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 The article incisively analyzes the impact of piezoelectricity on Love wave transmission in an 

inhomogeneous bi-layered structure consisting of smoothly embedded thin piezoelectric 

material bonded to a semi-infinite fiber-reinforced medium. By applying the variable-separable 

method, a general form of dispersion equations, analyzing the Love waves’ characteristics in 

electrically open and shorted cases of the piezoelectric material has been derived. The crux of 

the study lies in the fact that the presence of the prestresses in the upper layer and lower half-

space along with elastic, piezoelectric, and permittivity coefficients lead the derived frequency 

relation to merge with the classical form of equations of the Love waves. The procured 

dispersion relation substantiates that the depth of the upper layer prestresses, and 

piezoelectricity coefficients play a guiding role in the transmission of Love waves. The 

numerical discussions and findings carry wider applications and may imply guidance of 

additive manufacturing of varied composite multi-materials for pre-stressed and 

microstructural configurations with partial and global dispersion properties 
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1. Introduction 

The advent of piezoelectric materials which 
tend to hold unique characteristics to generate 
electric charge potentials subject to any form of 
mechanical stresses comprising compression, 
bending, and stretching leads to several 
engineering applications. Piezoelectric materials 
carry several utilitarian aspects in devices like 
sensors, actuators, filters, etc. To gain more 
insights into the localization properties of Love 
waves at piezoelectric surfaces, several 

researchers have worked on enhancing the 
sensitivity of SAW devices. Sensors remain highly 
sensitive in lieu of acoustic energy accumulation 
within specified wavelengths. In present times, 
the problems associated with the reflection and 
refraction phenomena of elastic waves have 
attracted paramount interest in the field of waves 
and acoustics [1-6]. Moreover, the plane wave 
transmission in anisotropic media traces some 
slightly different characteristics from those of 
inisotropic media. Li and Jin [7]) expressed how 
the SH- waves propagate in piezoelectric 
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materials not smoothly bonded to a metal or 
elastic substrate. Chen et al. [8] illustrated the 
electromechanical characteristics of a 
piezoelectric actuator projected to a graded 
substrate including an adhesive material is 
studied with graphical representations. Chen et 
al. [9] investigated the interfacial imperfections 
of thin piezoelectric film clamped to a graded 
substrate. Chen et al. [10] developed the relations 
for interfacial behavior of a piezoelectric actuator 
lying over to a homogeneous half-space. Cooper 
and Reiss [11] described the incidence of 
reflection of harmonic plane waves on the free 
surface of a linearly viscoelastic semi-infinite 
space. The incidence of reflection and refraction 
of elastic waves on inhomogeneous earth media 
was extensively described by Nayfeh [12]. Du et 
al. [13] introduced how Love waves behave while 
propagating through functionally graded 
piezoelectric materials. Du et al. [14], in an 
analytical investigation, have shown the 
influence of prestress in piezoelectric layered 
structures underlying viscous liquid. Love waves 
involving a thin piezoelectric layer clamped 
smoothly to unbounded elastic subs. The 
propagation characteristics of Love-type waves 
in semi-infinite FGPM with quadratic variation 
were addressed by Eskandari and Shodja [15]. 
Liu and He [16] carried out extensive work to 
derive a general frequency equation for Love 
waves transmitting in a layered structure over a 
piezoelectric half-space. In addition to these 
studies, some unparalleled works have been 
nurtured by many authors discussing the 
problems relevant to piezoelectric materials and 
fiber-reinforced materials. The expressions for 
reflection coefficients of the reflected waves in 
lieu of P and SV waves on an insulated and 
isothermal-free surface were demonstrated by 
Othman and Song [17]. Tahir et al.[18,19] 
established the frequency relations for wave 
propagation for ceramic-metal functionally 
graded sandwich plates with different porosity 
distributions and functionally graded sandwich 
plates via a simple quasi-3D HSDT. Al-Furjan et al. 
[20] studied the fundamental properties of waves 
in a sandwiched structure with a soft core and 
multi-hybrid nano-composite (MHC) face sheets 
under higher-order shear deformable theory. 
Due to varied applications in smart devices, the 
reflection and transmission phenomena on 
piezoelectric and other complex materials are 
represented by several scientists and engineers 
across the globe. The incidence of reflection and 
transmission of plane waves at the interface of 
the piezoelectric and piezomagnetic substrates 
was analyzed by Pang et al. [21]. Moreover, Yuan 
and Zhu [22] studied the reflection and refraction 
of plane waves at an interface of two anisotropic 
piezoelectric substrates. 

In the foundational work on piezoelectric 
plate vibrations, Tiersten [23] comprehensively 
explored linear vibrations in piezoelectric plates. 
This seminal publication by Tiersten in 'Linear 
Piezoelectric Plate Vibrations' from Plenum Press 
in New York, NY, significantly contributes to the 
understanding of piezoelectric plate dynamics. 

In the exploration of guided waves, Nie, An, 
and Liu [24] extensively studied the 
characteristics of SH-guided waves in layered 
piezoelectric/piezomagnetic plates. In the 
context of characterizing fiber composites, 
Markham [25] made significant contributions to 
the field through the measurement of elastic 
constants using ultrasonics. This pivotal work by 
Markham on 'Measurement of the Elastic 
Constants of Fiber Composites by Ultrasonics' 
provides a crucial foundation for understanding 
the mechanical properties of such materials. 

A comprehensive analysis of Free vibration, 
wave propagation, and tension analyses of a 
sandwich micro/nanorod subjected to electric 
potential using strain gradient theory was carried 
out by Arefi, M. and Zenkour, A.M., [26]. Arefi and 
Zenkour [27] conducted an insightful analysis of 
the wave propagation behavior of a functionally 
graded magneto-electro-elastic nanobeam 
resting on a Visco-Pasternak foundation. Their 
study contributes significantly to understanding 
the intricate dynamics of such nanostructures. In 
the study of microscale effects on structural 
behavior, Arefi and Zenkour [28] extensively 
investigated the influence of micro-length-scale 
parameters and inhomogeneities on the bending, 
free vibration, and wave propagation analyses of 
a functionally graded Timoshenko’s sandwich 
piezoelectric microbeam. Their research 
significantly contributes to understanding the 
nuanced mechanical responses of such 
microstructures. Further Arefi, M. [29] worked 
on the Surface effect and non-local elasticity in 
wave propagation of functionally graded 
piezoelectric nano-rod excited to an applied 
voltage which has extensive implications on Love 
waves propagating in piezoelectric layer 
embedded over a fiber-reinforced substrate. In 
recent years, there has been a growing interest in 
the vibrational behavior of nanostructures, 
particularly those with piezoelectric properties. 
Arefi [30] conducted a comprehensive nonlocal 
free vibration analysis of a doubly curved 
piezoelectric nano-shell, shedding light on the 
intricacies of the dynamic response in such 
structures. This work serves as a foundation for 
understanding the unique characteristics of 
piezoelectric nanoshells, providing valuable 
insights that motivate our exploration into Love 
waves propagating in piezoelectric layer 
embedded over a fiber-reinforced substrate. As 
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the field of structural analysis continually 
evolves, recent studies have explored advanced 
theories for a more accurate understanding of the 
mechanical behavior of materials. Arefi et al. [31] 
made notable contributions by applying the 
sinusoidal shear deformation theory and 
introducing the concept of a physical neutral 
surface in the analysis of functionally graded 
piezoelectric plates. Their work provides a 
sophisticated framework for investigating the 
intricate mechanical responses of such composite 
structures. In the realm of structural dynamics, 
the free vibration analysis of composite 
structures has garnered significant attention, 
particularly in the exploration of advanced 
materials. Arefi, Mohammad-Rezaei Bidgoli, and 
Zenkour [32] made a significant contribution by 
conducting a meticulous study on the free 
vibration analysis of a sandwich nano-plate. 
Their work, which includes a consideration of a 
functionally graded (FG) core and piezoelectric 
face sheets while accounting for the neutral 
surface, offers valuable insights into the dynamic 
behavior of such complex structures. 

In the exploration of wave propagation in 
nanomaterials, Arefi and Zenkour [33] made a 
significant contribution by employing coupled 
stress components and surface elasticity in the 
nonlocal solution of a functionally graded 
piezoelectric Love nano-rod model. This 
insightful work addresses the complexities 
associated with wave propagation in nanorods, 
laying the groundwork for a deeper 
understanding of the mechanical behavior in 
such intricate systems. In the realm of elasticity, 
Behdad and Arefi [34] proposed a mixed two-
phase stress/strain-driven elasticity, presenting 
applications in static bending, vibration analysis, 
and wave propagation In the dynamic analysis of 
nanoscale structures, Behdad and Arefi [35] also 
had introduced a novel mixture model of 
elasticity, offering insights into buckling analysis, 
vibration behavior, and wave propagation in such 
structures. This pioneering work addresses 
fundamental aspects of nanoscale dynamics, 
providing a valuable framework for 
understanding the mechanical responses of these 
systems. In the area of plate reinforcement, 
Belfield, Rogers, and Spencer [36] explored stress 
distributions in elastic plates reinforced by fibers 
arranged in concentric circles. In the exploration 
of wave interactions at material interfaces, Das et 
al. [37] investigated the reflection and refraction 
of plane waves specifically at the loosely bonded 
common interface of piezoelectric fiber-
reinforced and fiber-reinforced composite media. 
Their study provides valuable insights into the 
complex phenomena occurring at these 
interfaces. 

In the investigation of size-dependent 
phenomena in micro/nanostructures, Dehsaraji, 
Arefi, and Loghman [38] conducted a thorough 
free vibration analysis of functionally graded 
piezoelectric micro/nanoshells. Their study, 
based on the modified couple stress theory and 
considering thickness stretching effects, 
contributes significantly to understanding the 
intricacies of size-dependent behaviors in these 
structures. Ezzin et al. [39] presented a 
comprehensive study on the propagation of 
guided waves in functionally graded magneto-
electro elastic composites. Their work 
contributes significantly to the understanding of 
the complex behavior of guided waves in such 
composite materials. 

In the investigation of SH-wave propagation 
in porous piezoelectric composites, Rakshit et al. 
[40] explored the effect of interfacial 
imperfections. Their study contributes valuable 
insights into the complex interplay between 
interfacial imperfections and wave propagation 
characteristics in these composite materials. In 
the context of wave propagation studies, Singh, 
Mistri, and Das [41] investigated the propagation 
of Love-type waves in a corrugated fiber-
reinforced layer. Their research provides 
valuable insights into the dynamic behavior of 
such composite structures and in [42] Singh et al. 
employed a Green's function approach to study 
the influence of a point source. Their use of this 
approach provides a comprehensive 
understanding of the dynamic behavior of 
piezoelectric materials subjected to SH waves. A 
few path-breaking works on thermo-mechanical 
vibrations on piezoelectricity were carried out by 
Khorshidi and Karimi [43] and Khorshidi and 
Pagoli [44]. 

Beneath the earth, there are several pieces of 
evidence found that fiber-reinforced media may 
also co-exist with piezoelectric materials with 
elevated value of initial stress. The characteristic 
features of this type of material are different from 
the integral materials, namely concrete and steel. 
Due to its reduced weight and high strength, 
fiber-reinforced composites are used in various 
structural elevations. Inside composite materials, 
individual materials remain distinct. This 
material consists of the fiber, the matrix, and the 
interface between materials. PZT (piezoelectric 
ceramics) and PVDF (piezoelectric polymers), 
remained frequently usable in actuators and 
sensors for monitoring and repairing health 
materials. The authors have applied the 
separation of the variable method to analyze the 
dispersion relation in order to characterize the 
properties of the Love type waves in the 
aforementioned model and are validated with 
numerical results. 
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2. Formulation of Problem 

In this model, we have considered two media 
involving a piezoelectric layer and fiber-

reinforced half-space under initial stresses 1 2,P P  

respectively. Fiber-reinforced half-space is 
rested beneath a piezoelectric layer consisting of 

thickness h (in meters) (where 0−  h z ). The 

geometry of the model is tailored in such a way 
that the Love wave is transmitted along the x-axis 
and the z-axis is pointing vertically downwards 
as shown in Figure 1. The polarization direction 
of piezoelectric material is assumed to be along 
the direction of the y-axis. 

 
Fig. 1. Geometry of the problem 

The governing equations of piezoelectricity 
with prestress in the absence of body forces are 
given (Tiersten, [23]) 

( ), 1 , 0 ,,

1
,   0,   , 1,2,3.

2
 − = = =ij i j k j i ii

Pu u D i j  (1) 

in which  ij indicates stress tensor and iD  is the 

electric displacement,
0  is the density of the 

material, and 
1P  indicates the prestress. The 

subscript ‘,’ and a superimposed ‘.’ indicate the 
usual meaning of a partial derivative in respect of 
the coordinates and derivative with respect to 
time, respectively. 

The governing relations for an anisotropic 
and linearly electro-elastic solid may be 
represented as 

,     = − = +ij ijkl kl kij k i ikl kl ik kc e E D e E  (2) 

where  kl  and kE  are the strain tensor and 

intensity of the electric field respectively. ijklc , ikle  

and  ik  indicate the elastic, piezoelectric, and 

permittivity coefficients, respectively.  

The strain-displacement relations are given 
by: 

( ), ,

1
,  

2
 = + = −kl k l l k k ku u E  (3) 

in which   is the electric potential component 

and assuming the pre-stress P acting along the 
direction of the x-axis. 

Displacement components and the electrical 
potential function are assumed to be 

( ) ( )

( ) ( )

, , 0,   , , 0,  

, , ,   , , 

= =

= =

u x z t w x z t

v v x z t x z t
 (4) 

in the case of Love wave transmitting 
horizontally and in which u, v, and w are the 
mechanical displacement components along the 
directions of the x, y, and z-axis respectively. 

3. Solution for the Prestressed 
Piezoelectric Substrate 

On Substitution of equation (3) in equation 
(2) and in equation (1) with consideration on 
equation (4), the governing equations with 
respect to mechanical deformation and electrical 
potential turned into: 

2 2
2 2 1

44 15 02 2

2 2

15 11

2
 

 

 
 +  − = 

  
 =  

P v v
c v e

x t

e v

 (5) 

where 
2 2 2 2 2    +  x z  refers to the two-

dimensional Laplace operator and 0  refers to 

the density of the piezoelectric material 

44 15

44 15

,







 
= +

 

 
= +

 

yz

xy

v
c e

z z

v
c e

x x

 (6) 

15 11

15 11

,







 
= −

 

 
= −

 

z

x

v
D e

z z

v
D e

x x

 (7) 

The substitution  

15

11

 


= −
e

v  (8) 

reduces equation (5) into 

2 2
* 2 1

44 02 2

2

15

2

0





 
 − = 

  
 = 

P v v
c v

x t

e

 (9) 

where 

2
* 15
44 44

11

e
c c


= +   
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We consider the following solution of 
equation (9): 

( ) ( )

( ) ( )

1 exp ,

exp

= −  

=  −  

v v z ik x ct

z ik x ct
 (10) 

where k and c are the wavenumber and phase 

velocity respectively, ( )1v z  and ( ) z  are the 

respective solutions of 

( )

( )

2

2 21

1 12

2
2

2

0

0


+ = 





−  = 


d v
k b v z

dz

d
k z

dz

 (11) 

where 

2
2 1

1 2 *

0 44

1
2

 
= + − 
 

Pc
b

c c
 and 

*

44

0

0
=

c
c . 

So the solutions of equation (11) are 

( ) ( ) ( )

( )

1 1 1 2 1

3 4

cos sin

−

= + 



 = + 
kz kz

v z C kb z C kb z

z C e C e
 (12) 

where 1 2 3 4, , ,C C C C  are arbitrary constants. 

Therefore the displacement components and 
the electric potential can be written as: 

( ) ( ) ( )

( )

1 1 1 2 1, , cos sin

exp

= +  

−  

v x z t C kb z C kb z

ik x ct
 (13) 

( )

( ) ( ) 

( )

15

1 1 2 1 3 4

11

, ,

cos sin

.exp





−

=

 
+ + + 

 

−  

kz kz

x z t

e
C kb z C kb z C e C e

ik x ct

 
(14) 

4. Solution of Pre-Stressed Fiber-
Reinforced Half-Space 

The constitutive equation for a fiber-
reinforced linearly elastic anisotropic medium is 
given by(Belfield et al. [36]) 

,

2 ( )

2( )( ) ( )

    

  

 = + + + +

− + +

kk ij T ij k m km ij i j kkij

L T k i kj k j ki k m km i j

e e a a e a a e

a a e a a e a a e a a

 

         , , , 1,2,3=i j k m . 

where  ij  are stress components, 

1

2

 
= + 

   

ji

ij

j i

vv
e

x x
 are the strain components, 

 ij  indicates the Kronecker delta.  

1 2 3( , , )=a a a a  refers to the preferred direction 

of reinforcement so that 
2 2 2

1 2 3 1+ + =a a a . The 

vector a  may be a function of position where the 

indices assume values from 1,2,3. Here  ,   and 

( ) −L T  represents reinforced parameters. T  

identified as the shear modulus in transverse 

shear along the preferred direction, L  refers to 

the shear modulus in longitudinal shear in the 
preferred direction.  ,   remains as specific 

stress components relevant to dissimilar layers 
for the concrete part of the composite material 
and   is Lame’s constant. 

Thus the equation of motion for the 
propagation of SH waves is represented as 

2

2321 2 21 2

2 22

 


  
+ − =

   

P v

x z x t
 (15) 

where 

22 2 2
12 21 1 1 3

22 2 2
23 32 1 3 3

( )

( )

   

   

     
= = + − +  

    

     
= = + − +  

    

T L T

T L T

v v v
a a a

x x z

v v v
a a a

z x z

 

and 2 1 2

21

1 1

2 2


   
= − = 

   

v v v

x y x
 are the rotational 

components in half space. 

Therefore equation (15) becomes 

2 2 2

22 2 2

1 1 32 2

2 2 2

22 2 2

1 3 32 2

2 2

2 2 2

22 2

( )( )

( )( )

4

  

  



  
+ − +

  

  
+ + − +

  

 
− =

 

T L T

T L T

v v v
a a a

x zx x

v v v
a a a

z xz z

P v v

x t

 (16) 

 
which becomes 

2 2 2 2

2 2 2 2

12 2 2 2

2

1
( )

   
+ + + =

   

v v v v
P Q R

x zz x c t
 (17) 

where 

2

31 ( 1)



= + −L

T

P a , 
2

11 ( 1)



= + −L

T

Q a ,  

1 32 ( 1)



= −L

T

R a a , 2

1
4




= −
T

P
, 

2

2

2




= Tc  

Assuming the solution of equation (17) in the 
form of  

( )

2 2( , , ) ( ) −= ik x ctv x z t v z e  (18) 

where k and c indicate the wavenumber and 
wave velocity respectively. 

Solving equation (17) becomes  
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( )
2 2 2

22 2

1 22 2

2

1
( ) 0

  
+ − + − =  
   

d v dvikR c k
Q k v z

P dz Pdz c
 

 (19) 

The solution of equation (19) yields the 
expression for the non-vanishing displacement 

component of half-space as 
* ( )

2 ( ) − −= P z ik x ctv z Ce e  

where 

2 2
* 1

2 2

22 4

+ 
= + − − 

 

QikR R c
P k

P P P c P
 

 (C is an arbitrary constant) 

5. Boundary Conditions 

5.1. Mechanical Boundary Conditions: 

(a) Referring to the free surface as devoid of 
stress, i.e., 

( , , ) 0 − =yz x h t  (20) 

(b) Stress and mechanical displacement 
remained continuous, i.e., 

( ,0, ) ( ,0, ) = s

yz yzx t x t , 

1 2( ,0, ) ( ,0, )=v x t v x t  
(21) 

5.2. Electrical Boundary Conditions: 

(a) As the free surface is free from any electric 
potential, i.e., 

( ,0, ) 0 =x t  (22) 

(b) At z= -h, electrically open and electrically 
shorted, are considered: 

For electrically open case: electrical 
displacement turns into zero, i.e., 

 ( ), , 0− =zD x h t  (23) 

and 

For electrically shorted case: electric potential 
turns to be zero, i.e., 

 ( ), , 0 − =x h t  (24) 

Using the equations (13) and (14) and all the 
above boundary conditions, we get 

* *

1 1 44 1 2 1 44 1

3 15 4 15

sin( ) cos( )

0−

+ +

− =kh kh

C b c kb h C b c kb h

C e e C e e
 (25) 

( ) 

*

2 44 1 3 15 4 15

2

1 3 3( ) * * 0  

+ − −

− − − =L T T

C c b k C ke C ke

C a a ik a p p
 (26) 

1 =C C  (27) 

15

1 3 4

11

0


+ + =
e

C C C  (28) 

3 4 0− − =kh khC e C e  (29) 

15 15

1 1 2 1

11 11

3 4

cos( ) sin( )

0

 

−

−

+ + =kh kh

e e
C kb h C kb h

C e C e

 (30) 

where 
2

* 15

44 44

11
= +

e
c c  

5.2.1. Dispersion Relation for Electrically Open 
Case 

Solving (25) to (29) we get 

( )  

2

* 15

44 1 1

11

2

1 3 3

tan( ) tanh( )

( ) ( ) .
2



    

+

+ − − − +L T L T T

e
c b k kb h k kh

ikR
a a ik a

P

 

 
2 2

2 1

3 2 2

2

( ) 0
4


  

 + 
 + − + − − =    

L T T

Q R c
a k

P P C P
 

 (31) 

whose real part is 

 

2

* 15

44 1 1

11

2 2
2 1

3 2 2

2

tan( ) tanh( )

( )
4




  

+ +

 + 
 − + − −    

L T T

e
c b k kb h k kh

Q R c
a k

P P C P

 

And imaginary part is 

( )  2

1 3 3( ) ( ) .
2

    − − − +L T L T T

kR
a a k a

P
 

5.2.2. Dispersion Relation for Electrically Sorted 
Case 

Solving (25)-(28) and (30) we get 

0+ + + =A B C D  (32) 

 2

1 3 3 2 2

2

* 15

1 44 1 1

11

( )( )

. ( ) cos( ) sin( )( )

  



− −

= − − − +

 
− − + 

 

L T T

kh kh kh kh

A a a ik a P P

e
e e b c kb h kb h e e
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2

* 2 15

1 44 1

11

2 * 2

1 44 1

2 sin ( )

sin( )( )


−

=

+ −kh kh

e
B b c kb h k

b c k kb h e e

 

2

*15

1 44 1

11

2 4

*15 15

1 44 12

11 11

cos( )( )

2
sin( )( )



 

−

−

= − +

+ + −

kh kh

kh kh

e
C kb c kb h e e

e e
kb c k kb h e e

 

2

2 *15

1 1 44

11

2

*15

1 44 1

11

2
cos ( )

cos( ) ( )




−

=

− +kh kh

e
D k kb h b c

e
kb h c kb e e

 

5.2.3. Particular Cases 

• Case I 

If we remove initial stresses from the 
piezoelectric layer and fiber-reinforced half 

space i.e., 1 0→P  and 2 0→P  then the equation 

becomes 

2

* ' 15

11 44 11 25

11

tan( ) tanh 0


− + =
e

b c k kb h A k kh  (33) 

where 
2

2

11 2

0

1= −
c

b
c

 

( )( )' 2 * *

25 1 3 3 1 1   = − − − −
 L T TA a a ik a P P  

2 2
*

1 2 2

22 4
= + − −

ikR Q R c
P k

P P P C P
 

and 

1 1 1 1 0+ + + =A B C D  (34) 

 1 1 3

2

* 15

11 44 11 11

11

( )( ) .

( ) cos( ) sin( )( )

 



− −

= − −

 
− − + 

 

L T

kh kh kh kh

A a a ik

e
e e b c kb h kb h e e

 

2

* 2 15

1 11 44 11

11

2 * 2

11 44 11

2 sin ( )

sin( )( )


−

= +

−kh kh

e
B b c kb h k

b c k kb h e e

 

2

*15

1 11 44 11

11

2 4

*15 15

11 44 112

11 11

cos( )( )

2
sin( )( )



 

−

−

= − + +

+ −

kh kh

kh kh

e
C kb c kb h e e

e e
kb c k kb h e e

 

2

2 *15

1 11 11 44

11

2

*15

11 44 11

11

2
cos ( )

cos( ) ( )




−

= −

+kh kh

e
D k kb h b c

e
kb h c kb e e

 

• Case II 

For a demonstration of the frequency 
equation of Love waves in a prestressed 
piezoelectric layer over a prestressed isotropic & 

homogeneous half-space, we make 2  = →L T . 

Then both equations become 

2

* '' 15

12 44 12 25

11

tan( ) tanh 0


− + =
e

b c k kb h A k kh  (35) 

where    
2

2 1

11 2 *

0 44

1
2

= + −
Pc

b
c c

,    * *

25 2 2=A P  

2
*

2 11 2*

21

(1 )= + −
c

P k
C P

 

and 

2 2 0+ + + =A B C D  (36) 

*

2 2 2 12 44 12

2

15

12

11

[ cos( )( )

sin( )( )





−

−

= −

− +

kh kh

kh kh

A P b c kb h e e

e
kb h e e

 

2

* 2 15

2 12 44 12

11

2 * 2

12 44 12

2 sin ( )

sin( )( )


−

=

+ −kh kh

e
B b c kb h k

b c k kb h e e

 

2

*15

2 12 44 12

11

2 4

*15 15

12 44 122

11 11

cos( )( )

2
sin( )( )



 

−

−

= − +

+ + −

kh kh

kh kh

e
C kb C kb h e e

e e
kb C k kb h e e

 

2

2 *15

2 12 11 44

11

2

*15

12 44 12

11

2
cos ( )

cos( ) ( )





−

=

− +kh kh

e
D k kb h b C

e
kb h C kb e e

 

• Case III 

For derivation of the frequency relation of the 
Love waves in an isotropic, homogeneous 
substrate embedded on an inhomogeneous semi-
infinite space in the absence of prestress, and 
reducing the piezoelectric coefficient into zero, 

i.e., 15 0→e , 
*

44 44 1= →c c , then the dispersion 

equation of (31) and (32) become in both cases 
as, 

13 1 13 25tan( ) 0 − =b k kb h A  (37) 

where 
2

2 1

13 '2

10

1
2

= + −
Pc

b
c

 

and 

3 3 0+ =A B  (38) 
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 

 

2

3 1 3 3 2

13 1 13

( )( )

. ( ) cos( )

 

−

= − − −

−

L T

kh kh

A a a ik a P

e e b kb h
 

2 2

3 13 1 13sin( )( ) −= −kh khB b k kb h e e  

3 0=C  

3 0=D  

• Case IV 

The dispersion equations of Love wave in 
prestressed isotropic, homogeneous layer over 
prestressed isotropic & homogeneous half-space 

is obtained by considering 15 0→e , 
*

44 44 1 2,   = → = →L Tc c . 

'''

14 1 14 25tan( ) 0 − =b k kb h A  (39) 

where 
2

2 1

14 ''2

10

1,
2

= + −
Pc

b
c

  

             '' 2 ''' *1

0 0 2 25 2 3

0 2

, ,
 


 

= = = =Tc c c A P  

and 

4 4 0+ =A B  (40) 

4 2 2 14 1 14[ cos( )( )  −= −kh khA P b kb h e e  

2 2

4 14 1 14sin( )( ) −= −kh khB b k kb h e e  

• Case V 

If we neglect the prestress in Case IV i.e., by 

setting 15 0→e ,
*

44 44 1 2,   = → = →L Tc c  

and 1 20, 0→ →P P , we get the dispersion 

equation as follows: 

15 1 15 25tan( ) 0 − =ivb k kb h A  (41) 

where 
2

2 '' 21

15 0 0 2''' 2

0 20

*

25 2 4

1, ,
 

 



= − = = =

=

T

iv

c
b c c c

c

A P

 

and 

5

2 2

5 15 1 15

0

sin( )( ) −

=

= −kh kh

B

B b k kb h e e
 (42) 

Therefore, for both cases, the dispersion 
equations (31) and (32) reduce to the following: 

2

22
22

2 2
00

2

2

1

tan 1

1





−
 
 − =
 
  −

c

Cc
kh

c c

C

 

The above equation is the classical form of the 
Love Equation in a stress-free piezoelectric layer 
lying over a stress-free fiber-reinforced half-
space. 

6. Numerical Calculations & 
Discussions 

For studying the impact of prestress on the 
propagation of Love waves in a piezoelectric 
substrate embedded over fiber-reinforced half-

space, the values 
0

c

c
 from equations (31) and 

(32) have been derived and graphically 
represented and illustrated. The figures 
represent the variation of non-dimensional phase 
velocity with respect to the dimensionless wave 
number using the relevant values from Table 1 
and Table 2. 

Table 1. Values of Material coefficients of the piezoelectric 
material (PZT-4) (Nie et al. [24]) 

9 2

44 ( 10 / )c N m  
2

15( / )e C m  
9 2 2

11( 10 / ) − C Nm  3( / ) kg m  

25.6 12.7 6.45 7500 

Table 2. The following data has been taken into 
consideration for the fiber-reinforced half space under  

initial stress 2P  (Markham [25]): 

10 2( 10 / ) L N m  
10 2( 10 / ) T N m  

3

2 ( / ) kg m  

7.07 3.50 1600 

For the numerical computation, we have 
considered the thickness (h) of the piezoelectric 
layer as 1.0, 1.25, 1.5, and 1.75 respectively. The 
relevant curves in the above figure 2 reflect that 
gradual elevation of the thickness of the 
piezoelectric layer tends to increase the phase 
velocity of the transmitting Love wave gradually 
which means that the thickness of the upper layer 
has a significant effect on Love wave phase 
velocity. 

 
Fig. 2. Variation of Dimensionless phase velocity 

 against dimensionless wavenumber for 
 different values of depth 
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Fig. 3. Variation of Dimensionless phase velocity w.r.t 

dimensionless wavenumber with different 

 values of 1a  and 3a  where 2 0=a  

From this figure, we can say that with the 

increased value of 1a  and decrease the value of 

3 ,a  phase velocity also increases. 

 
Fig. 4. Variation of Dimensionless phase velocity w.r.t 

dimensionless wavenumber with different values of L
 and 

where both the prestresses P1 and P2 → 0 

 
Fig. 5. Variation of Dimensionless phase velocity w.r.t 

dimensionless wavenumber with different values of L
 and 

where both 15 0→e  and 
44 1→c  

From this figure, we can say that with the 
increase value of L

, phase velocity also 

increases. 
The curves in the above figure 3 show that the 

increasing values of the reinforcement parameter

1a  and accordingly decreasing values of the 

reinforcement parameter 3a , resulted in an 

increase in the phase velocity of the Love waves. 
It is clear from this figure that an increase in the 

reinforcement parameter 1a  bounded with the 

expression 2 2

1 3 1+ =a a  favors the phase velocity 

of Love waves by inflating it. 

7. Conclusions 

Due to intrinsic lightweight properties and 
having high material strength and stiffness, fiber-
reinforced composites can be used in utilitarian 
aspects like industries relevant to construction, 
aviation, and medical instruments. The materials 
can significantly reduce damages in adjoining 
surfaces even due to severe vibrational impacts. 
In spite of having a wide range of applications in 
various engineering applications, piezoelectric 
materials carry drawbacks like reduced levels of 
piezoelectric constants, shape control, and high 
acoustic impedance which may result in lowering 
the control on derived distributed actuators. 
Keeping view of that to improve the efficiency 
levels, the proposed model of fiber-reinforced 
piezoelectric composite materials with the 
presence of prestress has been studied for both 
electrically open and shorted cases and thereby 
the dispersion relations have been established 
with the aid of variable-separable method by 
which we can easily eliminate the first-order 
differential terms for further simplification. From 
the dispersion relation and subsequent graphs, 
the outcomes can be briefed as: 

(i) The depth of the upper layer carries a 
significant effect on the phase velocity of the 
Love waves for the model 

(ii) The increasing values of reinforcement 
parameters with the given restrictive 
condition show that phase velocity increases 
for any fixed wavenumber for increasing 
values of the reinforcement parameter a1. 

(iii) The increasing rigidity of the half-space and 
the piezoelectric constants often impedes 
the transmission of Love waves to a certain 
extent within a specified range of wave 
numbers.  

In view of the consequences drawn from the 
study, the results are useful for designing high-
mode Love mode sensors and can also be used for 
developing medical imaging instruments and 
underwater transducers. Precisely, the present 
study is likely to prove its efficiency in modeling 
the damages caused by the artificial explosion of 
the layered piezoelectric reinforced composite 
structures. Since the properties of SAW devices 
specifically depend on phase delay, therefore, 
from a utilitarian aspect the outcomes can be 
employed in the designing of Love wave sensors. 
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