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Abstract 

 The article incisively analyzes the impact of piezoelectricity on Love wave transmission in an 

inhomogeneous bi-layered structure consisting of smoothly embedded thin piezoelectric material 

bonded to a semi-infinite fiber-reinforced medium. By applying the variable-separable method, a 

general form of dispersion equations, analyzing the Love waves’ characteristics in electrically open 

and shorted cases of the piezoelectric material has been derived. The crux of the study lies in the fact 

that the presence of the prestresses in the upper layer and lower half-space along with elastic, 

piezoelectric, and permittivity coefficients lead the derived frequency relation to merge with the 

classical form of equations of the Love waves. The procured dispersion relation substantiates that the 

depth of the upper layer prestresses, and piezoelectricity coefficients play a guiding role in the 

transmission of Love waves. The numerical discussions and findings carry wider applications and may 

imply guidance of additive manufacturing of varied composite multi-materials for pre-stressed and 

microstructural configurations with partial and global dispersion properties. 

Keywords: Love waves; Piezoelectricity; Fiber-reinforced; Electrically short case; Electrically open 

case 

Introduction 

The advent of piezoelectric materials which 

tend to hold unique characteristics to generate 

electric charge potentials subject to any form of 

mechanical stresses comprising compression, 

bending, and stretching leads to several 

engineering applications. Piezoelectric 

materials carry several utilitarian aspects in 

devices like sensors, actuators, filters, etc. To 

gain more insights into the localization 

properties of Love waves at piezoelectric 

surfaces, several researchers have worked on 

enhancing the sensitivity of SAW devices. 

Sensors remain highly sensitive in lieu of 

acoustic energy accumulation within specified 

wavelengths. In present times, the problems 

associated with the reflection and refraction 

phenomena of elastic waves have attracted 

paramount interest in the field of waves and 

acoustics [1-6]. Moreover, the plane wave 

transmission in anisotropic media traces some 

slightly different characteristics from those of 

inisotropic media. Li and Jin [7]) expressed how 

the SH- waves propagate in piezoelectric 

materials not smoothly bonded to a metal or 

elastic substrate. Chen et al. [8] illustrated the 

electromechanical characteristics of a 

piezoelectric actuator projected to a graded 

substrate including an adhesive material is 

studied with graphical representations. Chen et 

al. [9] investigated the interfacial imperfections 

of thin piezoelectric film clamped to a graded 

substrate. Chen et al. [10] developed the relations 

for interfacial behavior of a piezoelectric actuator 

lying over to a homogeneous half-space. Cooper 

and Reiss [11] described the incidence of 

reflection of harmonic plane waves on the free 

surface of a linearly viscoelastic semi-infinite 

space. The incidence of reflection and refraction 

of elastic waves on inhomogeneous earth media 

was extensively described by Nayfeh [12]. Du et 

al. [13] introduced how Love waves behave 

while propagating through functionally graded 

piezoelectric materials. Du et al. [14], in an 

analytical investigation, have shown the 

influence of prestress in piezoelectric layered 

structures underlying viscous liquid. Love waves 



 

 

involving a thin piezoelectric layer clamped 

smoothly to unbounded elastic subs. The 

propagation characteristics of Love-type waves in 

semi-infinite FGPM with quadratic variation 

were addressed by Eskandari and Shodja [15]. 

Liu and He [16] carried out extensive work to 

derive a general frequency equation for Love 

waves transmitting in a layered structure over a 

piezoelectric half-space. In addition to these 

studies, some unparalleled works have been 

nurtured by many authors discussing the 

problems relevant to piezoelectric materials and 

fiber-reinforced materials. The expressions for 

reflection coefficients of the reflected waves in 

lieu of P and SV waves on an insulated and 

isothermal-free surface were demonstrated by 

Othman and Song [17]. Tahir et al.[18,19] 

established the frequency relations for wave 

propagation for ceramic-metal functionally 

graded sandwich plates with different porosity 

distributions and functionally graded sandwich 

plates via a simple quasi-3D HSDT. Al-Furjan et 

al. [20] studied the fundamental properties of 

waves in a sandwiched structure with a soft core 

and multi-hybrid nano-composite (MHC) face 

sheets under higher-order shear deformable 

theory. Due to varied applications in smart 

devices, the reflection and transmission 

phenomena on piezoelectric and other complex 

materials are represented by several scientists and 

engineers across the globe. The incidence of 

reflection and transmission of plane waves at the 

interface of the piezoelectric and piezomagnetic 

substrates was analyzed by Pang et al. [21]. 

Moreover, Yuan and Zhu [22] studied the 

reflection and refraction of plane waves at an 

interface of two anisotropic piezoelectric 

substrates. 

In the foundational work on piezoelectric plate 

vibrations, Tiersten [23] comprehensively 

explored linear vibrations in piezoelectric plates. 

This seminal publication by Tiersten in 'Linear 

Piezoelectric Plate Vibrations' from Plenum Press 

in New York, NY, significantly contributes to the 

understanding of piezoelectric plate dynamics. 

In the exploration of guided waves, Nie, 

An, and Liu [24] extensively studied the 

characteristics of SH-guided waves in layered 

piezoelectric/piezomagnetic plates. In the context 

of characterizing fiber composites, Markham [25] 

made significant contributions to the field 

through the measurement of elastic constants 

using ultrasonics. This pivotal work by Markham 

on 'Measurement of the Elastic Constants of 

Fiber Composites by Ultrasonics' provides a 

crucial foundation for understanding the 

mechanical properties of such materials. 

A comprehensive analysis of Free vibration, 

wave propagation, and tension analyses of a 

sandwich micro/nanorod subjected to electric 

potential using strain gradient theory was carried 

out by Arefi, M. and Zenkour, A.M., [26]. Arefi 

and Zenkour [27] conducted an insightful 

analysis of the wave propagation behavior of a 

functionally graded magneto-electro-elastic 

nanobeam resting on a Visco-Pasternak 

foundation. Their study contributes significantly 

to understanding the intricate dynamics of such 

nanostructures. In the study of microscale effects 

on structural behavior, Arefi and Zenkour [28] 

extensively investigated the influence of micro-

length-scale parameters and inhomogeneities on 

the bending, free vibration, and wave propagation 

analyses of a functionally graded Timoshenko’s 

sandwich piezoelectric microbeam. Their 

research significantly contributes to 

understanding the nuanced mechanical responses 

of such microstructures. Further Arefi, M. [29] 

worked on the Surface effect and non-local 

elasticity in wave propagation of functionally 

graded piezoelectric nano-rod excited to an 



 

 

applied voltage which has extensive implications 

on Love waves propagating in piezoelectric layer 

embedded over a fiber-reinforced substrate. In 

recent years, there has been a growing interest in 

the vibrational behavior of nanostructures, 

particularly those with piezoelectric properties. 

Arefi [30] conducted a comprehensive nonlocal 

free vibration analysis of a doubly curved 

piezoelectric nano-shell, shedding light on the 

intricacies of the dynamic response in such 

structures. This work serves as a foundation for 

understanding the unique characteristics of 

piezoelectric nanoshells, providing valuable 

insights that motivate our exploration into Love 

waves propagating in piezoelectric layer 

embedded over a fiber-reinforced substrate. As 

the field of structural analysis continually 

evolves, recent studies have explored advanced 

theories for a more accurate understanding of the 

mechanical behavior of materials. Arefi et al. 

[31] made notable contributions by applying the 

sinusoidal shear deformation theory and 

introducing the concept of a physical neutral 

surface in the analysis of functionally graded 

piezoelectric plates. Their work provides a 

sophisticated framework for investigating the 

intricate mechanical responses of such composite 

structures. In the realm of structural dynamics, 

the free vibration analysis of composite structures 

has garnered significant attention, particularly in 

the exploration of advanced materials. Arefi, 

Mohammad-Rezaei Bidgoli, and Zenkour [32] 

made a significant contribution by conducting a 

meticulous study on the free vibration analysis of 

a sandwich nano-plate. Their work, which 

includes a consideration of a functionally graded 

(FG) core and piezoelectric face sheets while 

accounting for the neutral surface, offers valuable 

insights into the dynamic behavior of such 

complex structures. In the exploration of wave 

propagation in nanomaterials, Arefi and Zenkour 

[33] made a significant contribution by 

employing coupled stress components and 

surface elasticity in the nonlocal solution of a 

functionally graded piezoelectric Love nano-rod 

model. This insightful work addresses the 

complexities associated with wave propagation in 

nanorods, laying the groundwork for a deeper 

understanding of the mechanical behavior in such 

intricate systems. In the realm of elasticity, 

Behdad and Arefi [34] proposed a mixed two-

phase stress/strain-driven elasticity, presenting 

applications in static bending, vibration analysis, 

and wave propagation In the dynamic analysis of 

nanoscale structures, Behdad and Arefi [35] also 

had introduced a novel mixture model of 

elasticity, offering insights into buckling analysis, 

vibration behavior, and wave propagation in such 

structures. This pioneering work addresses 

fundamental aspects of nanoscale dynamics, 

providing a valuable framework for 

understanding the mechanical responses of these 

systems. In the area of plate reinforcement, 

Belfield, Rogers, and Spencer [36] explored 

stress distributions in elastic plates reinforced by 

fibers arranged in concentric circles. In the 

exploration of wave interactions at material 

interfaces, Das et al. [37] investigated the 

reflection and refraction of plane waves 

specifically at the loosely bonded common 

interface of piezoelectric fiber-reinforced and 

fiber-reinforced composite media. Their study 

provides valuable insights into the complex 

phenomena occurring at these interfaces. 

In the investigation of size-dependent phenomena 

in micro/nanostructures, Dehsaraji, Arefi, and 

Loghman [38] conducted a thorough free 

vibration analysis of functionally graded 

piezoelectric micro/nanoshells. Their study, 

based on the modified couple stress theory and 

considering thickness stretching effects, 

contributes significantly to understanding the 

intricacies of size-dependent behaviors in these 

structures. Ezzin et al. [39] presented a 



 

 

comprehensive study on the propagation of 

guided waves in functionally graded magneto-

electro elastic composites. Their work contributes 

significantly to the understanding of the complex 

behavior of guided waves in such composite 

materials. 

In the investigation of SH-wave propagation in 

porous piezoelectric composites, Rakshit et al. 

[40] explored the effect of interfacial 

imperfections. Their study contributes valuable 

insights into the complex interplay between 

interfacial imperfections and wave propagation 

characteristics in these composite materials. In 

the context of wave propagation studies, Singh, 

Mistri, and Das [41] investigated the propagation 

of Love-type waves in a corrugated fiber-

reinforced layer. Their research provides valuable 

insights into the dynamic behavior of such 

composite structures and in [42] Singh et al. 

employed a Green's function approach to study 

the influence of a point source. Their use of this 

approach provides a comprehensive 

understanding of the dynamic behavior of 

piezoelectric materials subjected to SH waves. A 

few path-breaking works on thermo-mechanical 

vibrations on piezoelectricity were carried out by 

Khorshidi and Karimi [43] and Khorshidi and 

Pagoli [44]. 

Beneath the earth, there are several 

pieces of evidence found that fiber-reinforced 

media may also co-exist with piezoelectric 

materials with elevated value of initial stress. 

The characteristic features of this type of 

material are different from the integral 

materials, namely concrete and steel. Due to its 

reduced weight and high strength, fiber-

reinforced composites are used in various 

structural elevations. Inside composite 

materials, individual materials remain distinct. 

This material consists of the fiber, the matrix, 

and the interface between materials. PZT 

(piezoelectric ceramics) and PVDF (piezoelectric 

polymers), remained frequently usable in 

actuators and sensors for monitoring and 

repairing health materials. The authors have 

applied the separation of the variable method to 

analyze the dispersion relation in order to 

characterize the properties of the Love type 

waves in the aforementioned model and are 

validated with numerical results. 

Formulation of problem 

In this model, we have considered two media 

involving a piezoelectric layer and fiber-

reinforced half-space under initial stresses 1 2,P P

respectively. Fiber-reinforced half-space is rested 

beneath a piezoelectric layer consisting of 

thickness h (in meters) (where 0h z−   ). The 

geometry of the model is tailored in such a way 

that the Love wave is transmitted along the x-axis 

and the z-axis is pointing vertically downwards 

as shown in Figure 1. The polarization direction 

of piezoelectric material is assumed to be along 

the direction of the y-axis. 

The governing equations of piezoelectricity with 

prestress in the absence of body forces are given 

(Tiersten, [23]) 

( ), 1 , 0 ,,

1
,   0,   , 1,2,3.

2
ij i j k j i ii

Pu u D i j = =− =

(1) 

in which ij indicates stress tensor and iD  is the 

electric displacement,
0 is the density of the 

material, and 
1P indicates the prestress. The 

subscript ‘,’ and a superimposed ‘.’ indicate the 

usual meaning of a partial derivative in respect of 

the coordinates and derivative with respect to 

time, respectively. 

The governing relations for an anisotropic and 

linearly electro-elastic solid may be represented 

as 
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Fig. 1. Geometry of the problem 

 

where kl  and kE  are the strain tensor and 

intensity of the electric field respectively. ijklc ,

ikle  and ik  indicate the elastic, piezoelectric, and 

permittivity coefficients, respectively.  

The strain-displacement relations are given by: 

( ), , ,

1
,  

2
kl k l l k k ku u E = + = −   (3) 

in which   is the electric potential component 

and assuming the pre-stress P acting along the 

direction of the x-axis. 

Displacement components and the electrical 

potential function are assumed to be 

( ) ( )

( ) ( )

, , 0,   , , 0,  

, , ,   , ,

u x z t w x z t

v v x z t x z t 

= =

= =   
(4) 

in the case of Love wave transmitting 

horizontally and in which u, v, and w are the 

mechanical displacement components along the 

directions of the x, y, and z-axis respectively. 

Solution for the Prestressed Piezoelectric 

substrate 

On Substitution of equation (3) in equation 

(2) and in equation (1) with consideration on 

equation (4), the governing equations with 

respect to mechanical deformation and electrical 

potential turned into: 
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where
2 2 2 2 2x z    +  refers to the two-

dimensional Laplace operator and 0 refers to the 

density of the piezoelectric material 
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The substitution  
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reduces equation (5) into 
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where    
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we consider the following solution of equation 

(9) 
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( ) ( )

1 exp ,
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v v z ik x ct

z ik x ct

= −  
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(10) 

where k and c are the wavenumber and phase 

velocity respectively, ( )1v z  and ( )z  are the 

respective solutions of 
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where   
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0 44
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44
0

0

c
c


=  . 

So the solutions of equation (11) are 

( ) ( ) ( )

( )

1 1 1 2 1

3 4

cos sin

kz kz

v z C kb z C kb z

z C e C e−
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 = +   

(12) 

where 1 2 3 4, , ,C C C C  are arbitrary constants. 

Therefore the displacement components and the 

electric potential can be written as: 

( ) ( ) ( ) ( )1 1 1 2 1, , cos sin expv x z t C kb z C kb z ik x ct= + −      

   
(13) 
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(14) 

Solution of Pre-stressed fiber-reinforced half-

space 

The constitutive equation for a fiber-reinforced 

linearly elastic anisotropic medium is given 

by(Belfield et al. [36]) 

2 ( )
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, , , , 1,2,3i j k m = * 

Where
ij are stress components, 

1

2

ji
ij

j i

vv
e

x x

 
= +    

 are the strain components, 

ij indicates the Kronecker delta. 

1 2 3( , , )a a a a= refers to the preferred direction of 

reinforcement so that 
2 2 2

1 2 3 1a a a+ + = . The 

vector a may be a function of position where the 

indices assume values from 1,2,3. Here ,  and 

( )L T − represents reinforced parameters. T  

identified as the shear modulus in transverse 

shear along the preferred direction, L refers to 

the shear modulus in longitudinal shear in the 

preferred direction.  ,  remains as specific 

stress components relevant to dissimilar layers 

for the concrete part of the composite material 

and  is Lame’s constant. 

         Thus the equation of motion for the 

propagation of SH waves is represented as 
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where 
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are the 

rotational components in half space. 

Therefore equation (15) becomes 
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which becomes 
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Assuming the solution of equation (17) in the 

form of  

( )

2 2( , , ) ( ) ik x ctv x z t v z e −=
  (18)

 

where k and c indicate the wavenumber and wave 

velocity respectively. 

Solving equation (17) becomes  
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The solution of equation (19) yields the 

expression for the non-vanishing displacement 

component of half-space as
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where 
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(C is an arbitrary constant) 

 

Boundary conditions: 

Mechanical boundary conditions: 

(a) Referring to the free surface as devoid of 

stress, i.e., ( , , ) 0yz x h t − =
  

 (20)
 

(b) Stress and mechanical displacement remained 

continuous, i.e., ( ,0, ) ( ,0, )s

yz yzx t x t =  

and 1 2( ,0, ) ( ,0, )v x t v x t=
   

  (21)
 

Electrical boundary conditions: 

(a) As the free surface is free from any 

electric potential, i.e., ( ,0, ) 0x t =  

 (22) 

(b) At z= -h, electrically open and 

electrically shorted, are considered: 

For electrically open case: electrical displacement 

turns into zero, i.e., ( ), , 0zD x h t− =  (23) 

and for electrically shorted case: electric potential 

turns to be zero, i.e., ( ), , 0x h t − =
 (24) 

 

Using the equations (13) and (14) and all the 

above boundary conditions, we get 
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Dispersion relation for electrically open case 

Solving (25) to (29) we get 
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whose real part is 
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And imaginary part is
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Dispersion relation for electrically sorted case 

Solving (25)-(28) and (30) we get
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Particular cases 

Case I 

If we remove initial stresses from the 

piezoelectric layer and fiber-reinforced half space 

i.e 1 0P → and 2 0P → then the equation 

becomes 
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Case II 

For a demonstration of the frequency equation of 

Love waves in a prestressed piezoelectric layer 

over a prestressed isotropic & homogeneous half-

space, we make 2L T  = → . Then both 

equations become 
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Case III 

For derivation of the frequency relation of the 

Love waves in an isotropic, homogeneous 

substrate embedded on an inhomogeneous semi-

infinite space in the absence of prestress, and 

reducing the piezoelectric coefficient into zero, 

i.e., 15 0e → , 
*

44 44 1c c = →
, then the 

dispersion equation of (31) and (32) become in 

both cases as, 
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Case IV 

The dispersion equations of Love wave in 

prestressed isotropic, homogeneous layer over 

prestressed isotropic & homogeneous half-space 

is obtained by considering 15 0e → , 

*

44 44 1 2, L Tc c    = → = → . 

'''
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Case V 

If we neglect the prestress in Case IV i.e., by 

setting 15 0e → ,
*

44 44 1 2, L Tc c    = → = →  

and 1 20, 0P P→ → , we get the dispersion 

equation as follows: 
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Therefore, for both cases, the dispersion 

equations (31) and (32) reduce to the following: 
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The above equation is the classical form of the 

Love Equation in a stress-free piezoelectric layer 

lying over a stress-free fiber-reinforced half-

space.

 
Numerical calculations & Discussions: 

For studying the impact of prestress on the 

propagation of Love waves in a piezoelectric 

substrate embedded over fiber-reinforced half-

space, the values 
0

c

c
from equations (31) and (32) 

have been derived and graphically represented 

and illustrated. The figures represent the variation 

of non-dimensional phase velocity with respect to 

the dimensionless wave number using the 

relevant values from Table 1 and Table 2. 

 

Table 1. Values of Material coefficients of the 

piezoelectric material(PZT-4) (Nie et al. [24]) 

 

 

 

 

 

 

 

Table 2. The following data has been taken into 

consideration for the fiber-reinforced half space 

under initial stress 2P (Markham [25]): 

10 2( 10 / )L N m   
10 2( 10 / )T N m   

3

2 ( / )kg m  

7.07 3.50 1600 

For the numerical computation, we have 

considered the thickness (h) of the piezoelectric 

layer as 1.0, 1.25, 1.5, and 1.75 respectively. The 

relevant curves in the above figure 2 reflect that 

gradual elevation of the thickness of the 

piezoelectric layer tends to increase the phase 

velocity of the transmitting Love wave gradually 

which means that the thickness of the upper layer 

has a significant effect on Love wave phase 

velocity. 

 

9 2

44 ( 10 / )c N m  
2

15 ( / )e C m  
9 2 2

11( 10 / )C Nm −  
3( / )kg m  

25.6 12.7 6.45 7500 



 

 

Fig. 2. Variation of Dimensionless phase velocity 

against dimensionless wavenumber for different 

values of depth 

 

 

Fig. 3. Variation of Dimensionless phase velocity 

w.r.t dimensionless wavenumber with different 

values of 1a and 3a where 2 0a = . From this 

figure, we can say that with the increased value 

of  

1a and decrease the value of 3a , phase velocity 

also increases. 

 

Fig. 4. Variation of Dimensionless phase velocity 

w.r.t dimensionless wavenumber with different 

values of 
L and where both the prestresses P1 

and P2→ 0. 

 

 

Fig. 5. Variation of Dimensionless phase velocity 

w.r.t dimensionless wavenumber with different 

values of 
L and where both 

15 44 10e and c → → . 

 

From this figure, we can say that with the 

increase value of 
L , phase velocity also 

increases. 

 

The curves in the above figure 3 show that the 

increasing values of the reinforcement parameter

1a  and accordingly decreasing values of the 

reinforcement parameter 3a , resulted in an 

increase in the phase velocity of the Love waves. 

It is clear from this figure that an increase in the 

reinforcement parameter 1a  bounded with the 

expression 
2 2

1 3 1a a+ = favors the phase velocity 

of Love waves by inflating it. 

Conclusions: 

Due to intrinsic lightweight properties and having 

high material strength and stiffness, fiber-

reinforced composites can be used in utilitarian 

aspects like industries relevant to construction, 

aviation, and medical instruments. The materials 

can significantly reduce damages in adjoining 
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surfaces even due to severe vibrational impacts. 

In spite of having a wide range of applications in 

various engineering applications, piezoelectric 

materials carry drawbacks like reduced levels of 

piezoelectric constants, shape control, and high 

acoustic impedance which may result in lowering 

the control on derived distributed actuators. 

Keeping view of that to improve the efficiency 

levels, the proposed model of fiber-reinforced 

piezoelectric composite materials with the 

presence of prestress has been studied for both 

electrically open and shorted cases and thereby 

the dispersion relations have been established 

with the aid of variable-separable method by 

which we can easily eliminate the first-order 

differential terms for further simplification. From 

the dispersion relation and subsequent graphs, the 

outcomes can be briefed as: 

(i) The depth of the upper layer carries a 

significant effect on the phase velocity of the 

Love waves for the model 

(ii) the increasing values of reinforcement 

parameters with the given restrictive condition 

show that phase velocity increases for any fixed 

wavenumber for increasing values of the 

reinforcement parameter a1. 

(iii) the increasing rigidity of the half-space and 

the piezoelectric constants often impedes the 

transmission of Love waves to a certain extent 

within a specified range of wave numbers.  

 In view of the consequences drawn from 

the study, the results are useful for designing 

high-mode Love mode sensors and can also be 

used for developing medical imaging instruments 

and underwater transducers. Precisely, the 

present study is likely to prove its efficiency in 

modeling the damages caused by the artificial 

explosion of the layered piezoelectric reinforced 

composite structures. Since the properties of 

SAW devices specifically depend on phase delay, 

therefore, from a utilitarian aspect the outcomes 

can be employed in the designing of Love wave 

sensors. 

Data Availability Statement 

No specific data information is available 
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