaxIt=40 MaxIt=40 MaxIt=40 

PCrossover=0.7 nRep=50 PCrossover=0.7 

PMutation=0.4 w=0.5 PMutation=0.4 

mr=0.02 c1=1, c2=2 mr=0.02 

 alpha=0.1 nRep=50 

 beta=2 w=0.5 

 gamma=2 c1=1, c2=2 

 mu=0.1 alpha=0.1 

  beta=2 

  gamma=2 

  mu=0.1 

Figures 2, 3, and 4 present the objective 
function values of the Pareto front solutions 
obtained by NSGAII, MOPSO, and the hybrid 
method, respectively. Additionally, Tables 3, 4, 
and 5 display the solutions on the Pareto fronts 
obtained by NSGAII, MOPSO, and the hybrid 
method, respectively. These Tables provide 
decision-makers with a range of options to 
choose from, allowing them to select the solution 
that aligns most closely with their specific 
preferences and requirements. Each solution 
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consists of the values of  the couple number of 
helical stiffeners (𝑛𝑠𝑡), the unit cell number in 
shell height (𝑚𝑠𝑡), and also ribs thickness (𝑡) and 
width (𝑓). The first and second columns of the 
Tables are the mass (𝑚) and buckling load (𝑏) of 
the structures corresponding to the solutions. 

When comparing various multi-objective 
optimization methods, the criteria considered are 
the diversity of solutions found on the Pareto 
front and their distribution across all regions. 
Notably, the hybrid method demonstrates 
greater diversity in its solutions compared to 
NSGAII. As a result, decision-makers can more 
easily select the solution that best aligns with 
their specific preferences and requirements. 
Figure 4 illustrates that the critical buckling load 
of solutions obtained by the hybrid method 
ranges from 0.6 to 1.8 MPa, while the range for 
NSGAII is from 0.7 to 1.4 MPa, as depicted in 
Figure 2. 

Figure 5 displays the objective function values 
of the Pareto front solutions obtained by NSGAII 
at the end of the last iteration of the hybrid 
method. It can be observed that the range of the 
critical buckling load of solutions is the same as 
that of the hybrid method. However, the number 
of solutions found by NSGAII is lower compared 
to the hybrid method. This indicates that 
incorporating MOPSO after NSGAII improves the 
overall process.  

As depicted in Figure 3, MOPSO exhibits 
superior performance compared to NSGAII in 
terms of the diversity of solutions found on the 
Pareto front. This suggests that incorporating 
MOPSO after NSGAII helps alleviate the 
weaknesses of NSGAII to solve MWMB. 

 

Fig.2. The Pareto front discovered by NSGAII 

 
Fig. 3. The Pareto front found by MOPSO 

 

Fig. 4. The Pareto front found by the hybrid Method 

 

Fig.5. The Pareto front obtained by NSGAII at the completion 
of the final iteration of the hybrid method. 
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Table 3. The solutions were obtained on the Pareto front using NSGAII. 

Solution Number ( )m kg  𝑏(𝑀𝑃𝑎) 𝑛𝑠𝑡  𝑚𝑠𝑡  ( )t mm  𝑓(𝑚𝑚) 

1 8.56 1.25 12 5 3 12 

2 7.4 0.95 9 3 2 12 

3 8.3 1.17 12 4 3 12 

4 7.59 1 9 4 2 12 

5 6.83 0.72 7 2 2 6 

6 7.88 1.08 12 5 2 12 

7 8.05 1.09 12 3 3 12 

8 9.25 1.38 12 5 4 12 

9 7.7 1.03 12 4 2 12 

10 6.81 0.72 6 2 2 6 

11 6.96 0.75 9 3 2 6 

12 7.05 0.77 9 4 2 6 

13 7.54 0.96 12 3 2 12 

Table 4. The solutions obtained on the Pareto front using MOPSO 

Solution Number ( )m kg  𝑏(𝑀𝑃𝑎) 𝑛𝑠𝑡  𝑚𝑠𝑡  ( )t mm  𝑓(𝑚𝑚) 

1 6.63 0.67 2 2 3 2 

2 11.17 1.62 11 5 7 12 

3 9.26 1.35 12 12 2 12 

4 13.29 1.76 12 8 7 12 

5 11.85 1.69 12 9 5 12 

6 8.45 1.214 3 2 8 12 

7 8.83 1.27 11 10 2 12 

8 7.66 1 2 2 5 12 

9 7.7 1.03 6 2 4 12 

10 15.9 1.8 10 9 9 12 

11 11.36 1.64 12 8 5 12 

12 14.7 1.793 12 10 7 12 

13 14.85 1.795 10 9 8 12 

14 7.29 0.93 4 2 3 12 

15 8.65 1.25 12 9 2 12 

16 7.24 0.9 3 2 3 12 

17 6.82 0.73 2 2 2 8 

18 7.94 1.08 6 3 4 11 

19 10.52 1.49 8 12 3 12 

20 8.57 1.216 3 3 6 12 

21 6.6 0.66 2 2 2 2 

22 12.45 1.73 10 6 8 12 

23 15.06 1.796 8 6 12 12 

24 7.11 0.85 6 2 2 12 

25 6.86 0.74 2 2 2 9 

26 6.78 0.71 2 2 2 7 

27 15.4 1.799 12 11 7 12 
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Table 5. The solutions obtained on the Pareto front using the hybrid method 

Solution Number ( )m kg  𝑏(𝑀𝑃𝑎) 𝑛𝑠𝑡  𝑚𝑠𝑡  ( )t mm  𝑓(𝑚𝑚) 

1 8.06 1.1 3 2 7 11 

2 12.2 1.7 8 4 11 12 

3 7.21 0.82 6 2 4 7 

4 6.98 0.715 5 4 6 2 

5 8.83 1.14 2 4 7 9 

6 6.92 0.708 8 5 4 2 

7 9.67 1.21 10 12 4 7 

8 10.35 1.46 7 5 11 7 

9 10.9 1.55 6 6 7 11 

10 7.3 0.84 9 3 3 7 

11 13.93 1.78 10 6 10 12 

12 11.69 1.667 8 4 10 12 

13 6.81 0.69 6 8 2 2 

14 15.86 1.805 9 8 11 11 

15 8.23 1.13 5 4 4 11 

16 11.68 1.660 5 4 11 12 

17 11.32 1.62 6 6 7 12 

18 13.84 1.77 9 6 11 11 

19 6.97 0.71 4 4 6 2 

20 7.72 0.93 8 4 4 7 

 

6. Conclusions 

This study focuses on the buckling behavior of 
grid-stiffened composite shells under external 
hydrostatic pressure. It utilizes the first-order 
shear deformation theory (FSDT) and the Ritz 
method to calculate the critical buckling load. 
Factors such as shell thickness, angle of helical 
stiffeners, rib section area, and the number of 
stiffeners are analyzed to determine their impact 
on the buckling load. The study applies three 
multi-objective optimization algorithms to find 
the parameter values that minimize the 
structure's mass and maximize the critical 
buckling load.  

The algorithms used are Nondominated 
Sorting Genetic Algorithm II (NSGAII), 
Multiobjective Particle Swarm Optimization 
(MOPSO), and a hybrid method combining 
NSGAII and MOPSO. The hybrid method divides 
the population into two groups and utilizes 
NSGAII and MOPSO to explore and exploit the 
solution space effectively. The obtained Pareto 
optimal front provides various solutions across 
different regions, giving decision-makers the 
flexibility to choose the solution that best aligns 
with their preferences. The solutions obtained by 

the different algorithms are compared based on 
their diversity and spread across the Pareto front.  

As a future study, we aim to develop a 
mathematical function that incorporates the 
critical buckling pressure and weight to visualize 
all solutions on the Pareto front. This 
visualization will assist decision-makers in easily 
selecting the solution that best suits their specific 
preferences and requirements. 

Nomenclature 

𝑧 Distance from the middle surface; 

𝜀𝑖𝑗
(0)

 Middle surface normal strains; 

𝛾𝑖𝑗
(0)

 Middle surface shear strains; 

𝑘𝑖𝑗  Surface curvatures; 

𝐴𝑠𝑡  Cross-section area of stiffeners; 

𝐸𝑙  Longitudinal modulus of stiffeners; 
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𝑐 𝐶𝑜𝑠 φ; 

𝑠 𝑆𝑖𝑛 φ; 

𝐹𝑙𝑧 Force applied to the stiffeners; 

𝑁𝑖𝑗  Resultant stress; 

𝑀𝑖𝑗  Resultant momentums; 

𝑄𝑖𝑗  Stiffness coefficients; 

ℎ𝑘  The kth layer; 

ℎ𝑘+1 The (k+1)th layer; 

𝑆𝑠h Equivalent stiffness matrix for shell; 

𝑆𝑠𝑡 Equivalent stiffness matrix for stiffeners; 

𝑈 Strain energy; 

𝑉 Potential energy; 

𝑀𝑖  Moments applied to unit cell; 

𝐺𝑖𝑗  Shear modulus; 

𝑎 Length of unit cell; 

𝑏 Width of unit cell; 

𝐴𝑖𝑗
𝑠𝑡 Extensional stiffness of stiffeners; 

𝐵𝑖𝑗
𝑠𝑡  Coupling stiffness of stiffeners; 

𝐿𝑖𝑗  Coefficient matrix; 

𝐻𝑖𝑗
𝑠𝑡  Shear stiffness of stiffeners; 

𝑄̄𝑖𝑗
𝑘  Reduced stiffness coefficients; 

𝐷𝑖𝑗
𝑠𝑡  Bending stiffness of stiffeners; 
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