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 In this paper, a coupled displacement field (CDF) method was proposed to examine the 

free vibration behavior of a functionally graded (FG) rectangular plate with simply 

supported (SSSS) and clamped (CCCC) boundary conditions. The composition of the 

functionally graded rectangular plate is ceramic on the top and metal on the bottom. 

According to the power-law exponent form, the rectangular plate material properties vary 

continuously in the thickness direction. The trial functions signifying the displacement 

constituents of the cross-sections of the plate are stated in simple algebraic polynomial 

forms. The lateral displacement field is derived in terms of the total rotations with the help 

of coupling equations. By utilizing the energy formulation, the undetermined coefficients 

are obtained. The frequency parameters with various aspect ratios, thickness ratios, and 

power-law for all edges are simply supported and clamped boundary conditions are 

derived. To validate the numerical results, a comparison of frequency parameters is done 

with other literature. 
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1. Introduction 

Several engineering disciplines like 
automobile, aerospace, mechanical, and nuclear 
fields use complex structures made of structural 
members like plates and beams. Plates can be 
thick or thin, depending on the purpose. When 
these plates are subjected to internal or external 
force, they may vibrate with large amplitudes. 
The design of a structural member using a 
rectangular plate must consider the free 
vibration behavior under various environmental 
conditions. A functionally graded plate 
composition can be a metal, ceramic, or polymer. 

The properties of these materials continuously 
vary in the direction of thickness from one 
surface to another. The FG plate behavior will be 
analyzed under different boundaries to reduce 
vibrations. The fundamental frequency 
parameters of the plate are to be analyzed to 
prevent any damage caused by vibrations. 

The first-order shear deformation theory 
(FSDT) is based on the displacement field, which 
uses shear correction factors to set the 
differences between the actual transverse shear 
stress distribution and those evaluated by using 
the FSDT kinematic relations. To find the 
frequencies of the FG rectangular plates, FSDT 
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was used to analyze and derive the equations of 
motion [1]. Significant results on the behavior of 
the FG plate are found in the path of material 
gradient stiffness [2]. The vibration frequencies 
of the FG plate based on amplitude and volume 
fraction have significant effects [3]. The 
governing equations of the plates are derived 
analytically by using FSDT under consideration of 
transverse shear stresses and rotational inertial 
effects [4, 5]. By implementing Hamilton’s rule, 
fundamental governing equations are derived [6, 
7]. The interpolation functions of higher order 
are utilized to separate spatial derivatives [8]. 

The Rayleigh-Ritz (RR) method and the CDF 
method were used for solving the Eigenvalue 
problem [9]. The RR method is used to develop 
admissible functions for the analysis of vibrations 
in thick plates with similar elastic edge 
constraints [10, 11]. The RR method is used to 
find frequencies based on Mindlin's theory [12]. 
The Mindilin theory is used for vibration analysis 
on plates that are rectangular and thick [13]. The 
characteristic functions are studied for isotropic 
rectangular thick plates [14]. The observation is 
done on governing equilibrium equations of 
forces and force-displacement relations that are 
reduced to three partial differential equations of 
motion with total deflection [15]. An elasticity 
solution of FG simply supported 3-D plate is 
obtained based on transverse loading [16]. By 
eliminating the integration constants from the 
projections of the general boundary conditions, 
the stiffness matrix has been derived [17]. An 
investigation is done on the nonlinear forced 
vibrations of thin FG circular plates under 
classical clamped-clamped boundary conditions 
[18]. The governing equations for the boundary 
conditions are derived by differential rules [19]. 
Based on the strain linear elasticity theory, 3-D 
vibration solutions are derived for FG rectangular 
plates under various boundary conditions [20]. 
Young's modulus varies throughout the direction 
of thickness, where Poisson's ratio is assumed to 
be constant [21]. Based on relative displacement 
and rotational degrees of freedom, the mass and 
stiffness matrix are derived [22]. 

To meet the outcome of the corresponding 
Kirchhoff frequencies, plates with various 
thickness ratios have been considered [23]. The 
vibration attributes of FG plates are verified 
based on power law, aspect, and thickness ratios 
[24]. Based on the numerical method, the mixed 
boundary conditions of a plate for differential 
equations are obtained [25-27]. Eigenfrequencies 
are obtained for a broad range of thicknesses and 
aspect proportions [28]. The ordinary differential 
equation is resolved from the Eigen differential 

equation [29]. The analysis is done on a 
functionally graded cantilever beam to perceive 
the behavior of deformation and variations in 
stress [30]. Without changing the shape 
parameters Meshfree method is used to analyze 
the vibration response of rectangular plates [31]. 
The effects of variations in the Poisson's ratio are 
studied [32]. 

In the CDF method, the fields for lateral 
displacement and total rotations are coupled 
through the static equilibrium equation [33]. The 
CDF method uses only one undetermined 
coefficient. In the CDF method, a single-term 
admissible function is used in the principle of 
conservation of total energy. The admissible trial 
function was assumed, where the lateral 
displacement function is attained by using 
coupling equations [34, 35]. The axial, bending, 
and shear displacements of a thick clamped-
clamped functionally graded material under a 
uniform load are developed [36]. Due to the 
utilization of coupling equations, the transverse 
displacement distribution comprises the 
identical undetermined coefficient as existing in 
the rotation direction. Material properties vary 
continuously through thickness according to a 
power law distribution in terms of the volume 
fraction of the constituents [37, 38]. The RR 
method uses two undetermined coefficients, 
which are reduced to one determined coefficient 
in the CDF method, which significantly minimizes 
the complexity of vibrations. The effects of the 
power-law, aspect ratio, thickness-length ratio, 
and various boundary conditions on the vibration 
characteristics of the FG rectangular plate are 
examined [39-41]. Free vibration analysis of 
rectangular plates under various boundary 
conditions is done [42]. The results of a plate on 
the natural frequencies under clamped and 
simply supported conditions are observed [43]. 

The objective of the present work is to study 
the free vibration analysis of an FG plate 
subjected to simply supported and clamped 
boundary conditions using the CDF method. To 
satisfy the essential boundary conditions the trail 
functions that denote the displacement fields are 
expressed in simple algebraic polynomial forms. 
The results obtained under simply supported and 
clamped boundary conditions are compared with 
the frequencies obtained in 8, 23, 24, [26-29], 32 
and [41-43] are found to be in good agreement. 

2. Functionally Graded Plate 

FG plate length (a), breadth (b), and thickness 
(h) are displayed in Fig. 1. 
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Fig. 1. Geometry of a functionally graded 
rectangular plate. 

The FG plate used is a combination of ceramic 
on the upper and metal on the lower, where the 
mechanical attributes differ continuously in axis 
z. Since the thickness property varies, the upper 

surface ( )/ 2z h=  and lower surface 

( )/ 2z h= − are treated as ceramic and metal 

respectively. It is observed that the properties of 
the FG plate become pure ceramic at k = 0 and 
metallic at a very high equivalent of k.  

The power-law function is written as 

( ) ( )
1
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c m m

z
p z p p p

h

 
= − + + 

 
                   (1) 

where cp  and mp  are the attributes of ceramic 

and metal, h is thickness and k is the power-law 
exponent of the FG plate. Accordingly, E and M 
vary continuously along the z direction as shown 
below.  
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3. First-Order Shear Deformation 
Theory 

The displacements  u , v  and w are given by 

( ) ( ) ( )0, , , , , ,xu x y z t u x y t z x y= +                 (3) 

( ) ( ) ( )0, , , , ,yv x y z v x y t z x y= +                     (4) 

( ) ( )0, , , , ,w x y z t w x y t=                                        (5) 

where ( )0 0 0, , , ,x yu v w    are unknown functions 

that are to be resolved. ( )0 0 0, ,u v w indicates the 

displacements of the mid-plane ( )0z =  and t 

denotes the time. 
x and

y denotes rotations of 

the transverse normal about the y and x axis.  

Axial strain and shear strain are 
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here, xx , yy  and zz
 
indicate normal strains 

whereas xy , xz  and yz  indicate shear strains. 

Strain and kinetic energies represented by U  

and T  are  
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Using the above equations, The undetermined 
coefficients are derived by ( ) 0U T − =   

4. Coupled Displacement Field 
Method 

By considering x   and y , estimate the 

transverse displacement denoted by w along the 
x and y directions. 
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where  
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Transverse lateral displacement w is obtained 
by applying Eqs. (12) and (13) in Eqs. (10) and 
(11). After integration and evaluation of the 
constant, we get 

1 1

n n

i k
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w c
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=                                         (14) 

here, ic is the undetermined coefficient and i ,

j and k are the admissible functions. 
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here, , , 1,2,3.....i j k n= , where n  indicates the 

number of polynomials. The boundaries are 
controlled by the exponent’s r, s, t, and u of the 

function ( ) ( )
t ur sx y a x b y = − −  which can be 0, 

1, or 2. Here, 0 indicates free (F), 1 indicates 
simply supported (S) and 2 indicates clamped (C). 
Using Pascal’s triangle, , ,i j k

 
parameters are 

given in Table 1.  

Table 1. Ten parameters of , ,i j k  [24] 
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Using Eqs. (12), (13), and (14) in Eqs. (8) and 
(9) we get 
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Reducing the lagranzian concerning ci    
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where 1 2xU U U= +
 

The governing equation is given by 

    2 0 −   =                                      (20) 

   and    indicate stiffness and inertia 

matrices and  
 

represent unknown 

coefficients in the column vector. where 

   1 2 3 4, , , ,........
T

c c c c n =  

The frequency parameters obtained by Eq. 
(21) are discussed in the next chapter.  

5. Results and Analysis 

The behavior of vibrations in an FG 
rectangular plate using CDF with respect to 
thickness ratio (h/a) is obtained. The FG plate 
Non-dimensional frequency parameters may be 
expressed as  

2 c

c

h
a

D


 =                                                 (21) 

The properties of the materials used in the FG 

plate differ, i.e., for aluminum mE
 

= 70 GPa,  

m
 
= 2700 kg/m3 and m

 
= 0.3 and for alumina 

cE
 
= 380 GPa, c

 
= 3800 kg/m3 and c

 
= 0.3 

respectively. 
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Table 2. Frequency parameters for all edges of the SSSS FG plate with k = 0 and h/a = 0.001 using CDF. 

a/b CDF Ref. value CDF Ref. value CDF Ref. value CDF Ref. value CDF Ref. value 

0.2 10.264 10.264③ 11.466 11.449③ 13.504 13.495③ 16.423 16.433③ 28.319 28.514③ 

0.5 12.337 12.337③ 19.74 19.739 ③ 32.423 32.421③ 41.945 41.947③ 49.654 49.659③ 
  12.337⑦  19.739⑦  32.076⑦  41.945⑦  49.348⑦ 

1 19.739 19.739① 49.34 49.348① 49.345 49.348① 79.386 78.956① 100.17 98.696① 
  19.739③  49.348③  49.348③  79.401③  100.17③ 
  19.739⑤  49.349⑤  49.349⑤  78.9633⑤  98.719⑤ 
  19.739⑥  49.347⑥  49.3475⑥  78.955⑥  98.694⑥ 
  19.739⑧  49.348⑧  49.348⑧  78.956⑧  98.696⑧ 
  19.739⑨  49.348⑨  49.348⑨  78.957⑨  99.304⑨ 
  19.74⑩  49.35⑩  -  79.03⑩  99.25⑩ 
  19.74⑪  49.35⑪  49.35⑪  78.96⑪  - 

1.5 32.076 32.078② 61.684 61.688② 98.698 98.697② 111.48 111.03② 129.06 128.31② 
  32.076⑧  61.685⑧  98.696⑧  111.03⑧  128.30⑧ 
  32.08⑩  61.71⑩  98.76⑩  111.57⑩  - 

2 49.353 49.348③ 78.942 78.958③ 129.69 129.68③ 167.77 167.79③ 198.63 198.63③ 
  49.348④  78.957④  128.30④  167.78④  197.39④ 
  49.348⑦  78.956⑦  128.30⑦  167.78⑦  197.39⑦ 

2.5 71.558 71.556⑧ 101.161 101.16⑧ 151.83 150.51⑧ 220.74 219.59⑧ 256.62 256.60⑧ 
  71.555⑨  101.16⑨  150.99⑨  222.91⑨  256.61⑨ 
  71.55⑩  101.19⑩  150.95⑩  219.71⑩  - 
①, ②, ③, ④, ⑤, ⑥, ⑦, ⑧, ⑨,⑩,⑪  parameters are captured from RR, Ref. Papers [8, 23, 24, 26, 27, 28, 29, 32, 41, 42, 43]. 

Table 3. Frequency parameters for all edges of the CCCC FG plate with k = 0 and h/a = 0.001 using CDF. 

a/b CDF Ref. value CDF Ref. value CDF Ref. value CDF Ref. value CDF Ref. value 

0.2 22.633 22.633③ 23.443 23.440③ 24.625 24.877③ 26.752 27.039③ 62.046 30.816③ 

0.5 24.585 24.579③ 31.831 31.829③ 44.954 44.819③ 64.021 63.598③ 64.868 63.986③ 

1 35.996 35.997② 73.385 73.432② 73.42 73.432② 108.28 108.38② 132 131.65② 

  35.989③  73.399③  73.399③  108.27③  131.89③ 

  35.992⑧  73.413⑧  73.413⑧  108.27⑧  131.64⑧ 

  35.985⑨  73.395⑨  73.395⑨  108.22⑨  131.78⑨ 

  35.99⑩  73.41⑩  -  108.26⑩  131.66⑩ 

  37.22⑪  76.24⑪  76.24⑪  113.4⑪  - 

1.5 60.813 60.782② 93.72 93.901② 148.8 148.85② 149.86 149.76② 179.63 179.86② 

  60.762③  98.841③  148.78③  149.68③  179.57③ 

  60.772⑧  93.860⑧  148.82⑧  149.74⑧  179.66⑧ 

  60.762⑨  93.835⑨  148.78⑨  149.85⑨  179.57⑨ 

  60.77⑩  93.87⑩  148.83⑩  149.88⑩  - 

2 98.28 98.318③ 127.4 127.32③ 179.32 179.28③ 255.19 254.39③ 255.78 255.95③ 

2.5 147.73 147.8⑧ 174.04 173.85⑧ 221.62 221.54⑧ 291.36 291.89⑧ 394.29 384.71⑧ 

  147.78⑩  173.84⑩  221.52⑩  291.87⑩  - 
 ②, ③, ⑧, ⑨, ⑩, ⑪ parameters are captured from RR, Ref. Papers [23, 24, 32, 41, 42, 43]. 

Table 4. Frequency parameters for all edges of the SSSS FG plate with k = 1 and h/a = 0.001 using CDF. 

a/b CDF Ref. value CDF Ref. value CDF Ref. value CDF Ref. value CDF Ref. value 

0.2 8.54 8.5405③ 9.5408 9.5260③ 11.236 11.228③ 13.675 13.673③ 23.563 23.725③ 

0.5 10.265 10.265③ 16.425 16.424③ 26.976 26.976③ 35.039 34.902③ 41.315 41.319③ 

1 16.423 16.424③ 41.065 41.061③ 41.066 41.061③ 66.061 66.065③ 83.353 83.349③ 

1.5 26.688 - 51.3238 - 82.124 - 93.572 - 149.085 - 

2 41.061 41.060③ 65.692 65.697③ 107.93 107.9③ 139.61 139.61③ 165.249 165.27③ 
  41.059④  65.697④  107.93④  139.61④ - 165.27④ 

2.5 59.54 - 84.177 - 126.37 - 126.37 - 213.53 - 
, ③, ④, parameters are captured from RR, Ref. Papers  [24, 26]. 
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Table 5. Frequency parameters for all edges of the CCCC FG plate with k = 1 and h/a = 0.001 using CDF. 

a/b CDF Ref. value CDF Ref. value CDF Ref. value CDF Ref. value CDF Ref. value 

0.2 18.829 18.832③ 19.506 19.503③ 20.489 20.699③ 22.258 22.498③ 51.626 25.642③ 

0.5 20.452 20.451③ 26.493 26.484③ 37.391 37.292③ 53.263 52.916③ 58.976 53.239③ 

1 29.959 29.945③ 61.049 61.072③ 61.049 61.072③ 90.084 90.082③ 100.82 100.75 

1.5 50.512 - 78.11 - 123.79 - 124.77 - 149.45 - 

2 81.857 81.805③ 106.01 105.93③ 149.17 149.17③ 212.12 211.67③ 213.24 212.96③ 

2.5 123.17 - 144.16 - 184.16 - 244.28 - 327.99 - 
③ parameters are captured from RR, Ref. Paper [24]. 

Table 6. Frequency parameters for all edges of the SSSS FG plate with k = 2 and h/a = 0.001 using CDF. 

a/b CDF Ref. value CDF Ref. value CDF Ref. value CDF Ref. value CDF Ref. value 

0.2 8.1635 8.1639③ 9.164 9.106③ 10.733 10.733③ 17.111 13.069③ 22.736 22.679③ 

0.5 9.1823 9.8125③ 15.701 15.7③ 25.788 25.787③ 33.496 33.363③ 39.493 39.497③ 

1 15.701 15.699③ 39.247 39.25③ 39.25 39.251③ 63.149 63.153③ 79.675 79.674③ 

1.5 25.511 - 49.071 - 78.502 - 89.463 - 102.64 - 

2 39.25 39.249③ 62.808 62.8③ 103.16 103.15③ 133.45 133.45③ 157.98 157.99③ 

2.5 56.918 - 80.429 - 120.77 - 179.67 - 204.09 - 
③ parameters are captured from RR, Ref. Paper [24]. 

Table 7. Frequency parameters for all edges of the CCCC FG plate with k = 2 and h/a = 0.001 using CDF. 

a/b CDF Ref. value CDF Ref. value CDF Ref. value CDF Ref. value CDF Ref. value 

0.2 18.001 18.002③ 18.642 18.643③ 19.71 19.786③ 21.231 21.506③ 49.315 24.512③ 

0.5 19.556 19.549③ 25.326 25.316③ 35.764 35.648③ 50.933 50.583③ 56.506 50.893③ 

1 28.635 28.624 ③ 58.373 58.379③ 58.402 58.379③ 86.108 86.111③ 104.96 104.91③ 

1.5 48.343 - 74.67 - 118.43 - 119.21 - 142.87 - 

2 78.161 78.199③ 101.25 101.26③ 142.6 142.59③ 202.81 202.33③ 203.44 203.57③ 

2.5 117.44 - 138.4 - 176.31 - 233.23 - 313.84 - 
③ parameters are captured from RR, Ref. Paper [24]. 

Table 8. Frequency parameters for all edges of the SSSS FG plate with k = 0 for using CDF. 

h/a 
Aspect ratio(a/b) 

0.2 0.4 1/2 2/3 1 1.5 2 2.5 3 5 

0.001 10.263 11.448 12.336 14.266 19.738 32.075 49.353 71.558 98.705 256.61 

0.01 10.206 11.433 12.32 14.247 19.731 32.067 49.336 71.539 98.676 256.56 

 - 11.446⑥ 12.33⑥ 14.252⑥ 19.732⑥ 32.057⑥ 49.304⑥ 71.463⑥ - - 

0.02 9.8526 11.374 11.689 14.221 19.709 32.041 49.305 71.493 98.615 256.41 

0.03 9.2671 11.210 11.688 14.163 19.638 31.99 49.242 71.412 98.508 256.15 

0.04 8.594 10.903 11.688 14.047 19.593 31.791 48.705 71.277 98.317 255.72 

0.05 7.7076 10.518 11.671 13.841 19.476 31.792 48..690 70.847 97.992 255.12 
⑥ parameters are captured from RR, Ref. Paper [28]. 

Table 9. Frequency parameters for all edges of the CCCC FG plate with k = 0 for using CDF. 

h/a 
Aspect ratio(a/b) 

0.2 0.4 1/2 2/3. 1 1.5 2 2.5 3 5 

0.001 22.633 23.648 24.585 27.006 35.996 60.813 98.28 147.73 208.84 568.16 

0.01 22.181 23.521 24.496 26.969 35.956 60.751 98.307 147.75 208.78 565.96 

0.02 20.890 23.155 24.241 26.804 35.843 60.670 98.258 147.72 208.76 566.12 

0.03 19.091 22.555 23.813 26.504 35.663 60.545 98.182 147.61 208.73 566.55 

0.04 17.160 21.743 23.237 26.107 35.388 60.279 97.884 146.18 208.59 566.92 

0.05 15.337 20.809 22.535 25.609 35.025 60.065 97.706 145.45 207.98 566.90 



Venkatalakshmi et al. / Mechanics of Advanced Composite Structures 12 (2025) 73 - 84 

79 

Table 10. Frequency parameters for all edges of the SSSS FG plate with k = 1 using CDF. 

h/a 
Aspect ratio(a/b) 

0.2 0.4 1/2 2/3 1 1.5 2 2.5 3 5 

0.001 8.54 9.5259 10.264 11.862 16.423 26.688 41.061 59.545 82.113 213.47 

0.01 8.4918 9.513 10.256 11.854 16.417 26.681 41.050 59.524 82.103 213.47 

0.02 8.1979 9.4640 9.7259 11.832 16.399 26.660 41.025 59.485 82.052 213.34 

0.03 7.7107 9.3278 10.142 11.784 16.340 26.623 40.971 59.418 81.964 213.13 

0.04 7.1506 9.0723 9.9741 11.688 16.302 26.452 36.364 59.306 81.805 212.77 

0.05 6.1131 8.7518 9.7114 11.516 16.205 26.452 16.205 58.948 81.534 212.27 

Table 11. Frequency parameters for all edges of the CCCC FG plate with k = 1 using CDF. 

h/a 
Aspect ratio(a/b) 

0.2 0.4 1/2 2/3. 1 1.5 2 2.5 3 5 

0.001 18.829 19.664 20.452 22.478 29.959 60.511 81.856 123.16 173.92 471.93 

0.01 18.455 19.571 20.382 22.431 29.917 50.548 81.795 122.95 173.72 470.89 

0.02 16.816 19.266 20.169 22.302 29.823 50.480 81.756 122.91 173.70 471.84 

0.03 15.885 18.767 19.814 22.053 29.674 50.377 81.692 122.82 173.67 471.80 

0.04 14.278 18.091 19.334 21.723 29.445 50.155 81.444 123.29 173.55 471.70 

0.05 12.761 17.314 18.750 21.308 29.142 49.977 81.297 123.52 173.05 471.69 

Table 12. Frequency parameters for all edges of the SSSS FG plate with k = 2 using CDF. 

h/a 
Aspect ratio(a/b) 

0.2 0.4 1/2 2/3 1 1.5 2 2.5 3 5 

0.001 8.1635 9.1058 9.1823 11.339 15.700 25.511 39.25 56.918 78.494 204.09 

0.01 8.1098 9.0924 9.8025 11.331 15.693 25.507 39.24 56.898 78.481 204.05 

0.02 7.7901 9.037 9.7650 11.309 15.674 23.507 32.24 50.898 78.481 203.05 

0.03 7.2882 8.8843 9.6739 11.254 11.254 15.621 56.788 56.788 78.333 203.71 

0.04 7.1507 9.0723 9.9741 11.688 16.302 26.452 36.364 59.306 81.805 212.77 

0.05 5.8457 8.2744 9.2028 10.947 15.448 25.256 38.915 56.470 77.918 202.57 

Table 13. Frequency parameters for all edges of the CCCC FG plate with k = 2 using CDF. 

h/a 
Aspect ratio(a/b) 

0.2 0.4 1/2 2/3. 1 1.5 2 2.5 3 5 

0.001 18.001 18.809 19.555 21.487 28.635 48.343 78.260 117.44 165.80 458.66 

0.01 17.600 18.684 19.475 21.434 28.595 48.312 78.194 117.37 166.08 450.63 

0.02 16.468 18.369 19.251 21.287 28.521 48.228 78.139 117.36 166.07 450.36 

0.03 14.928 17.451 18.875 21.036 28.341 48.109 77.781 117.34 166.06 450.02 

0.04 13.311 17.138 18.367 20.695 28.117 47.910 77.614 117.32 166.04 450.01 

0.05 11.817 16.332 17.748 20.248 27.767 20.431 77.521 117.30 165.03 450.00 
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Fig. 2. Effect of aspect ratio on frequency parameters (The first five frequencies) of functionally graded 
 simply-supported plate with k = 0.2 and h/a with (a) 0.01 (b) 0.02 
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Fig. 3. Effect of aspect ratio on frequency parameters (The first five frequencies) of the functionally graded 
clamped plate with k = 0.2 and h/a with (a) 0.01 (b) 0.02 

The vibration behavior of functionally graded 
plates was evaluated with different thickness 
ratios (h/a), aspect ratios (a/b), and power law 
index (k) subjected to different boundary 
conditions. The fundamental frequencies for all 
edges are simply supported and clamped with a 
thickness ratio of h/a = 0.001, different aspect 
ratios and power law index are presented in 
Tables 2-7. The results obtained in the present 
method are compared with the RR method [24] 
and it was observed that they are accurate with a 
maximum variation of 0.05%, which shows the 
efficacy of the proposed method.  

The fundamental frequencies for all edges 
simply supported and clamped with different 
thickness ratios, aspect ratios, and power law 
indexes are presented in Tables 8-13. It is 
observed that the fundamental frequency 
parameters decrease with an increase in the plate 
thickness ratio and frequencies increase with an 
increase in the aspect ratio. Fundamental 
frequencies are decreasing with an increase in 
power-law for a fixed aspect ratio, irrespective of 
boundary conditions. 

The effect of aspect ratios (a/b) on frequency 
parameters (The first five frequencies) of a 
simply supported functionally graded plate and a 
clamped functionally graded plate is plotted in 
Figs. 2 and 3, respectively with k = 0.2 and 
different h/a. It is observed that the frequency 
parameters increase with the increase in aspect 
ratio. 

6. Conclusions 

The vibration characteristics are investigated 
for an FG rectangular plate subjected to all edges 
SSSS and CCCC boundary conditions using the 
CDF method. The energy formulations in the CDF 
method contain half the number of undetermined 
coefficients when compared with the RR method. 
To inspect the vibration characteristics of the FG 
rectangular plate, various aspect ratios, thickness 
ratios, and power-law indexes are utilized. It is 
observed that the frequency parameters are 
decreasing with increasing k and increasing with 
increasing aspect ratios. The numerical results 
acquired from the present work are validated 
with other literature and are found to be similar.  
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Other shear deformation plate theories can be 
easily handled in the above analysis to compare 
the results obtained from FSDT. Further, the CDF 
method can be extended to study the free 
vibration behavior of isotropic shells, cylindrical 
panels, laminate composite plates, and non-linear 
dynamic responses of the structures. 

Nomenclature 

a Dimension of the plate in x direction 

b Dimension of the plate  in y direction 

h Thickness of the plate 

k Material variation profile 

Em Metal Young’s modulus 

Ec    Ceramic Young’s modulus 

G Shear modulus at functionally graded 
material 

Mc   Density of Ceramic 

Mm  Density of Metal 

x  y-axis rotation 

y  x-axis rotation 

w Transverse displacement 

a/b Aspect ratio 

h/a   Thickness ratio 

k Shear correction factor (= 5/6) 

U    Strain energy 

T Kinetic energy 

  Poisson’s ratio 
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