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In the present study, a functionally graded cantilever beam has been analyzed to observe 
its deformation behavior and stress variations. While the material properties (modulus of 
elasticity, modulus of rigidity, and density) have been varied along the height of the beam, 
Poisson’s ratio has been considered a constant. The governing equations have been 
derived using Hamilton’s Principle in the framework of higher-order beam theory. The 
derived equations are then simplified to a single equation, which is similar to that of 
isotropic beams. However, the work is extended to include a few higher-order terms and 
to study the effect of the incorporation of these terms on the resulting FG beam behavior. 
The development of a single governing equation for studying the statics and dynamics of 
an FG beam with the incorporation of higher-order terms is a unique part of the report. 
The solution of the governing equation is approached using approximate methods; in this 
work, the B-spline collocation technique is used to arrive at the results. A sixth-order B-
spline basis function is used as an approximating polynomial, and the Greville abscissa has 
been used to generate collocation points. The obtained results have been verified against 
standard literature to find a satisfactory match. The results include comparative plots for 
normalized bending and transverse shear stresses, with and without the inclusion of 
higher-order terms. The results are then extended to study the effect of material index on 
the deformation and stress behavior of FG beams. The effect of aspect ratio on results is 
also studied for comparison of various beam theories. 

 

1. Introduction 

Since the mid-1980s, with the advent of 
Functionally Graded Materials (FGMs), we have 
been witnessing a new era in the field of material 
technology. FGMs belong to a class of advanced 
materials that have continuous variation in 
properties along a desired direction and in a 
desired fashion. Compositions (volume of 
constituents) and hence the properties gradually 
change over the volume of such materials, 
resulting in a corresponding change in the 
properties of the material that is different from 
either of the parent materials. Functionally 
graded materials eliminate the sharp interfaces 
existing in composite materials and structures, 
where failure is usually initiated. Due to their 
customized behavior, FGMs may have very wide 
applications. If their manufacturing cost is 

reduced by improving the processes, then it may 
revolutionize the design process as a whole. A 
thorough overview of FGMs, their manufacturing 
techniques, modeling and design, and 
applications can be found in [1–5]. In [6], an 
exhaustive review of the modeling and analysis of 
functionally graded materials and their 
applications has been reported. 

Although considerable research on 
functionally graded materials has been reported 
since their conceptualization, most of the work in 
the area of functionally graded structures (beams 
and plates) has been done only in the last two 
decades. 

The literature search has been categorized 
into Euler-Bernoulli (Classical beam theory, 
CBT), Timoshenko (First order shear 
deformation theory, FSDT), and Reddy-Bickford 
(Higher order shear deformation theory, HSDT) 
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theories so as to have a clear picture of the 
developments. Conventionally, CBT is suitable for 
slender beams with large values of aspect ratio, 
and as such, the effect of transverse shear 
deformation can be ignored. In FSDT, a constant 
state of transverse shear strain with respect to 
thickness is assumed; however, this theory 
requires a shear correction factor to 
accommodate for vanishing shear stresses at the 
top and bottom fibers of the beam. It has been 
established that this theory gives satisfactory 
results for small aspect ratios as well. Second-
order shear deformation theory is rarely 
adopted, and theories higher than third-order 
shear deformation theory are rarely used 
because, compared to the efforts required, the 
accuracy gained is difficult to justify. The third-
order beam theory, also known as higher-order 
beam theory, adopts a displacement field such 
that it develops a parabolic shear strain across 
any cross-section, requiring no shear correction 
factor. Later, new theories like Carrera Unified 
Formulation (CUF) have also emerged to 
generalize the theories to a wider spectrum. The 
same concept has been adopted and reported by 
many researchers in the case of FG beams as well, 
and a categorical description is put forth in 
successive paragraphs. 

Shankar [7] has studied the behavior of the FG 
Euler-Bernoulli beam using the elasticity 
approach. This work is considered the most 
fundamental in the realm of FG beams. In this 
work, an exponential variation of the modulus of 
elasticity across the thickness is considered, 
keeping Poisson’s ratio constant, monitoring the 
variation in stress and displacements, and 
comparing the behavior of slender and stubby 
beams under different loading conditions. In [8], 
Shankar extended his work to include a 
temperature gradient across the width of the 
beam while keeping material property variation 
only dependent on position and independent of 
temperature, and for the same problem, the 
author in [9] used the method of Fourier analysis 
combined with Galerkin’s method for solution. 
While Shankar has reported the study of the Euler 
Bernoulli beam, the study has also been extended 
to include shear deformation for short, stubby 
beams whose aspect ratio is less than 5. Shanker 
has reported that the CBT approximates long, 
slender FG beams within satisfactory limits. 

Reddy and Chin [10] and Reddy [11] have 
studied and presented for the first time the 
modeling of FG plates on the basis of the shear 
deformable theory with consideration of the 
nonlinearities raised by large deflection in 
addition to the variation in material properties 
across the thickness. A new beam element has 
been developed by Chakraborty et al. [12], which 
can be applied to a bi-material shear deformable 

beam having intermediate layers with various 
functional gradations and is hence useful to 
determine the mechanical response of 
functionally graded beams subjected to static and 
dynamic loads in a thermal environment. 

Li [13] has modified the differential equations 
representing linear and angular deformations of 
an FG Timoshenko beam by a unique unified 
method using a common parameter, thus 
reducing the three displacement variables into a 
single fourth-order equation. The effects of rotary 
inertia and shear deformation have been 
included, and the entire formulation may be 
analytically reduced to Rayleigh and Euler-
Bernoulli beams after neglecting a few terms. 

Static and vibration analysis using higher-
order deformation theory for FG beams has been 
reported in references [14–20]. The approaches 
to solutions in [14–15, 17–20] are various 
analytical techniques, while computational 
techniques were approached in [16]. Li et al. [20] 
have extended the formulation of [13] to higher-
order beam theory for FG beams. In their work, 
authors have used the elasticity approach to 
arrive at discrete governing equations for the 
beam, and then by converting the domain 
variables into a function of an independent 
variable, the three equations of motion are 
simplified to a single equation. The approach of 
the authors in the paper is unique, and it is 
necessary to find only one polynomial function 
for approximating the beam behavior. However, 
a few terms have been ignored for brevity in the 
reported paper [20]. 

The theory of CUF is relatively new in the 
framework of beam modeling [21]. Carrera et al. 
have formulated a unified formulation (CUF) 
using a generic N-order approximation for 
displacement variables of the cross-section; CBT 
and FSDT can be considered as particular cases of 
the CUF. In [22], Giunta et al. applied the theory 
of CUF to FG beams. In a recent report, Nouri et 
al. [55] applied the CUF method to the static and 
buckling analysis of thick FG plates using the 
Finite Strip method. 

In addition to the above, a number of cases 
pertinent to geometric non-linearity, elastic 
foundation, buckling, and dynamic analysis have 
also been reported in recent literature. However, 
only a few cases have been considered here for 
brevity. The effect of geometric nonlinearity in 
the form of von Karman relations in displacement 
terms has been accounted for in [23, 24]. Due to 
the variation in material properties across the 
cross-section, the neutral axis does not coincide 
with the center of gravity of the cross-section. 
The variation of the position of the neutral axis 
with material gradation has been dealt with [25, 
26]. An analysis of the FG beam resting on 
Winkler’s foundation and the solution using the 
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finite element technique has been reported in 
[27, 28]. 

In recent years, the B-spline collocation 
technique has been increasingly used to find 
solutions to structural problems as well. B-
splines are widely accepted standards owing to 
their flexibility and computational efficiency. The 
collocation technique is quite simple as 
compared to the finite element method and easy 
to apply to many problems involving differential 
equations. A comparative study between the B-
spline collocation technique, Finite element, and 
Finite difference techniques for a two-parameter 
singularly perturbed boundary value problem 
has been reported in [29]. The method of B-spline 
collocation gives better approximation and 
convergence than the other two techniques. As a 
thumb rule, we may presume that B-spline 
collocation may be preferred for comparatively 
simpler geometries like beams and plates. The 
technique has been used successfully in fluid 
flow, one-dimensional heat and mass transfer 
[30], and conduction radiation problems [31]. A 
novel method of spline collocation for structures 
was devised and implemented by Bert et al. [32] 
in 1995 to find approximate solutions for beams 
and plates to study structural behavior under 
various loadings. Sun et al. [33] have studied the 
application of B-spline collocation to problems of 
linear elasticity using orthogonal cubic B-spline 
functions. Hsu et al. [34, 35] carried out work on 
vibration analysis of elastic foundation-
supported non-uniform beams and pre-twisted 
beams using spline collocation with uniform knot 
span in 2009. The effect of non-uniform knot span 
in the spline collocation procedure applied to a 
structural problem has been studied by Wu et al. 
[36]. The author has utilized the concept of Radial 
Spline functions, which include the knot spacing 
as a variable, applied the same to beam problems, 
and showed that non-uniform knot spacing gives 
a better approximation. The multiplicity of the 
knots may be an additional parameter in the 
analysis as it reduces the continuity of the spline 
at the knots. The effect of multiple knots in a 
structural problem is considered by Provatidis 
[37] through finite element analysis using cubic 
B-spline shape functions. Recently, NURBS-based 
Isogeometric (IG) analysis are being used by 
many researchers [38] as a means for refined 
formulation of B-splines to formulate shape 
functions for the determination of approximate 
solutions to complex problems. Auricchio et al. 
[39] published a work on the theoretical analysis 
of a few mathematical problems using the 
NURBS-based Isogeometric Collocation 
technique. Reali [40] applied the IG collocation 
technique for the first time on slender beams and 
plates and also illustrated the inherent potential 
of the IG collocation technique in finding the 

solution of various differential equations. Lieu et 
al. [41] have applied the IG analysis to studying 
the bending and free vibration of in-plane, bi-
directional, variable-thickness FG plates. In 
another report, Lieu and Lee [42] used the IG 
analysis approach to optimize the material 
distribution and shape variation for the dynamic 
analysis of multidirectional functionally graded 
(MFG) plates. In [43], authors have used the IG 
approach for reliability-based optimization of 
MFG plates. 

In this paper, the B-spline collocation 
technique using sixth-order B-spline shape 
functions is used for finding approximate 
solutions to the governing differential equations 
for the static analysis of the functionally graded 
shear deformable beam problem. The authors 
have extended the work of Li et al. [20] to include 
a few higher-order terms to obtain a single 
fourth-order governing equation for FG beams in 
the framework of higher-order beam theory. 
While Li et al. [20] have adopted the theory of 
elasticity approach, in this paper the derivations 
are made using Hamilton’s principle. A 
comparative study of the effect of considering 
higher-order terms in formulation on the 
behavior of beams is studied and reported in this 
paper. Subsequently, comparative studies for the 
deflection and stress behavior of the FG 
cantilever beams for different cases of aspect 
ratio and material gradation subjected to uniform 
loading conditions have been reported. 

2. Formulation 

In this section, a detailed discussion has been 
presented on the process of forming the 
governing equation and its solution 
methodology. 

2.1. Derivation of Governing Equations 

In the present work, a beam has been 
considered which is made of a functionally 
graded material. Let us consider, the length of the 
beam is ‘L’ and it has a rectangular cross-section 
of width ‘b’ and height ‘h’. It is shown in Figure 1 
below. The x-axis is oriented in the axial direction 
along the mid-plane of the unbent beam, and the 
positive z-axis is directed upwards and 
perpendicular to the x-axis. 

Let axial and transverse deflections of the 
beam be represented by ‘u’ and ‘w, respectively, 
whereas angular or rotational deflection of the 
cross-section at the mid-plane is represented by 
‘𝜙’. To account for the variable values at mid-
plane a subscript of value 0 has been used in this 
work. Further, in the present work, ‘w’ and ‘γ’ 
have been used to denote or represent the 
transverse deflection and the shear deformation 
respectively which are assumed to be functions of 
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‘x’ and are uniform for a cross-section. In this 
work, higher order beam theory is considered 
according to which the top and bottom surfaces 
of the beam are free from shear traction. To 
arrive at such boundary conditions, we assume 
the following conditions for shear deformation 
(𝛾𝑥𝑧) [20]: 
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Fig. 1. Diagram of a Functionally Graded Beam 

 with co-ordinate system 

For small deformations, we can write [20]: 
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Integrating both sides with respect to ‘z’, the 
expression for deformation ‘u’ is obtained as 

2

02

4
( , ) 1

z
u x z dz

w

xh





= − −

  
  
  

  (3) 

3

0 02

4
( , ) ( )

3

w

x

z
u x z u x z z

h
= −


−


+
 
 
 

 (4) 

3

0 0 02

4
( , ) ( )

3

z w
u x z u x z

h x
 


= + − +



 
 
 

 (5) 

The above Eq. (5) is obtained by substituting, 

0

du

dz
 =  and 

0 0

dw

dx
 = + in Eq. (2). Knowing 

that 𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
 we can write: 
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where, 
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To derive the governing equations of motion 
for an FG beam, Hamilton’s Principle is applied as 
shown below. 
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Substituting the expressions for U, K, and V in 
Eq. (8) and assuming, 
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We get the following governing equation 
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Integrating by parts and categorically 
separating the variables, the following governing 
equations and boundary conditions are derived.  
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Boundary Conditions (𝑎𝑡 𝑥 = 0 & 𝑎𝑡 𝑥 = 𝐿): 
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To simplify the above equations, the following 
substitutions have also been incorporated: 

𝑀̅𝑥 = 𝑀𝑥 − 𝑐1𝑃𝑥,      𝑄̅𝑥 = 𝑄𝑥 − 𝑐2𝑅𝑥 , 

𝐼𝑗
∗ =  𝐼𝑗 − 𝑐1𝐼𝑗+2,    𝐾2

∗ = 𝐼2 − 2𝑐1𝐼4 + 𝑐1
2𝐼6 

Substituting 𝜎𝑥𝑥 = 𝐸(𝑧). 𝜀𝑥𝑥 in expressions for 
Nx and 𝑀̅𝑥  and simplification thereafter, we get 
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The following assumptions have been made 
for the simplification of the above equations. 
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The expression for Nx (Eq. 17) is used to 
eliminate uo to arrive at the following 
expressions. Further, it is assumed that the 
resultant axial force will be zero (for statically 
determinate cases), so by substituting Nx=0 in the 
above equations obtained after eliminating u0, we 
arrive at final governing equations for an FG 
beam in the framework of higher-order beam 
theory. 
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where, 

𝐴∗̅̅ ̅ = 𝐴∗ −
𝐸1

∗2

𝐸0

,           𝐸4
∗̅̅ ̅ = (𝐸4

∗ −
𝐸1

∗𝐸3

𝐸0

) 

𝐾∗̅̅̅̅ = 𝐾∗ −
𝐼1

∗2

𝐼0

,           𝐼4
∗̅ = 𝐼4

∗ −
𝐼1

∗𝐼3

𝐼0

 

𝐸6
̅̅ ̅ = 𝐸6 −

𝐸3
∗2

𝐸0

 

Li et al. [20] have also derived similar 
equations, but they have neglected the higher-
order terms considering E6 and I6. The 
derivation in their work has been approached 
using the theory of elasticity approach, and hence 
the scope of incorporation of these (E6 and I6) 
terms could not be made. Moreover, the 
boundary conditions are also affected. In the 
present work, the derivation of the above 
governing equation is followed from the first 
principles using Hamilton’s principle, which also 
enables us to derive the relevant expressions for 
boundary conditions. The above formulation can 
be compared with that of [20], and the above 
equations are reduced to the same equations by 
ignoring E6 and I6. 

A significant finding of [13, 20] is to reduce the 
above two equations into a single governing 
equation by considering an independent 
parameter ‘F’ such that domain variables i.e., w 
and  ∅0 are functions of ‘F’ such that it satisfies 
the governing equations. In the present work, a 
similar substitution is made after appropriate 
modification as below and substituted in the 
governing equation to obtain a single expression 
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for higher-order beam theory, taking into account 
the higher-order terms. 

* 2 * 2

* 2 * 2

0 0

* *3 3

1 4 1 4

0 * 3 * 2

0 0

A F K F
w F

G x G t

c E c IF F F

x G x G x t


 
= − +

 

  
= − − +

   








 
(23) 

After substituting Eq. (23) to Eq. (21 and 22) 
the governing equation for FG beams is simplified 
to: 

*24 4

* 01

24 * 2 2

0 0

*2 4

0

0 2 * 4

0

I AIF F
D I

x I G x t

I KF F
I q

t G t

 
− − + +

  

 
+ =

 

  
  
    

(24) 

where, 

𝐷∗ = (𝐸2 −
𝐸1

2

𝐸0

) 

It can be observed that the above equation is 
exactly similar to the equation derived in 
reference [41] when the terms E6 and I6 are 
neglected. The above equation represents the 
single governing equation for FG beams in the 
framework of higher-order beam theory. Once 
the parameter ‘F’ is calculated, the other 
dependent variables can be easily determined, 
which can be used to calculate the stresses and 
strains in the beam for various loading and 
boundary conditions. We may also calculate the 
shear forces and bending moments caused by the 
external loads using the equations discussed in 
previous paragraphs. 

Additionally, by substituting c1 = 0 and c2 = 0 
in the above equation, we arrive at Timoshenko 
beam theory for FG beams [13], which can be 
further reduced to Rayleigh and Euler beam 
theory by considering infinite shear modulus. To 
distinguish the current study and work of Li [20] 
for higher order beam theory, the terms 
containing E6 are multiplied with an arbitrary 
constant whose value is taken as zero or one; 
when it is zero, it suffices to Li’s work, while its 
value is one it represents the present study. 

2.2. Stress Analysis of Functionality Graded 
Beam using Higher Order Beam Theory 

Ignoring the time derivatives in the governing 
equation, we remain with a highly simplified 
equation for analyzing the behavior of beams 
under different loading and boundary conditions. 

4
*

4

F
D q

x


=


 (25) 

The above equation is very similar to the 
conventional beam equation, and we can use 
direct methods for obtaining solutions so as to 
study the beam behavior. However, for future 
studies pertinent to complex geometric and 
loading conditions, approximate solutions have 
also been recorded. Before proceeding with the 
analysis of the study, we must verify the results 
for the above formulation. 

Here static analysis has been performed on a 
cantilever beam built of functionally graded 
material that has material property gradation 
across the cross-section. The governing 
differential equation for an FG beam is 
represented by Eq. (25) while the boundary 
conditions for a cantilever beam are: 

0
(0) 0, (0) 0, ( ) 0, ( ) 0

x x
w M L Q L= = = =  (26) 

The modulus of elasticity follows a power law 
distribution across the height of the beam, and 
Poisson’s ratio is assumed to be a constant. The 
solution to the above problem is approached 
using the B-spline Collocation technique. The 
variation of the modulus of elasticity is made 
according to the power law distribution given by: 

( )( ) 0.5b t b

z
E z E E E

h


 

= + − + 
 

 (27) 

The subscript ‘β’ refers to the power law index 
whereas the subscripts ‘b’ and ‘t’ represent the 
bottom and top fiber respectively. The variation 
of the modulus of elasticity for various values of 
the power law index is plotted in Figure 2. The 
variation of the modulus of rigidity will be similar 
to the elasticity modulus due to the assumption of 
constant Poisson’s ratio. The modulus of rigidity 
is calculated from the relation: 

( )
( )

2(1 )

E z
G z


=

+
 (28) 

 

Fig. 2. Modulus of Elasticity variation as per power law 
index, β along the height. 
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The solution of Eq. (25) is approached using 
the B-spline collocation technique to calculate 
parameter ‘F’ which is then used to calculate the 
transverse deflection ‘w’ and slope ‘𝜙’. Axial and 
shear stresses are calculated as discussed in the 
following steps. 

To generalize the results, expressions for 𝑢0,
𝜀𝑥𝑥,   𝜎𝑥𝑥can be obtained in terms of 𝑤 & ∅0, as 
shown below. From Eq. (17) we can write: 

* 2

0 0 1 31

2

0 0 0

x
u N c EE w

x E E x E x

  
= − −

  
 (29) 

Integrating both sides, assuming that the 
resultant axial force vanishes, and using the 
boundary conditions, we can obtain the equation 
for u0, which can be further substituted in Eq. (5) 
to obtain axial deformation, strains, and stresses 
as below. 

*

3 331
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EE w
u z c z c z

E E x

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   
   
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2.3. B-Spline Basis Functions 

B-splines are piece-wise polynomials that can 
be used to approximate a solution to a 
mathematical problem. They are made up of 
linear combinations of b-spline basis functions. It 
is illustrated in the parametric space 't'. They 
depend on a set of non-decreasing coordinates in 
parametric space known as a knot vector and are 
defined in terms of the order or degree of the 
curve. For the present work, we have assumed 
the following open-type knot vector referred 
from [47]: 

 0 1 2 1  ,  ,  ,  n kT t t t t + += 
 

(34) 

in Eq. 34, the knot vector is determined using 
(n+1) control points and the order of spline ‘k’. A 
recursive relation has been defined for the 
B-spline basis of the ‘kth’ order as below: 

( ) ( ) ( )
i i k

i,k i,k 1 i 1,k 1

i k 1 i i k i 1

t t t t
N N N

t t t t

+

− + −

+ − + +

− −
= +

− −  
(35) 

Equation 35 requires an initiation in the form 
of a first-order basis function, which is defined as 
follows [47]: 

i i 1

i,1

1, t t
N

0,

t

otherwise

+
 

=


  

(36) 

Using the above basis functions and a series of 
(n+1) control points (B0, B1... Bn,), we can define a  
B-spline curve as: 

( )i ,k i

0

( ) N t .B
n

i

B t
=

=
 

(37) 

The above B-spline curve (Eq. 37) may be 
forced to satisfy the governing equation at 
discrete points called collocation points. There 
are various methods to determine the collocation 
points, however, in the current work, the points 
are calculated using the Greville abscissa [44] 
approach. In this approach, for a knot vector, T = 
[t0, t1, t2……, tn+k+1] the points are determined 
using the relation: 

( )1 1

1
i i i i nx t t t

n
+ + −= + ++

 
(38) 

where ‘n’ is the degree of the B-spline function 
and ti are the knots. The number of points 
obtained may be judiciously selected as per the 
requirement of the problem.  

2.4. B-Spline Collocation Technique 

The B-spline basis functions of sixth order 
(k = 6, resulting in a polynomial of degree 5) are 
selected as per Eq. 37. It is used as a trail solution 
for function ‘F’ and is substituted in Eq. 25. The 
resulting equation is then forced to satisfy the 
governing equation at collocation points given by 
Greville abscissa. 

It can be assessed that the number of 
collocation points required will be equal to the 
difference between the number of control points 
of the B-spline curve and the number of boundary 
conditions. In the present case, a sixth-order B-
spline function with no intermediate knots is 
used. Hence, we have six coefficients to be 
determined. As there are 4 boundary conditions 
available, we require only 2 collocation points to 
develop six linear equations that can be solved 
easily to find the coefficients. 

In the next section, the solution is approached 
using the B-spline collocation technique; a 
detailed discussion of the process is reported by 
Mahapatra et al. [46-48] for reference. A MATLAB 
code developed for the above formulation is used 
to obtain computational results.  
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3. Results and Discussions 

In the present work, new higher-order unified 
formulations have been derived for the 
determination of deflection, axial stress, and 
shear stress, as mentioned in the previous 
section. Now the results generated using these 
formulae have been validated, as discussed 
below. 

3.1. Verification of Results 

To verify the results with standard literature 
references, we consider the data as discussed in a 
numerical example of a cantilever beam in Li et al. 
[20]. The considered beam is of length L = 0.5m, 
depth h = L/3, and width of unit length. 
Aluminum has been considered at the bottom and 
silicon carbide has been considered at the top as 
the constituent materials for the functionally 
graded material for this beam, whose properties 
have been mentioned below. 

𝐸𝑏 = 𝐸𝐴𝑙 = 70𝐺𝑃𝑎,     𝐸𝑡 = 𝐸𝑐𝑒𝑟𝑎𝑚𝑖𝑐 = 348𝐺𝑃𝑎 

A constant value of Poisson’s ratio is assumed 
here as 0.3. The value of the power law index is 
assumed to be equal to 1. It has been assumed 
that at the top of the beam, a pressure load of 
1kN/m is being imposed uniformly. The axial and 
shear stresses are normalized as follows: 

𝜎𝑥,𝑛𝑜𝑟𝑚 =
𝜎𝑥𝑥𝐴

𝑞𝑙
,             𝜏𝑥𝑧,𝑛𝑜𝑟𝑚 =

𝜏𝑥𝑧𝐴

𝑞𝑙
 

 

 
Fig. 3. Verification of present work, a) normalized axial stress 

b) normalized shear stresses (ignoring E6) 

The normalized axial and shear stresses are 
calculated at different locations in the span of the 
beam and are presented in Figures 3(a-b). 

As can be observed from Figure 3, the results 
of this study match exactly those of Li et al. [20] 
while ignoring the higher-order terms that 
contain E6. The significance of the terms 
containing E6 on the behavior of FG beams is 
explored in successive paragraphs. 

A comparison of normalized axial and shear 
stresses for the higher-order beam theory used in 
[20] with the higher-order beam theory of the 
present work (considering E6) reveals that the 
effect of E6 is negligible for axial stresses; 
however, from Figure 4, it can be clearly observed 
that the effect of consideration of the higher 
order terms has a moderate effect 
(approximately 4.083%) on shear stresses and a 
very small difference of 0.836% in the 
normalized axial stresses. 

 
Fig. 4. Comparison plots for the effect of higher order terms 

on shear stress (b=1) 

3.2. Other Numerical Experiments 

In this section, the behavior of FG beams for 
different cases of material distribution (using 
different index values) and the effect of shear 
modulus on the stresses are discussed. In Figures 
5a & b, the normalized axial and shear stresses at 
the fixed end of the beam are respectively plotted 
for different values of the power law index 
ranging from (0, 0.2, 1, 2, and 5). Hence, a 
comparative study of axial and shear stresses in 
FG beams with an equivalent isotropic beam can 
be observed. The asymmetry in the material 
composition results in behavioral variations, as 
reported in Figure 5. With the increase in index 
value, the maximum axial stress (at the top and 
bottom fibers) varies considerably as compared 
to the isotropic case. The maximum shear stress 
also increases with increasing index up to a 
certain maximum, then decreases.   
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Fig. 5.  Effect of material gradation on stresses  (fixed end), 
a) Normalized axial stresses b) Normalized shear stresses 

The study of the effect of material gradient on 
the deflection and stresses of an FG beam can be 
further extended using three-dimensional plots 
that give better visualization and understanding. 
Figure 6(a-c) reports the 3D plots corresponding 
to the beam and can be referred to for the study 
of the effect of material index on the beam 
behavior. 

 

 

 
Fig. 6. 3D plots to visualize the effect of material gradation 

on beam behavior a) Normalized axial stress, 
b) Normalized shear stress, c) Deflection 

In Figure 7, comparative plots for different 
beam theories are reported for axial and shear 
stresses for different values of aspect ratio. For 
Euler’s theory, the shear modulus is considered 
to be infinite while for Timoshenko's theory, the 
value of c1 is assumed to be zero. To distinguish 
the current study and Li [20] for higher order 
beam theory, the terms containing E6 are 
multiplied with an arbitrary constant whose 
value is taken as zero/ one; when it is zero, it 
suffices to Li’s work while its value is one for the 
present study. The normalized transverse 
deflection is calculated using the relation: 

𝑤̅ =
𝑤ℎ3𝐸𝑏

𝑞𝐿4
 

In Figure-7(a&b), the deflection of the 
cantilever corresponding to various beam 
theories is plotted for two aspect ratios of 3 and 
10. It can be observed that for L/h=3, there is a 
significant difference in deflection corresponding 
to Euler’s theory, while, Li’s work and present 
deflections are almost equal, differences being 
negligible. Timoshenko's deflection only 
marginally varies from the higher-order cases. 
However, for L/h=10, all types of deflections are 
practically indistinguishable. The results are in 
line with the previous similar reported studies.   

It can be observed from Figure-7(c&d) that 
the axial stresses calculated by all the beam 
theories are nearly equal for both aspect ratios. 
The normalized axial stress values are 
proportionally increasing for increasing aspect 
ratios while the variation is of the same profile. 
However, shear stresses are significantly 
different for the various theories considered in 
Figure 6 (e&f). The shear stresses are zero for 
Euler’s theory due to the infinite value of shear 
modulus while for other theories, the observed 
values of shear stresses are parabolically 
obtained with zero shear at top and bottom 
surfaces. The values of shear stresses obtained 
using higher order beam theory [20] are slightly 

(a) 

(b) 

(c) 
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higher than that of Timoshenko theory and the 
results obtained using the present work are in 
between the stresses obtained by the 
Timoshenko beam [13] and higher order beam 
theory reported in [20]. 

The average percentage difference between 
the results, with and without the inclusion of 
higher order terms (i.e., present work and cited 
literature) for normalized axial stress is 0.8355% 
and for normalized shear stress, it is 4.083% (For 
details, please refer to appendix). 

 

(a) 

 

(A) 

 
(b) 

 
(B) 

 
(c) 

 
(C) 

Fig. 7. Comparison of various results according to various 
beam theories for L/h ratio 3 &10 – (a, A) Beam Deflection 

for L/h=3 &10, (b, B) Normalized Axial Stress for L/h=3&10, 
and (c, C) Normalized Shear Stress for L/h=3&10 

To continue with the numeric experiments, 
normalized transverse deflection is studied as a 
function of the material gradient index. The 
maximum deflection that is obtained is a function 
of index value as reported in the literature. Hence 
to observe such effects in the present case along 
with the effect of aspect ratio using various beam 
theories is reported in Figure 8. For an in-depth 
observation, the study has been categorized into 
two cases; 
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Case-A: when ceramic is on the top surface, 
Case-B: the metal surface is on top with the 
external uniformly distributed load acting on the 
top surface in the downward direction. It can be 
expected that changing the loading surface will 
also have a substantial effect on the behavior of 
the beam for a given material composition. 

To continue with the numeric experiments, 
normalized transverse deflection is studied as a 
function of the material gradient index. The 
maximum deflection that is obtained is a function 
of index value as reported in the literature. Hence 
to observe such effects in the present case along 
with the effect of aspect ratio using various beam 
theories is reported in Figure 8. For an in-depth 
observation, the study has been categorized into 
two cases; Case-A: when ceramic is on the top 
surface, Case-B: the metal surface is on top with 
the external uniformly distributed load acting on 
the top surface in the downward direction. It can 
be expected that changing the loading surface will 
also have a substantial effect on the behavior of 
the beam for a given material composition. 

It can be clearly observed from Figure-8a that 
for thick stubby beams, there is a clear difference 
in the maximum transverse displacement 
corresponding to Euler, Timoshenko, and higher-
order theories. This difference is small for lower 
gradients, and increases as the value of index β 
increases for L/h=3. This difference in 
normalized transverse displacement reduces as 
the aspect ratio increases; for L/h =10, the 
difference is practically insignificant as in Figure-
8b. Another noticeable observation in Figure 8 
(a&b) is that the slope of the curve (rate of 
increase in maximum deflection) decreases as the 
material gradient increases. This can be 
explained by the fact that the percentage of metal 
(less stiff component) increases as the value of β 
increases, (when β=0 then the material at the top 
surface is 100%, for β=1, both components are 
50% and further increase in β increases the 
composition of metal). It can be observed that the 
effect of the material gradient is more significant 
for values up to β=2; the effect is less significant 
for higher index values.  

In the next study, i.e. Case-B, the beam is 
inverted to expose the metal part to the external 
load applied at the top surface. For β=0, i.e. for 
isotropic material made of metal, the deflection is 
maximum and as the stiffer component fraction 
increases with the value of β the deflection 
decreases considerably. This can be observed in 
Figure-7c&d for aspect ratios 3 and 10. Similar to 
the previous case the difference in the Euler and 
higher order displacements is significant for 
lower aspect ratios and is practically insignificant 
for aspect ratio greater than 10. 

 

 

 

 
Fig. 8. Dimensionless maximum transverse 

 deflection as a function of material gradient index for 
 Case A: Metal at base and Ceramic at top and 

 Case B: Metal at top and Ceramic at base. 
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Table 1. Material Properties 

Sl.  
No. 

Material 
Modulus of  
Elasticity 

Poisson’s  
Ratio 

Ref. 

1. Aluminum 70GPa 0.30 [41] 

2. 
Silicon 
Nitride 

348GPa 0.24 [41] 

3. 
Silicon 
Carbide 

440GPa 0.27 [40] 

4. Steel 210GPa 0.30 [11] 

In this section, three discrete combinations of 
materials have been selected to observe the 
variation in beam behavior due to an arbitrary 
ratio of material properties. The material 
properties of selected materials are mentioned in 
Table 1. The combination of materials with the 
ratio of material properties is mentioned in Table 
2. 

Table 2. Combination of materials 

Set Materials Ratio of Modulus of 
Elasticity 

Set-A Aluminum+ 
Silicon Nitride 

(348GPa /70GPa) ⁓5 

Set-B Aluminum+ 
Silicon Carbide 

(440GPa /70GPa) ⁓7 

Set-C Aluminum+ 
Steel 

(210GPa /70GPa) ⁓3 

The three combinations can be observed to 
have a discrete ratio of modulus of elasticity  
(3, 5, and 7). The behavior of such beams 
corresponding to β=1 has been plotted in Figure-
9 to observe the variations and relate the same to 
the ratio of material properties. The behavior of 
such beams corresponding to β=1 under 
uniformly distributed load for a comparative 
study is mentioned in Figure 9. 

The deflection of the cantilever beam is 
plotted in Figure 9a. From the figure, it can be 
observed that the composition corresponding to 
Set-B is stiffer and that validates the elasticity 
moduli ratio. However, when we observe the 
stresses, the variation is as shown in Figure 9b for 
axial stress and 9c for shear stress. The stresses 
are found to be higher for higher moduli ratios. In 
the present case, the normalized tensile stresses 
at the top surface are higher for Set-B for moduli 
ratio 7 while the compressive stresses are on the 
lower side for the same set of materials. On the 
contrary, for Set-B with moduli ratio 3, the 
maximum tensile stress at the top fiber is lower, 
and compressive stress at the lower surface is 
higher than the other sets. Another observation 
from Figure 9b is that the steepness (curvature) 
of the axial stress curves increases with an 
increase in the moduli ratio. Figure 9c shows the 
normalized shear stress plots for the three 

combinations of materials. It is clear that shear 
stress is higher for Set-B with a higher moduli 
ratio, which can also be inferred from the axial 
stress values. This discussion is pertinent to the 
design plan of FG beams. 

 

 

 
Fig. 9. Comparative plots for various combinations of 
materials with aluminum a) Normalized Transverse 

Deflection b) Normalized Axial Stress 
 c) Normalized Shear Stress 

The study is further extended to include 
simply supported boundary conditions (bending 
moment and deflection are zero at the supports) 
for the FG beam. In Figure 9, deflection and stress 
plots corresponding to simply supported 
boundary conditions are presented. It is observed 
that the differences in axial stress and shear 
stress are similar in trend as for cantilever 
support. The percentage difference in axial 
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stresses for a cantilever beam is about 1.2% for 
an isotropic beam and 1.9% for an FG beam. On 
the other hand, the difference in shear stress is 
7.7% for the isotropic beam and 8.0% for the FG 
beam (details can be referred to in the appendix) 

 

 

 
Fig. 10. Comparison of the isotropic and FG beam behavior 

with/without higher order terms a) deflection, 
 b) normalized axial stress, c) normalized shear stress 

4. Conclusions 

Using Hamilton’s principle, a higher-order 
beam formulation is derived to obtain a single 
governing equation for functionally graded 
beams by incorporating higher-order terms that 
were not considered in previous similar work. 
The unification of three developed equations into 

a single equation is done by considering a 
parameter that is a function of domain variables. 

The solution to the governing equation is 
approached using the approximation technique 
of B-spline collocation. A cantilever functionally 
graded beam with grading along the cross-
section is studied for its behavioral properties 
under the action of a distributed mechanical load. 
The variation of modulus of elasticity and 
modulus of rigidity is considered by power law, 
and Poisson’s ratio is considered to be a constant. 
The collocation points are calculated using 
Greville abscissa. It is observed that the new 
higher-order terms have a moderate effect 
(approximately 4%) on the shear stress 
calculations compared to the similar report cited 
in the literature and only 0.8% on normalized 
axial stresses. The normal stresses are negligibly 
affected by the new terms considered for 
cantilever beams. The difference in values 
corresponding to simply supported end 
conditions is slightly on the higher side; 1.8% for 
axial stress and 8% for shear stresses. The study 
is then extended to explore the effect of material 
gradient, aspect ratio, and moduli ratio on 
transverse deformation, normalized axial 
stresses, and normalized shear stress variations. 

As a future scope, the present model may be 
compared with relatively newer techniques like 
Carrera Unified Formulation and the High-Order 
Continuation Model for the study of FG structural 
elements. Thermal stresses and dynamic analysis 
are other areas in which the present study can be 
extended. 

Nomenclature 

X Variables should appear in the first 
column with the definition in the 
second column 

t & Me One and two-letter abbreviations 
should appear in italics 

Sim Three-letter abbreviations should not 
appear in italics 

Fr Dimensionless numbers and 
parameters don't appear in italics  
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Appendixes 

Table A1. Normalized Axial Stresses at fixed end of beam 

z/h 

b=0 b =0.2 b =0.5 b =1 b =2 b =5 

Present [20] Present [20] Present [20] Present [20] Present [20] Present [20] 

-0.5 -8.9257 -9 -2.3328 -2.3506 -3.1346 -3.156 -4.2939 -4.3195 -5.6848 -5.7161 -6.6325 -6.6777 

-0.4 -7.1905 -7.2 -6.6903 -6.7002 -5.8678 -5.8761 -5.0416 -5.047 -5.0153 -5.018 -5.6359 -5.6382 

-0.3 -5.422 -5.4 -5.7254 -5.708 -5.7149 -5.701 -5.2249 -5.2128 -4.5748 -4.5619 -4.6219 -4.6041 

-0.2 -3.6285 -3.6 -4.2798 -4.2546 -4.7926 -4.7706 -4.8367 -4.8169 -4.1543 -4.1358 -3.614 -3.5928 

-0.1 -1.8184 -1.8 -2.5698 -2.553 -3.3559 -3.3406 -3.8741 -3.8594 -3.5418 -3.5276 -2.6344 -2.6211 

0 0 0 -0.6827 -0.6837 -1.5219 -1.5236 -2.339 -2.3403 -2.5253 -2.5254 -1.6611 -1.6625 

0.1 1.8184 1.8 1.3317 1.3117 0.6374 0.616 -0.2373 -0.2594 -0.8958 -0.917 -0.5549 -0.5749 

0.2 3.6285 3.6 3.4392 3.4084 3.0696 3.0358 2.4204 2.3831 1.5498 1.5094 1.0406 1.0014 

0.3 5.422 5.4 5.6133 5.5895 5.7328 5.706 5.6191 5.5872 5.0056 4.966 3.8218 3.7749 

0.4 7.1905 7.2 7.8316 7.8432 8.5906 8.6039 9.3394 9.353 9.6539 9.6647 8.9657 8.9649 

0.5 8.9257 9 10.0746 10.1607 11.6101 11.7118 13.5576 13.6805 15.662 15.8176 18.2803 18.4926 

Table A2. Normalized Shear Stresses at fixed end beam 

z/h 

b =0 b =0.2 b =0.5 b =1 b =2 b =5 

Present [20] Present [20] Present [20] Present [20] Present [20] Present [20] 

-0.5 0 0 0 0 0 0 0 0 0 0 0 0 

-0.4 0.5143 0.54 0.4119 0.4318 0.3121 0.3272 0.2403 0.2527 0.2424 0.2562 0.3573 0.3788 

-0.3 0.9143 0.96 0.8101 0.8491 0.6828 0.7158 0.5487 0.5769 0.4803 0.5077 0.636 0.6743 

-0.2 1.2 1.26 1.1299 1.1844 1.025 1.0745 0.8795 0.9248 0.7384 0.7805 0.8417 0.8924 

-0.1 1.3714 1.44 1.3492 1.4143 1.2956 1.3582 1.1874 1.2485 1.0167 1.0746 0.9915 1.0512 

0 1.4286 1.5 1.4547 1.5248 1.4635 1.5342 1.4266 1.5 1.2906 1.3641 1.1156 1.1828 

0.1 1.3714 1.44 1.4367 1.506 1.5038 1.5765 1.5517 1.6315 1.5105 1.5966 1.247 1.3221 

0.2 1.2 1.26 1.2879 1.35 1.3954 1.4629 1.5171 1.5952 1.6025 1.6939 1.3901 1.4739 

0.3 0.9143 0.96 1.0022 1.0505 1.1196 1.1737 1.2774 1.3431 1.4679 1.5515 1.4618 1.5498 

0.4 0.5143 0.54 0.5744 0.6021 0.6596 0.6915 0.7868 0.8273 0.9831 1.0391 1.1952 1.2672 

0.5 0 0 0 0 0 0 0 0 0 0 0 0 
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Table B1. Normalized Shear Stresses at mid span of simply supported beam 

z/h 

b =0 

%diff 

b =1 

%diff 

Li et al. Present Li et al. Present 

-0.5 2.2933 2.3243 0.0135176 1.0799 1.1055 0.023706 

-0.4 1.7847 1.8095 0.0138959 1.2617 1.2671 0.00428 

-0.3 1.3094 1.328 0.014205 1.3032 1.2911 0.009285 

-0.2 0.8591 0.8715 0.0144337 1.2042 1.1845 0.016359 

-0.1 0.4254 0.4316 0.0145745 0.9649 0.9502 0.015235 

0 0 0 0 0.5851 0.5864 0.002222 

0.1 -0.4254 -0.4316 0.0145745 0.0649 0.087 0.340524 

0.2 -0.8591 -0.8715 0.0144337 -0.5958 -0.5585 0.062605 

0.3 -1.3094 -1.328 0.014205 -1.3968 -1.365 0.022766 

0.4 -1.7847 -1.8095 0.0138959 -2.3383 -2.3519 0.005816 

0.5 -2.2933 -2.3243 0.0135176 -3.4201 -3.5431 0.035964 

Table B2. Normalized Shear Stresses at mid span of simply supported beam 

z/h 

b=0 

%diff 

b =1 

%diff 

Li et al. Present Li et al. Present 

-0.5 0 0 0 0 0 0 

-0.4 0.27 0.2443 0.0951852 0.1263 0.114 0.097387 

-0.3 0.48 0.4343 0.0952083 0.2885 0.2602 0.098094 

-0.2 0.63 0.57 0.0952381 0.4624 0.4171 0.097967 

-0.1 0.72 0.6514 0.0952778 0.6242 0.5631 0.097885 

0 0.75 0.6786 0.0952 0.75 0.6766 0.097867 

0.1 0.72 0.6514 0.0952778 0.8158 0.7359 0.097941 

0.2 0.63 0.57 0.0952381 0.7976 0.7195 0.097919 

0.3 0.48 0.4343 0.0952083 0.6715 0.6058 0.097841 

0.4 0.27 0.2443 0.0951852 0.4137 0.3732 0.097897 

0.5 0 0 0 0 0 0 
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