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K E Y W O R D S  

 

A B S T R A C T  

Composites:  

Delamination: 

Equivalent delamination 

factor:  

Grey relational analysis; 

Entropy:  

Fuzzy logics 

Glass-fiber-reinforced polymers' (GFRP), as compared to metallic materials, require more 
intricate machining. The composite construction experiences delamination as a result of 
this machining operation. Delamination at the exit and entrance of holes drilled is a 
significant flaw in composite materials. Superior-drilled holes can be produced by 
optimizing the drilling process's governing factors. This study’s goal is to maximize the 
drilling settings using entropy weight-coupled gray relational analysis with fuzzy logic to 
account for multiple performance factors. Taguchi's L25 5-level orthogonal array is used 
to increase the accuracy of the results in this study. Feed rate and spindle speed are 
considered the control variables, and torque, thrust force, and delamination at both the 
exit and entry are the responses. The results show that drilling performance is enhanced 
by lower feed rates and elevated spindle speeds. Additionally, the present findings show 
that feed rate has a stronger influence on drilling hole quality. These results also proved 
that increasing the number of levels increases the accuracy of the results. Entropy-based 
gray relational analysis with fuzzy logic using more levels of factors can be effectively used 
for the optimization of the drilling process. 

1. Introduction 

In industries like the production of 
automobiles, defense equipment, and airplanes, 
where the need for structures with low weight, 
high strength, and stiffness is crucial, designers 
often turn to composites as an alternative to 
standard metallic materials [1]. These materials 
are challenging to machine due to their innate 
characteristics, such as high heterogeneity and 
abrasive structure, low thermal conductivity, and 
heat sensitivity. These materials exhibit a variety 
of flaws throughout the machining process, 
including matrix cracking, deboning, and 
delamination [2–4]. Most scientists who studied 
the drilling GFRP composite concentrated on 
thrust force and its influence on machining 
damages, in particular delamination. A detailed 
discussion on delamination and the techniques of 

evaluation and measurement were provided 
elsewhere [5, 6]. 

The impact of machining parameters while 
machining GFRP composites was studied by 
Khashaba and his colleagues both empirically and 
analytically, with an emphasis on delamination 
and thrust force [7]. Formisano et al. [8] looked 
into how production processes affected the 
mechanical properties of GFRP composite 
laminates. The effects of drilling conditions, such 
as spindle speed, feed rate, and drill bits, on the 
delamination and temperature of GFRP 
composite laminates were examined by Erturk et 
al. [9]. In order to decrease delamination and 
enhance hole quality, recent research has focused 
on the geometry and coatings of drill bits [10–12]. 
A few investigations concentrated on the impact 
of tool wear [13] as well as exit temperatures 
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[14–18] on delamination and surface 
degradation. 

The prediction of thrust forces because of 
tool wear during drilling CFRP/Al stack [19] and 
CFRP [20] unidirectional composites was another 
recent study's main focus. A thorough analysis of 
delamination and delamination-free machining 
techniques for CFRP composites was presented 
by Jai et al. [21, 22]. Rahmé et al.'s research [22] 
demonstrated that the addition of woven glass 
sheets to the CFRP sheets' exit side of the drilled 
hole helped reduce delamination. Galinska et al. 
[23] provided a thorough analysis of bolted joints 
used to link fiber-reinforced composites. The use 
of unconventional methods to minimize 
delamination damage during the drilling of 
composites was the subject of several studies [17, 
24]. 

For thrust forces and delamination damage, 
the drill bit tip angle is thought to be a key 
influencing factor. Improper cutting-edge design 
results in unintended cutting angles being 
distributed, which leads to poor quality and 
ineffective cutting ability, which leads to 
increased thrust forces and delamination [25, 
26]. 

Arrospide et al. [27] looked into the impact of 
various drill bit geometries on the diameter 
deviation, surface roughness, and coaxial aspects 
of hole quality. Liu et al.'s experiments [28] show 
that thrust forces built by extruding the chisel 
edge were greater than those produced by 
cutting the chisel edge. According to Qiu et al. 
[29], milling CFRP laminates with a compounded 
drill, dragger drill, or candlestick drill could 
minimize or completely prevent push-out 
delamination. Investigations by Hocheng et al. 
with various drill bits like twist drill, candle stick 
drill, saw drill, core drill, and step drill concluded 
that the core drill allows the grater critical feed; 
below this force, delamination assumed to occur 
will not occur [30]. 

According to different delamination factor 
models, such as the conventional delamination 
factor, adjusted delamination factor, and 
equivalent delamination factor, Keerthy & J. Babu 
[7] studied the influence of speed along with feed 
on delamination at the exit side of the drilled hole 
in GFRP composites. The findings showed that 
feed has a greater impact on push-out 
delamination. To demonstrate a relationship 
between speed and feed-on delamination in a 
composite lamina, Davim and Reis provided a 
method employing Taguchi's method and ANOVA 
[8]. Using the Taguchi method with Grey 

Relational Analysis, Palanikumar suggested an 
efficient procedure for optimizing drilling 
conditions (feed and speed) with several 
performance characteristics (surface roughness, 
thrust force, and delamination factor). Their 
research outcome suggests that feed has a larger 
impact compared to spindle speed [7]. 

The majority of researchers used Taguchi 
and ANOVA methodologies to conduct their 
experiments with 3 or 4 levels to calculate the 
impact of drilling factors on delamination during 
drilling composite laminate [6–10]. In variation 
with past research, the Taguchi L25, a 5-level 
orthogonal array, was used in the experiments in 
the current work, which is expected to boost the 
accuracy of the findings. Feed and speed are the 
control variables considered in this investigation. 
The major goal of this work is to use the Taguchi 
technique and hybrid optimization method. The 
entropy method was used to calculate weights, 
which are integrated with grey relational analysis 
along with fuzzy logic to optimize the drilling 
conditions during the drilling of GFRP composite 
by a diamond-coated core drill, which allows a 
larger critical thrust force while drilling. The 
most promising equivalent delamination factor 
was applied to assess the delamination damage 
affecting composite laminate near the exit and 
entrance of the hole, which further improves the 
accuracy of the results. MINITAB 17 was used for 
the design and analysis of drilling experiments to 
determine the significant variables that influence 
the drilling of GFRP composites. 

The research questions of this study are: 
what is the optimum machining factor for 
minimizing drilling defects, and which is the most 
influential factor on drilling performance? 
Selection of a suitable MCDM method to obtain 
the optimum machining combination.  

Brief Review of MCDM Methods  

Updates and improvements are still being 
made to MCDM approaches. By using the MCDM 
methodology, the shortcomings of more solitary 
approaches are mitigated. For example, all 
evaluation criteria and sub-criteria should stand 
alone when using the analytical hierarchy 
process (AHP) approach. Nonetheless, certain 
criteria (or sub-criteria) are dependent on other 
criteria in a lot of real-world working situations. 
The analytic network process (ANP) method 
overcomes this drawback of the AHP method. 
This approach considers the interdependencies 
among the criteria [31, 32]. The VIKOR method 
could resolve decision problems with conflicting 
and non-commensurable criteria, but it has 



 

3 

limitations, like a lack of flexibility. The Complex 
Proportional Assessment Method (COPRAS) has 
advantages as it takes both maximizing and 
minimizing criteria values into account with 
different methods; however, it has disadvantages 
as the ranking derived from the COPRAS method 
is unstable compared to the other MCDM 
methods [31, 32]. 

The multi-attributive border approximation 
area comparison (MABAC) approach and its 
extensions have demonstrated strong results in a 
number of application domains. Three primary 
benefits are offered by MABAC: stable solutions 
in the event that the type of criteria formulation 
changes, consistent results in the event that the 
units of measurement vary, and a streamlined 
algorithm appropriate for large-scale issues. 
Though MABAC has structural constraints, it can 
still be enhanced. The normalizing method used 
in the classic MABAC is based on a max-min 
normalization formula, which is one of its major 
flaws. One normalizing method alone, 
meanwhile, could produce skewed results [33]. 

The Multi-Atributive Ideal-Real Comparative 
Analysis (MAIRCA) method has the following 
advantages: this method has a mathematical 
framework that remains the same regardless of 
the number of alternatives and criteria, hence the 
possibility of MAIRCA application in cases of a 
large number of alternatives and criteria. This 
method has applicability to both qualitative and 
quantitative criteria types.  This method gives 
stable solutions regardless of changes in the 
qualitative criteria measurement scale and 
changes in quantitative criteria formulation [34]. 
The MAIRCA method can solve the problems 
under uncertainty. It is an efficient tool that 
emphasizes the importance of qualitative criteria 
in real-time problem-solving. Rating the 
qualitative criteria using an arbitrary scale 
merely for comparison purposes can yield 
incorrect results. Therefore, the tool is equipped 
with experimentally available or statistically 
evaluated material data along with the opinions 
of the subject experts to accurately assess the 
candidate choices in a given engineering problem 
[35]. 

The above-mentioned method has its relative 
advantages and limitations. The present study 
uses Grey Relational Analysis (GRA). The reason 
for using GRA is to reduce uncertainty in 
decision-making processes by providing 
a quantitative measure of the relationship 
between different factors. GRA is particularly 
useful when dealing with small sample sizes or 
data. It is also effective in situations where there 
is a lack of complete information about the 

variables being analyzed. Recent research shows 
GRA, along with fuzzy logic, can be effectively 
used for different multi-criteria decision-making 
applications [36–38]. The present study uses the 
same method for optimizing the machining 
factors during the drilling of GFRP composite 
laminate.  

The pairwise comparison and deviation from 
maximum consistency concepts are applied in the 
comparison-based MCDM process known as the 
full consistency technique (FUCOM). Just n − 1 
pairwise comparisons are needed by FUCOM to 
assign weights to n mappable targeting criteria in 
MPM. The FUCOM results are validated using the 
comparisons' deviation from maximum 
consistency (DMC). The FUCOM weighting 
method, as compared to other methodologies, 
yields more trustworthy results because it makes 
the fewest potential comparisons in its theory. 
The most significant shortcoming of FUCOM has 
been considered to be its subjectivity [39, 40]. 

A subjective weighing technique called Level 
Based Weight Assessment (LBWA) is suggested 
as a solution to pairwise comparison problems. In 
comparison to both the BWM and AHP 
approaches, it is based on a (n-1) comparison. 
One of the main advantages of the LBWA 
approach is its capacity to maintain its basic 
structure regardless of how complex the model 
gets. Furthermore, the ideal values of weight 
coefficients are obtained by a straightforward 
mathematical apparatus, which eliminates the 
conflicting expert preferences allowed by other 
subjective models like BWM and AHP. Finally, 
sensitivity analysis of the MCDM mode is made 
possible by the elasticity coefficient of the LBWA 
model, which permits extra coefficient 
corrections based on the preferences of decision-
makers [41]. 

Unlike the above subjective methods, 
objective methods do not require any sort of 
initial information or judgment from the 
decision-makers [42]; they merely assess the 
structure of the data available in the decision 
matrix to determine the weights. These methods 
are known for eliminating possible bias 
associated with subjective evaluation, thus 
increasing objectivity. Criteria Importance 
Through Inter-criteria Correlation (CRITIC) has 
an advantage, as it considers both the contrast 
intensity and the conflicting relationship held by 
each decision criterion [43, 44]. 

Ecer and Pamucar [45] recently introduced 
an objective weighting method 
named LOgarithmic Percentage change-
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driven Objective Weighting (LOPCOW) with the 
advantages of eliminating the gap due to the size 
of the data, generating more reasonable 
weightings, and considering both positive and 
negative data in the weighting process.  Famucar 
et.al. [46] proposed a novel multicriteria decision 
support tool called Weights by ENvelope and 
SLOpe (WENSLO) and Aczel-Alsina Weighted 
ASsessment (ALWAS) to identify the green 
growth performance of countries.  

By removing the impact of human variables 
on criteria weights, the entropy technique has the 
advantage of improving the evaluation results' 
objectivity and scientificity [37]. As per the 
review on the benefits of the entropy weight 
method (ewm), it has the following benefits in 

optimizing the machining process [47]. One very 
effective method for evaluating indications is the 
EWM weight calculation process. This method is 
proven to be sufficiently consistent in 
determining the combined contrast intensity and 
divergence of responses, as well as 
inappropriately allocating weights to them [37, 
47]. 

From the above discussion, entropy weight-
based gray relational analysis with fuzzy logic can 
be effectively used for multi-criteria decision-
making processes. The present study aims to use 
the same for determining the optimum drilling 
conditions during the drilling of composite 
laminate. The methodology used in this study is 
shown in Fig. 1. 

 

Fig.1. Methodology used in this study. 
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2. Experimental Procedure 

In this investigation, 26-layer GFRP 
composite laminates that were set up 
symmetrically in the form [0, 90] were utilized. 
Bidirectional E-Glass fibers were used, and grade 
L-12 resin with K-5 hardener was used as the 
applied resin. The laminate had a 6 mm thickness. 
A laminate was cut to the workpiece material 
sample size of 250 x 40 x 6 mm3. Drilling 
experiments were carried out using a 10 mm 
diamond-coated core drill on GFRP laminates in 
accordance with Taguchi's L25 orthogonal array. 
Experiments were done using a CNC  computer 
numerical control vertical machining center 
(Makino Vertical Machining Centre, Model S33) 
at PSG College of Engineering in Coimbatore, 
India. To reduce experimental error, each 
experiment was run twice. Figure 2 depicts the 
experimental setup with the dynamometer. The 
strain gauge theory underlies how the 
dynamometer operates. The torque and thrust 
force values that generate voltage are 
proportionate to the force applied, and torque is 
responsible for the Wheatstone bridge circuit 
imbalance. The force and torque fluctuations 
while drilling were captured and then stored with 
a digital storage oscilloscope (Tektronix 
TDS210). The trials also took push-out and peel-
up delamination effects into account. No coolant 
was applied during any of the testing. The drilling 
conditions considered for this investigation are 
shown in Table 1. 

 
 
Fig.2. Drilling set-up with dynamometer and digital display 

 
Table 1. Drilling conditions with their levels 
 

Level of 
parameters 

Speed (rpm) Feed  (mm/min) 

1 1500 50 

2 1750 75 

3 2000 100 

4 2250 125 

5 2500 150 

3. Delamination Measurement and 
Assessment 

Different researchers have used a variety of 
techniques to assess the delamination of 
composites caused by drilling, although X-ray 
[12], optical microscope [7–9], ultrasonic C-scan 
[13], and digital photography [16] are the most 
popular. Acoustic emission [15] and the shadow 
Moire laser-based imaging technology [16] are 
other delamination measurement techniques. 
Babu et al. [5] give a thorough analysis of the 
assessment methods of delamination in a review 
paper. In this investigation, the delamination 
damage at the entrance and exit of the drilled 
hole was determined using digital image 
processing technologies. A scanner with a 
resolution of 1200 dpi was used to scan these 
drilled holes in order to calculate the amount of 
delamination. The image-editing application 
Image J received the scanned images and 
imported them. 

A number of parameters, including 
brightness intensity, image enhancement, noise 
suppression, and edge detection, which are 
discussed in more depth elsewhere [48, 49], must 
be carefully chosen in order to produce a picture 
of acceptable quality. The threshold filter was 
applied to the binary image to remove the black 
and gray points, and only then can the damage 
zone be measured. Figure 3 illustrates the image 
processing procedure followed for obtaining the 
delaminated area of the drilled hole with 
acceptable quality. The damage intensity to the 
composite material at the exit and entry sides of 
the hole is characterized in the present 
investigation using the equivalent delamination 
factor, which is schematically represented in Fig. 
4 and computed using Eq. (1). 

 

Fig.4. Schematic for calculation of equivalent delamination 
factor 

               𝐹𝑒𝑑 =
𝐷𝑒

𝐷
                            (1) 
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here Do is the diameter of the nominal hole. De is 
the equivalent delamination diameter which 
may be expressed as Eq. (2). 

 

𝐷𝑒  =  [
4(𝐴𝑑+𝐴0)

𝛱
]

0.5

                                  (2) 

Ad = the delamination damage area in the 
surroundings of the drilled hole.  

Ao =  the drilled area with diameter Do. 

 

Fig.3. Image processing steps to assess delamination damage. 

4. Results and Discussion 

Responses from the experiments are 
delaminations, both push-out and peel-up, 
torque, hole diameter, and thrust force for 
various drilling conditions, as shown in Table 2. 

Due to their excellent mechanical qualities, 
GFRP composites are employed in fairings, 
storage room doors, passenger compartments, 
and wind turbine blades. Prior to assembly, 
drilling is a typical machining procedure on these 
pieces. Drilling without errors is necessary to 
guarantee their effective operation in service. 
The literature on drilling GFRP composites 
reveals that because these materials have a 
composite structure containing hard fibers in a 
soft matrix, their machining mechanisms differ 
from those of traditional metals. These materials 
can be machined through shearing or plastic 
deformation. The process of machining these 
composite materials was affected by the fibers' 
hardness, toughness, orientation, and flexibility 
[9]. For these composite materials, it is 
particularly challenging to optimize many 

features simultaneously. In the current work, 
drilling process parameters for GFRP composites 
are optimized for numerous performance factors. 
Performance parameters of drilling include 
thrust and torque, as well as delamination at both 
the entry and exit. For better hole quality, lower 
torque, delamination factor, and thrust force 
values are preferred. The feed rate and spindle 
speed input parameters. Using response graphs, 
the influence of these variables on the machining 
of GFRP composites is studied. 

A response table of average responses was 
used to construct the response graphs. Table 3 
displays the response table with torque, 
delamination factors (entry and exit), and thrust 
force. ''Delta'' in the response table denotes the 
variation between the response's minimum and 
maximum average values at a specific level. The 
rank denotes the strength of a parameter's 
influence. According to the analysis of this 
response table, feed has a greater impact on the 
drilling of GFRP composites' output 
characteristics. 
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Table 2.  Orthogonal array of experimental design with variable and experiment responses 

 

Speed 
(rpm) 

Feed 
(mm/min) 

Delamination Factor 
Thrust Force 

(N) 
Torque 

(Nm) 
Exp. No 

Push-out Peel-up 

1 
1500 50 1.15 1.14 143.50 0.48 

2 
1500 75 1.17 1.14 246.00 0.77 

3 
1500 100 1.19 1.15 398.50 1.06 

4 
1500 125 1.21 1.15 522.50 1.30 

5 
1500 150 1.21 1.16 680.50 1.60 

6 
1750 50 1.14 1.14 103.00 0.44 

7 
1750 75 1.15 1.14 220.00 0.73 

8 
1750 100 1.16 1.15 334.00 0.99 

9 
1750 125 1.17 1.15 455.50 1.18 

10 
1750 150 1.21 1.15 586.00 1.44 

11 
2000 50 1.14 1.13 108.50 0.45 

12 
2000 75 1.14 1.14 203.00 0.67 

13 
2000 100 1.15 1.14 308.00 0.91 

14 
2000 125 1.16 1.15 406.50 1.08 

15 
2000 150 1.20 1.15 487.50 1.24 

16 
2250 50 1.12 1.12 67.00 0.35 

17 
2250 75 1.14 1.14 94.50 0.48 

18 
2250 100 1.14 1.14 145.50 0.47 

19 
2250 125 1.15 1.14 209.50 0.66 

20 
2250 150 1.18 1.15 255.00 0.80 

21 
2500 50 1.13 1.11 61.50 0.20 

22 
2500 75 1.15 1.12 96.50 0.32 

23 
2500 100 1.16 1.13 136.50 0.57 

24 
2500 125 1.16 1.14 180.50 0.61 

25 
2500 150 1.19 1.14 246.00 0.79 

 

 Table 3. Response table for thrust force, torque, peel-up, and push-out delamination 

 
Level 

Thrust force   Torque  Peel-up delamination  Push-out  delamination 
Spindle 
speed 

Feed 
rate 

Spindle 
speed 

Feed  
rate 

Spindle 
speed 

Feed 
rate 

Spindle 
speed 

Feed 
rate 

1 398.2 96.7 1.041 0.380 1.188 1.135 1.147 1.129 
2 339.7 172.0 0.951 0.591 1.167 1.152 1.144 1.136 
3 302.7 264.5 0.867 0.797 1.156 1.160 1.142 1.141 
4 154.3 354.9 0.549 0.967 1.148 1.171 1.138 1.145 
5 144.2 451.0 0.495 1.172 1.156 1.197 1.129 1.149 

Delta 254 354.3 0.546 0.792 0.040 0.062 0.018 0.020 
Rank 2 1 2 1 2 1 2 1 
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Fig.5. S/N graphs for responses 

Figures. 5 (a) to 5 (d) show the S/N curves for 
thrust force, torque, and delamination factors. 
The influence of speed and feed on torque and 
thrust force during drilling is depicted in Figs. 5 
(a) and 5 (b). The findings show that when speed 
increases, torque and thrust force decrease. This 
occurs because increasing speed leads to more 
accumulated heat that softens the polymer 
matrix, resulting in reduced thrust force and 
torque. The stress on the drill, however, rises as 
the feed increases. When drilling composites, this 
results in increased torque and thrust force 
values. Figs. 5 (c) and 5 (d) show how drilling 
parameters affect the delamination damage at 
the exit and entry. High feed rates with low 
spindle speeds are more conducive to the 
delamination factor being seen. The delamination 
damage and thrust force increase with an 
increase in feed. Delamination and thrust force 
are related phenomena; when thrust force 
increases, the delamination also rises, and vice 
versa. Numerous scholars have examined the 
features of individual performance [8–12]. To 
boost production and enhance the performance 
of manufactured components, it is required to 
optimize several performance attributes. 
Researchers employ a variety of strategies to 
optimize several performance parameters, 
including the utility idea, gray relational analysis 

[49], and desirability approach [50]. In variation 
with past research, in this study, Grey-Entropy-
Fuzzy (GEF), a hybrid method was employed in 
order to get the best drilling conditions for these 
multiple response optimizations. This is a mix of 
fuzzy logic with gray relational analysis [51, 52], 
and response weights were determined using the 
entropy approach. 

5. Optimization Using Entropy 
Weighted Grey Relational Analysis. 

5.1. Grey Relational Analysis. 

The drilling issue that occurred during the 
drilling of GFRP laminate was optimized using 
GRA (grey-relational analysis). The generalized 
additive model (GRA) is a quantitative technique 
for identifying disparity and equality among 
input conditions. Every output response has a 
unique range and unit. Hence, it is necessary to 
normalize these values between 0 and 1. When 
solving problems involving several objectives, 
certain responses could be considered as 
maximization, some responses as minimization, 
and some responses as nominal, which are better 
responses. GRA condenses multi-response issues 
into a single response known as the Grey 
Relational Coefficient. 
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Responses with maximization can be 
normalized by utilizing Eq. (3). 

 

𝑋𝑖
∗(𝑘) =

𝑋𝑖
0(𝑘)−𝑚𝑖𝑛𝑋𝑖

0(𝑘)

𝑚𝑎𝑥𝑋𝑖
0(𝑘)−min 𝑋𝑖

0(𝑘)
  (3) 

Responses of minimization are normalized by 

using Eq. (4). 

 

𝑋𝑖
∗(𝑘) =

𝑚𝑎𝑥 𝑋𝑖
0(𝑘)−𝑋𝑖

0(𝑘)

𝑚𝑎𝑥𝑋𝑖
0(𝑘)−min 𝑋𝑖

0(𝑘)
    (4) 

Responses with nominal values the better can be 

normalized by using Eq. (5). 

𝑋𝑖
∗ = 1 − 

|𝑋𝑖
0(𝑘)− 𝑋0|

max  𝑋𝑖
0(𝑘)− 𝑋𝑖

0           (5) 

 i= 1 to n,  

n = number of drilling conditions 

m = number of experimental data  

𝑋𝑖
0(𝑘) is the original sequence 

𝑋𝑖
∗(𝑘)  is the sequence after data pre-processing  

the max 𝑋𝑖
0(𝑘) is greatest value in 𝑋𝑖

0(𝑘),  

min 𝑋𝑖
0(𝑘) = least value in 𝑋𝑖

0(𝑘) 

𝑋0= desired value.  

In this investigation, all output responses are 

lower the better performance characteristic type, 

Eq. (4) is used to obtain the normalized values. 

Normalized values for all the responses are 

calculated and tabulated in Table 5. 

Grey Relational Coefficients (GRC) 
 
Now Grey Relational Coefficients were 

determined by using Eq. (6). 

 

 

𝜉(𝑘) =
∆𝑚𝑖𝑛 + 𝜁∆𝑚𝑎𝑥

∆0𝑖(𝑘)+ 𝜁∆𝑚𝑎𝑥
          (6) 

 

, ∆0𝑖(𝑘), ∆𝑚𝑎𝑥 , ∆𝑚𝑖𝑛 are determined using the 

Eq’s (7), (8) and (9) 

 

∆0𝑖(𝑘) = ‖𝑋0
∗(𝑘) − 𝑋𝑖

∗(𝑘)‖                      

(7) 

 

∆𝑚𝑎𝑥= max max‖𝑋0
∗(𝑘) − 𝑋𝑖

∗(𝑘)‖  

 (8) 

 

∆𝑚𝑖𝑛= min min ‖𝑋0
∗(𝑘) − 𝑋𝑖

∗(𝑘)‖  

      (9) 

ζ is the coefficient, whose values range [0,1].   

 ζ = 0.5 is generally used. 

 

 ∆0𝑖(𝑘)= deviation sequence of the sequence 

𝑋0
∗(𝑘) 

𝑋𝑖
∗(𝑘) = comparability sequence. 

The deviation sequences of the responses were 

calculated after data pre-processing and are 

shown in Table 4. The values ∆𝑚𝑎𝑥  and ∆𝑚𝑖𝑛 can 

be found in Table 4.  

GRCs calculated with Eq. (6) for drilling 

conditions are represented in Table 7. 

Notations  used for output responses are, 

A- Thrust Force. 

B- Torque. 

C- Peel-up Delamination. 

D- Push-out Delamination. 

5.2. Grey Relational Grade. 

According to Eq. (10), the grey relational grade is 
often determined as the mean of all the GRCs of 
the relevant responses. Only when each response 
is given the same weight can this equation be 
used:   

𝐺𝑅𝐺 =  
1

𝑛
∑ 𝜁𝑖

𝑛
𝑘=1 (k)   (10) 

For experimental problems such as drilling all 
output responses may not be equally significant, 
hence by assigning different weights to the 
responses, then Eq. (10) may be modified as Eq. 
(11). 

𝐺𝑅𝐺 =  
1

𝑛
∑ 𝑊𝑘 𝜁𝑖

𝑛
𝑘=1 (𝑘), ∑ 𝑊𝑘

𝑛
𝑘=1 = 1     (11) 

 
where 𝑊𝑘  is the normalized weight of the 
response k; when weights are the same Eq. (10) 
and (11) both are the same.  In the present study 
an objective method, that is entropy method 

[24,25] was used for the determination of criteria 
weights of output responses.  
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Table 4. Normalized and Deviation sequences of output responses. 

Experiment 

No. 

Normalized Values  Deviation Sequence 

A B C D A B C D 

1 0.353 0.423 0.680 0.352  0.648 0.577 0.321 0.648 

2 0.577 0.653 0.703 0.585  0.423 0.348 0.297 0.415 

3 0.777 0.804 0.764 0.807  0.223 0.196 0.236 0.193 

4 0.890 0.901 0.831 0.970  0.110 0.099 0.169 0.030 

5 1.000 1.000 1.000 1.000  0.000 0.000 0.000 0.000 

6 0.215 0.381 0.565 0.270  0.786 0.619 0.435 0.730 

7 0.530 0.624 0.674 0.392  0.470 0.376 0.326 0.608 

8 0.704 0.770 0.760 0.419  0.296 0.231 0.240 0.581 

9 0.833 0.853 0.820 0.567  0.167 0.147 0.180 0.433 

10 0.938 0.948 0.903 0.981  0.062 0.052 0.098 0.019 

11 0.236 0.392 0.522 0.194  0.764 0.608 0.478 0.806 

12 0.497 0.583 0.618 0.293  0.503 0.417 0.382 0.707 

13 0.670 0.729 0.722 0.338  0.330 0.271 0.278 0.662 

14 0.786 0.813 0.803 0.426  0.214 0.187 0.197 0.574 

15 0.861 0.879 0.837 0.816  0.139 0.121 0.164 0.184 

16 0.036 0.278 0.337 0.000  0.964 0.722 0.664 1.000 

17 0.179 0.423 0.565 0.232  0.821 0.577 0.435 0.768 

18 0.358 0.413 0.663 0.286  0.642 0.587 0.337 0.714 

19 0.510 0.576 0.747 0.398  0.490 0.424 0.254 0.602 

20 0.592 0.671 0.776 0.696  0.408 0.329 0.224 0.304 

21 0.000 0.000 0.000 0.123  1.000 1.000 1.000 0.877 

22 0.187 0.235 0.329 0.358  0.813 0.765 0.671 0.642 

23 0.332 0.510 0.447 0.431  0.668 0.490 0.553 0.569 

24 0.448 0.538 0.618 0.473  0.552 0.462 0.382 0.527 

25 0.577 0.662 0.740 0.733  0.423 0.338 0.260 0.267 

5.3. Entropy Method 

Entropy, which is an estimate when there is 
uncertainty in information or data, was proposed 
by Shanon and Weaver in 1947. Zeleney 
improved it further in 1982 for determining the 
objective weights of responses. It applies the 
theory of probability. The weights of responses 
by this method can be calculated by normalizing 
the data with Eqs. (2) and (3). The values of 
entropy for individual output responses are 
determined using Eq. (12). 

𝑒𝑗 = − 
1

𝑙𝑛𝑚
∑ 𝑃𝑖𝑗

𝑚
𝑖=1 ln 𝑃𝑖𝑗                                                    (12)            

here 𝑃𝑖𝑗 =  
𝑦𝑖𝑗

∑ 𝑦𝑖𝑗
𝑚
𝑖=1

  and m = total no of 

experimental conditions, in present study m=25.  

The performance response or characteristics is 

increasing or decreasing  with entropy(𝑒𝑗)  

values. The weights of the individual responses 

may be determined by Eq. (13). 

𝑤𝑗 =  
(1−𝑒𝑗)

∑ (1−𝑒𝑗)𝑛
𝑖=1

                                                         (13) 

 

Calculated normalized values of responses are 
tabulated in Table 5. Using these entropy values 
and also weights for the responses, they are 
calculated using Eqs. (12) and . (13) respectively, 
which are presented in Table 6. 

The determined weights using Eq. (13) obtained 
for the responses are thrust force, torque, entry 
delamination factor, exit delamination factor,  
which are 0.28, 0.24, 0.17,  and 0.31, respectively. 
These weights are used in determining the Grey 
relational grade with Eq. (11). Table 7 represents 
the obtained GRCs, gray relation grades, and 
ranks for all the test runs. 

Table.6. Weightages of the responses using entropy method. 

Response 𝒆𝒋 (𝟏 − 𝒆𝒋) 𝒘𝒋 

A 0.965 0.035 28 

B 0.971 0.029 24 

C 0.979 0.021 17 

D 0.962 0.038 31 

Sum 0.123 100 
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Table.5. Normalized, 𝑃𝑖𝑗 , 𝑎𝑛𝑑 𝑃𝑖𝑗 ln 𝑃𝑖𝑗  values for output responses 

Experiment 

No. 

Normalized Values 𝑃𝑖𝑗 Values 𝑃𝑖𝑗 ln 𝑃𝑖𝑗 Values 

A B C D A B C D A B C D 

1 0.8676 0.8133 0.5000 0.7000 0.0520 0.0533 0.0405 0.0490 -0.154 -0.156 -0.130 -0.148 
2 0.7022 0.6200 0.5000 0.5000 0.0421 0.0406 0.0405 0.0350 -0.133 -0.130 -0.130 -0.117 
3 0.4560 0.4267 0.3333 0.3000 0.0273 0.0279 0.0270 0.0210 -0.098 -0.100 -0.098 -0.081 
4 0.2559 0.2667 0.3333 0.1000 0.0153 0.0175 0.0270 0.0070 -0.064 -0.071 -0.098 -0.035 
5 0.0008 0.0667 0.1667 0.1000 0.0000 0.0044 0.0135 0.0070 0.000 -0.024 -0.058 -0.035 
6 0.9330 0.8400 0.5000 0.8000 0.0560 0.0550 0.0405 0.0559 -0.161 -0.160 -0.130 -0.161 
7 0.7441 0.6467 0.5000 0.7000 0.0446 0.0423 0.0405 0.0490 -0.139 -0.134 -0.130 -0.148 
8 0.5601 0.4733 0.3333 0.6000 0.0336 0.0310 0.0270 0.0420 -0.114 -0.108 -0.098 -0.133 
9 0.3640 0.3467 0.3333 0.5000 0.0218 0.0227 0.0270 0.0350 -0.083 -0.086 -0.098 -0.117 

10 0.1533 0.1733 0.3333 0.1000 0.0092 0.0113 0.0270 0.0070 -0.043 -0.051 -0.098 -0.035 
11 0.9241 0.8333 0.6667 0.8000 0.0554 0.0546 0.0541 0.0559 -0.160 -0.159 -0.158 -0.161 
12 0.7716 0.6867 0.5000 0.8000 0.0463 0.0450 0.0405 0.0559 -0.142 -0.139 -0.130 -0.161 
13 0.6021 0.5267 0.5000 0.7000 0.0361 0.0345 0.0405 0.0490 -0.120 -0.116 -0.130 -0.148 
14 0.4431 0.4133 0.3333 0.6000 0.0266 0.0271 0.0270 0.0420 -0.096 -0.098 -0.098 -0.133 
15 0.3123 0.3067 0.3333 0.2000 0.0187 0.0201 0.0270 0.0140 -0.075 -0.078 -0.098 -0.060 
16 0.9911 0.9000 0.8333 1.0000 0.0594 0.0589 0.0676 0.0699 -0.168 -0.167 -0.182 -0.186 
17 0.9467 0.8133 0.5000 0.8000 0.0568 0.0533 0.0405 0.0559 -0.163 -0.156 -0.130 -0.161 
18 0.8644 0.8200 0.5000 0.8000 0.0518 0.0537 0.0405 0.0559 -0.153 -0.157 -0.130 -0.161 
19 0.7611 0.6933 0.5000 0.7000 0.0456 0.0454 0.0405 0.0490 -0.141 -0.140 -0.130 -0.148 
20 0.6877 0.6000 0.3333 0.4000 0.0412 0.0393 0.0270 0.0280 -0.131 -0.127 -0.098 -0.100 
21 1.0000 1.0000 1.0000 0.9000 0.0600 0.0655 0.0811 0.0629 -0.169 -0.178 -0.204 -0.174 
22 0.9435 0.9200 0.8333 0.7000 0.0566 0.0602 0.0676 0.0490 -0.163 -0.169 -0.182 -0.148 
23 0.8789 0.7533 0.6667 0.6000 0.0527 0.0493 0.0541 0.0420 -0.155 -0.148 -0.158 -0.133 
24 0.8079 0.7267 0.5000 0.6000 0.0485 0.0476 0.0405 0.0420 -0.147 -0.145 -0.130 -0.133 
25 0.7022 0.6067 0.5000 0.3000 0.0421 0.0397 0.0405 0.0210 -0.133 -0.128 -0.130 -0.081 

Sum of ∑ 𝑃𝑖𝑗
𝑚
𝑖=1 ln 𝑃𝑖𝑗 -3.107 -3.126 -3.152 -3.098 

 

Entropy value for the response A is  𝑒𝑗 =  −
1

𝑙𝑛𝑚
∑ 𝑃𝑖𝑗

𝑚
𝑖=1 = - 

1

𝑙𝑛25
 (-3.107) =0.965 

Table.7. GRCs with the entropy-based weights (in brackets), Grey Relational Grades and ranks for the test runs. 

Experiment. 

No. 

Grey Relational Coefficients Grey  

Relational 

Entropy 

Grade 

Rank 

Thrust 

Force 

(0.28) 

Torque 

(0.24) 

Peel-up 

Delamination 

(0.17) 

Push-out 

Delamination 

(0.31) 

1 0.5865 0.5417 0.4239 0.5868 0.5482 8 

2 0.4644 0.4338 0.4158 0.4609 0.4477 15 

3 0.3914 0.3833 0.3957 0.3825 0.3874 21 

4 0.3597 0.3568 0.3757 0.3402 0.3557 23 

5 0.3333 0.3333 0.3333 0.33333 0.3333 25 

6 0.6998 0.5674 0.4695 0.6493 0.6132 6 

7 0.4853 0.4449 0.4258 0.5603 0.4887 13 

8 0.4153 0.3939 0.3969 0.5440 0.4469 16 

9 0.3751 0.3695 0.3788 0.4685 0.4033 20 

10 0.3478 0.3452 0.3565 0.3376 0.3455 24 

11 0.6792 0.5605 0.4893 0.7209 0.6314 4 

12 0.5016 0.4617 0.4470 0.6307 0.5228 10 

13 0.4273 0.4067 0.4093 0.5967 0.4718 14 

14 0.3889 0.3807 0.3837 0.5400 0.4329 17 

15 0.3673 0.3626 0.3741 0.3799 0.3712 22 

16 0.9335 0.6427 0.5977 1.0000 0.8272 2 

17 0.7367 0.5417 0.4695 0.6832 0.6279 5 

18 0.5826 0.5477 0.4300 0.6364 0.5650 7 

19 0.4951 0.4648 0.4011 0.5569 0.4910 12 

20 0.4580 0.4271 0.3919 0.4181 0.4270 19 

21 1.0000 1.0000 1.0000 0.8031 0.9390 1 

22 0.7274 0.6800 0.6029 0.5830 0.6501 3 

23 0.6012 0.4952 0.5281 0.5368 0.5434 9 

24 0.5275 0.4817 0.4470 0.5139 0.4986 11 

25 0.4644 0.4304 0.4033 0.4056 0.4276 18 
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5.4. Optimization with GREG 

With grey relational analysis with entropy-based 
weights, the grey relational entropy grade was 
determined. Experiment number 21 shows the 
greatest value of GREG, which represents the 
optimum values of input factors. The GREG values 
varied from 0.9390 to 0.3333. The experimental 
results of all output responses at optimized 
drilling conditions are entry delamination factor 
1.13, exit delamination factor 1.11, thrust force 

61.5 N, and torque 0.02 Nm.  

6. Optimization Using Grey Entropy 
Fuzzy Method (GEFM). 

Using GRA reduces ambiguity in decision-
making processes by offering a numerical 
representation of the interplay between several 
components. When working with small sample 
sizes or low-quality data, GRA is especially 
helpful. A mathematical technique for expressing 
ambiguity and uncertainty in decision-making is 
fuzzy logic. It permits the possibility of partial 
truths, in which a claim may be made that is only 
partially true or untrue. 

Fuzzy logic is based on the notion that there 
are frequently many shades of gray in between 
and that the concept of true or false is overly 
limiting. Hence, it is used to deal with imprecise 
or ambiguous information. Fuzzy rules, which are 
if-then statements that represent the relationship 
between input and output variables in a fuzzy 
manner, are used to create fuzzy logic. A fuzzy set, 
or a set of membership degrees for every 
conceivable output value, is the result of a fuzzy 
logic system [53, 54]. Hence, in this study, grey 
relational analysis with fuzzy logic was used to 
optimize the drilling parameters. 

Early optimization studies in the literature 
either employed subjected methods like the SIMO 
method or applied equal weights to all responses; 
this may be an inappropriate or incorrect method 
to optimize the drilling parameters. In order to 
make a multi-objective problem into a single 
objective known as GREG, the entropy approach, 
which is an objective method, was used combined 
with fuzzy logic to obtain the most scientific 
weights. Complex multi-objective optimization 
issues can be resolved by using a combination of 
grey relational analysis, the entropy method, and 
fuzzy logic [52]. However, relationships with 
assessing replies are disregarded during this 
conversion procedure. The improved 
optimization using the proper weights for each 
response is now presented by this approach. 

Grey Entropy Fuzzy Model. 

In order to further optimize drilling using 
artificial intelligence techniques like fuzzy logic, a 
sound prediction model must be developed. 
Because GREG includes weighted sums that 
depend on entropy for each of the four GRCs, the 
GREG problem can be optimized without taking 
response criteria into consideration. For this, the 
GREG desirability function was applied with a 
fuzzy model for all input factors. The important 
phases of the fuzzy method are the fuzzification 
of the input and output data, the development of 
fuzzy rules, and eventually the defuzzification of 
outcomes. 

The matching values of GEFG are obtained 
using the fuzzy-logic toolbox of MATLAB 
(R2021a). Inputs to the fuzzy-logic model are the 
values of the GREG of the torque, thrust force, exit 
and entry delamination, and diameter of the hole. 
The fuzzy modeling is done using triangular 
membership functions. Nine linguistic 
membership functions were used for all the input 
GREGs and output Grey Entropy Fuzzy Grade: 
lowest (LT), very low (VL), medium-low (ML), 
low (L), medium-high (MH), high (H), medium 
higher (MHR), higher (HR), and highest (HT). In 
Fig. 6, these membership functions are shown. 
The obtained GEFG values are shown in Figs. 7 
and 8, as displayed in the fuzzy rule viewer. In 
this figure, twenty-five rows show the fuzzy rules 
used, and the five columns represent GRC values, 
and the last column gives the de-fuzzified GEFG 
values. These GEFG values captured for all 
twenty-five experiments are shown in Table 8. It 
may be noted from Table 8 that the experiment. 
21 (speed of 12000 rpm, feed of 1000 mm/min) 
has the greatest GEFG value; this indicates the 
optimum conditions of input variables for high 
drilling performance. 

 

 Fig.6. Membership functions (a) for input factors and (b) for 

output GEFG. 
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Table. 8. GRCs, GEG, and GEFG of all  experiments 

Experiment. 

No. 

Grey Relational Coefficients Grey  

Relational 

Entropy Grade 

Grey Entropy 

Fuzzy Grade Thrust 

Force 

(0.28) 

Torque 

(0.24) 

Peel-up 

Delamination 

(0.17) 

Push-out 

Delamination 

(0.31) 

1 0.5865 0.5417 0.4239 0.5868 0.5482 0.500 

2 0.4644 0.4338 0.4158 0.4609 0.4477 0.434 

3 0.3914 0.3833 0.3957 0.3825 0.3874 0.385 

4 0.3597 0.3568 0.3757 0.3402 0.3557 0.375 

5 0.3333 0.3333 0.3333 0.33333 0.3333 0.375 

6 0.6998 0.5674 0.4695 0.6493 0.6132 0.618 

7 0.4853 0.4449 0.4258 0.5603 0.4887 0.442 

8 0.4153 0.3939 0.3969 0.5440 0.4469 0.423 

9 0.3751 0.3695 0.3788 0.4685 0.4033 0.375 

10 0.3478 0.3452 0.3565 0.3376 0.3455 0.375 

11 0.6792 0.5605 0.4893 0.7209 0.6314 0.670 

12 0.5016 0.4617 0.4470 0.6307 0.5228 0.500 

13 0.4273 0.4067 0.4093 0.5967 0.4718 0.462 

14 0.3889 0.3807 0.3837 0.5400 0.4329 0.419 

15 0.3673 0.3626 0.3741 0.3799 0.3712 0.375 

16 0.9335 0.6427 0.5977 1.0000 0.8272 0.925 

17 0.7367 0.5417 0.4695 0.6832 0.6279 0.673 

18 0.5826 0.5477 0.4300 0.6364 0.5650 0.500 

19 0.4951 0.4648 0.4011 0.5569 0.4910 0.455 

20 0.4580 0.4271 0.3919 0.4181 0.4270 0.424 

21 1.0000 1.0000 1.0000 0.8031 0.9390 0.952 

22 0.7274 0.6800 0.6029 0.5830 0.6501 0.714 

23 0.6012 0.4952 0.5281 0.5368 0.5434 0.500 

24 0.5275 0.4817 0.4470 0.5139 0.4986 0.469 

25 0.4644 0.4304 0.4033 0.4056 0.5482 0.415 

 

 

Fig.7. Fuzzy-logic rule viewer for Experiment number.21 (Greatest GEFG). 
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Fig.8. Fuzzy-logic rule viewer for Experiment number.5 (Least GEFG). 

To more precisely find the optimum 
combinations of drilling parameters, it is still 
necessary to examine the relative importance of 
drilling factors for the different performance 
characteristics. The analysis of variance is used to 
analyze the outcomes. An analysis of variance 
(ANOVA) was utilized to determine which drilling 
variables have a substantial impact on 
performance characteristics. The complete 
variability of the Grey relationship grades is 
divided to achieve this. This is done in order to 
deconvolute the contributions made by 
individual drilling variables and errors from the 
total sum of the squared deviations of the Grey 
relational grade. To ascertain which machining 
factors significantly influence the drilling 
performance, the F-test may also be performed. 
When F is large, changing the drilling parameter 
typically has a considerable impact on 
performance characteristics. The percentage of 
influence is also estimated for the analysis of the 

important variables and their contribution to 
composite machining. Table 9 displays these 
values. 

Table 9. shows that the feed rate's F value is 
26.34, which is higher than the spindle speed's 
12.30 value. In light of this, and in good accord 
with results from Palanikumar [9], the feed rate 
is the variable that shows the most impact on 
torque, thrust force, and delamination variables 
while drilling GFRP laminate. The percentage 
error in the current study is 9.38, compared to 
14.78 in a study of a similar nature by 
Palanikumar [9]. The employment of a larger 
number of levels is what accounts for the lower 
percentage error, or high accuracy, in the current 
work. Compared to Palanikumar's work, which 
only used 4 levels of input parameters, the 
current study uses 5. 

 

Table 9. ANOVA for Grey Entropy Reasoning Grade 

Source DF Sum of squares Mean square F % Contribution 

Speed (rpm) 4 0.14064 0.035159 12.30 28.85 

Feed(mm/min) 4 0.30115 0.075288 26.34 61.77 

Residual Error 16 0.04574 0.002858  9.38 

Total 24 0.48752    
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Figure 9 shows how the parameters feed 
and  speed interact to influence the drilling 
performance of GFRP composite laminate. If the 
lines are parallel, there is little interaction 
between the parameters. It will have an 
interaction effect if the lines diverge. According to 
the graph, the effect of interaction between feed 

and speed is greatest at high speeds, i.e., 2500 
rpm, while it is minimal at middle and low speeds. 
The image also shows that low feed rates are 
where feed rate and spindle speed interact most. 
These numbers show that when drilling GFRP 
composites with a core drill, small feed rates with 
high spindle speeds are preferred. 

.  

Fig.9. Interaction between the parameters on   SN ratio of Grade Entropy Reasoning Grade 

 

7. Prediction and Verification of 
Experimental Results of Grey 
Relational Grade and Grey Fuzzy 
Reasoning Grade  

After finding the suitable optimal 
parameters, it is necessary to predict the grey 
fuzzy reasoning grade theoretically. The grey 
fuzzy reasoning grade can be predicted by using 
the following equation: 

ᶯ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =  ᶯ𝑜𝑚 + ∑ (ᶯ𝑜𝑙𝑚  −ᶯ𝑜𝑚
𝑚
𝑖=1 )             (14)                                      

where ᶯ𝑜𝑚   is the mean value of the gray fuzzy 
reasoning grade and is the gray fuzzy reasoning 
grade at the optimal level and m is the number of 
influential parameters that affect the multiple 
performance characteristics. Table 10 shows the 
comparison results of the initial drilling 
parameters and the optimal drilling parameters. 
It is seen that thrust force at the initial setting 
level of s1f1 decreases from 143.5 to 61.5 
(experiment number 21), a drastic decrease. 
Similarly, torque reduces from 1.37 to 0.39, 

delamination at the entry and exit decreases from 
1.5211 and 1.4317 to 1.4287 and 1.41, 
respectively, and eccentricity reduces from 
0.0619 to 0.0156. It is seen that the gray fuzzy 
reasoning grade is higher than that of the gray 
relational grade. From the above results, it has 
been asserted that fuzzy fuzzy reasoning can be 
useful for optimizing the multiple performances 
of CFRP composites in drilling. 

Table 12 shows the response table for the 
gray fuzzy reasoning grade. In the gray fuzzy 
approach, to produce the best output, the optimal 
combination of the parameters as determined 
from the response table shows that spindle speed 
must be maintained at level 5 and feed rate at 
level 1. Feed rate has more influence on 
machining performance. 

The percentage error in the current study is 
9.38, compared to 14.78 in a study of a similar 
nature in the literature [55]. This shows that the 
proposed method can be effectively used for 
optimizing machining parameters during the 
drilling of composite laminates. 
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Table. 10. Results of initial and optimal machining performance 
 

Setting level Initial drilling 
parameters 

Optimal drilling parameter 

s 

S1f1 Prediction s5f1 Experiment s5f1 

Push-out delamination 1.15 --- 1.13 

Peel-up delamination 1.14 --- 1.11 

Thrust force 143.5 --- 61.5 

Torque 0.48 --- 0.2 

Grey relational grade 0.548 0.831 0.939 

Grey fuzzy reasoning grade 0.5 0.828 0.952 

 
Table. 11. Response table of initial and optimal machining performance 

 

Machining condition Level 1 Level 2 Level 3 Level 4 Level 5 Max-Min 

Spindle speed, s 0.414 0.446 0.485 0.595 0.610 0.196 

Feed rate, f* 0.733 0.552 0.454 0.418 0.393 0.340* 

Overall mean grey entropy fuzzy grade=0.51 

The bold values indicate optimal levels, * more influencing parameter. 

 

8. Conclusion, Limitation of Present 
Study and Scope for Future 
Research 

This study presents multi-response 
optimization of the drilling of GFRP laminate by 
applying an innovative method combining the 
entropy method for weights, grey relational 
analysis, and fuzzy logic. Input factors are feed 
and speed, and the output responses are torque, 
thrust force, entry/peel-up, and exit/push-out 
delamination factors. Depending on the results 
obtained, the below conclusions are drawn: 

The results show that an increase in feed rate 
increases the delamination factor, thrust force, 
and torque. The delamination factor, thrust force, 
and torque decrease slightly with the increase in 
spindle speed. The greater the gray relational 
grade, the better the performance. Therefore, 
cutting speed at 2500 rpm and feed rate at 50 
mm/min result in lower delamination, thrust 
force, and torque. 

The experimental results indicate that proper 
selection of drilling factors improves the 
performance of drilling. Experiment Number 21 

indicates the greater value of GERG 0.952, which 
is the optimum combination of input factors (i.e., 
speed 2500 rpm, feed 50 mm/min) for multi-
response optimization.  

The ANOVA results reveal that feed is the 
drilling variable, having a greater impact on the 
gray relational grade. The percentage error in the 
current study is 9.38, compared to 14.78 in a 
study of a similar nature in the literature [55]. 
This shows that the proposed method can be 
effectively used for optimizing machining 
parameters during the drilling of composite 
laminates. 

However, this study has the following 
limitations:. 

One limitation is that the GRA with the Fuzzy 
Logic model's accuracy is dependent on the 
dataset's properties, which are highly uncertain. 
Hence, when utilizing GRA with fuzzy logic 
models, it is crucial to thoroughly assess their 



Authors / Mechanics of Advanced Composite Structures Vol (year) first page-last page 

17 

applicability for a given use case. Accuracy may 
change from case to case.  

Future research can be focused on optimizing 
machining factors by extending the recently 
developed MCDM methods like MABAC, MAIRCA, 
and FUCOM with criteria weight calculation using 
methods like CRITIC and WENSLO. 

This study considers only the delaminated 
area in the calculation of the delamination factor; 
future studies can be focused on considering the 
perimeter of the damaged zone in the vicinity of 
the drilled hole in the calculation of the 
delamination factor. Future studies may also be 
focused on the thermo-mechanical effect of 
delamination and other drilling defects. 
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