

Mechanics of Advanced Composite Structures

Journal homepage: https://macs.semnan.ac.ir/

ISSN: 2423-7043

Research Article

Free Vibration Analysis of Simply Supported and Clamped Functionally Graded Rectangular Plate Using Coupled Displacement Field Method

Nathi Venkatalakshmi 👵, Kalidindi Krishnabhaskar 🍽, Koppanati Meerasaheb 🗓

Department of Mechanical Engineering, University College of Engineering(A), JNTUK, Kakinada, 533003, Andhra Pradesh, India

ARTICLE INFO

ABSTRACT

Article history:

Received: 2023-08-20 Revised: 2024-05-30 Accepted: 2024-07-05

Keywords:

Aspect ratio; First-order shear deformation theory; Frequency parameters; Power law; Thickness ratio. In this paper, a coupled displacement field (CDF) method was proposed to examine the free vibration behavior of a functionally graded (FG) rectangular plate with simply supported (SSSS) and clamped (CCCC) boundary conditions. The composition of the functionally graded rectangular plate is ceramic on the top and metal on the bottom. According to the power-law exponent form, the rectangular plate material properties vary continuously in the thickness direction. The trial functions signifying the displacement constituents of the cross-sections of the plate are stated in simple algebraic polynomial forms. The lateral displacement field is derived in terms of the total rotations with the help of coupling equations. By utilizing the energy formulation, the undetermined coefficients are obtained. The frequency parameters with various aspect ratios, thickness ratios, and power-law for all edges are simply supported and clamped boundary conditions are derived. To validate the numerical results, a comparison of frequency parameters is done with other literature.

© 2025 The Author(s). Mechanics of Advanced Composite Structures published by Semnan University Press. This is an open-access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

1. Introduction

Several engineering disciplines like automobile, aerospace, mechanical, and nuclear fields use complex structures made of structural members like plates and beams. Plates can be thick or thin, depending on the purpose. When these plates are subjected to internal or external force, they may vibrate with large amplitudes. The design of a structural member using a rectangular plate must consider the free vibration behavior under various environmental conditions. A functionally graded plate composition can be a metal, ceramic, or polymer.

The properties of these materials continuously vary in the direction of thickness from one surface to another. The FG plate behavior will be analyzed under different boundaries to reduce vibrations. The fundamental frequency parameters of the plate are to be analyzed to prevent any damage caused by vibrations.

The first-order shear deformation theory (FSDT) is based on the displacement field, which uses shear correction factors to set the differences between the actual transverse shear stress distribution and those evaluated by using the FSDT kinematic relations. To find the frequencies of the FG rectangular plates, FSDT

E-mail address: krisbhaskar22@yahoo.co.in

Cite this article as:

Venkatalakshmi, N., Krishnabhaskar, K. and Meerasaheb K., 2025. Free Vibration Analysis of Simply Supported and Clamped Functionally Graded Rectangular Plate Using Coupled Displacement Field Method. *Mechanics of Advanced Composite Structures*, 12(1), pp. 73-84.

^{*} Corresponding author.

was used to analyze and derive the equations of motion [1]. Significant results on the behavior of the FG plate are found in the path of material gradient stiffness [2]. The vibration frequencies of the FG plate based on amplitude and volume fraction have significant effects [3]. The governing equations of the plates are derived analytically by using FSDT under consideration of transverse shear stresses and rotational inertial effects [4, 5]. By implementing Hamilton's rule, fundamental governing equations are derived [6, 7]. The interpolation functions of higher order are utilized to separate spatial derivatives [8].

The Rayleigh-Ritz (RR) method and the CDF method were used for solving the Eigenvalue problem [9]. The RR method is used to develop admissible functions for the analysis of vibrations in thick plates with similar elastic edge constraints [10, 11]. The RR method is used to find frequencies based on Mindlin's theory [12]. The Mindilin theory is used for vibration analysis on plates that are rectangular and thick [13]. The characteristic functions are studied for isotropic rectangular thick plates [14]. The observation is done on governing equilibrium equations of forces and force-displacement relations that are reduced to three partial differential equations of motion with total deflection [15]. An elasticity solution of FG simply supported 3-D plate is obtained based on transverse loading [16]. By eliminating the integration constants from the projections of the general boundary conditions, the stiffness matrix has been derived [17]. An investigation is done on the nonlinear forced vibrations of thin FG circular plates under classical clamped-clamped boundary conditions [18]. The governing equations for the boundary conditions are derived by differential rules [19]. Based on the strain linear elasticity theory, 3-D vibration solutions are derived for FG rectangular plates under various boundary conditions [20]. Young's modulus varies throughout the direction of thickness, where Poisson's ratio is assumed to be constant [21]. Based on relative displacement and rotational degrees of freedom, the mass and stiffness matrix are derived [22].

To meet the outcome of the corresponding Kirchhoff frequencies, plates with various thickness ratios have been considered [23]. The vibration attributes of FG plates are verified based on power law, aspect, and thickness ratios [24]. Based on the numerical method, the mixed boundary conditions of a plate for differential equations are obtained [25-27]. Eigenfrequencies are obtained for a broad range of thicknesses and aspect proportions [28]. The ordinary differential equation is resolved from the Eigen differential

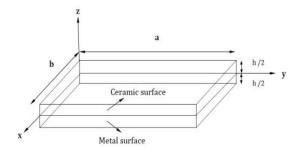
equation [29]. The analysis is done on a functionally graded cantilever beam to perceive the behavior of deformation and variations in stress [30]. Without changing the shape parameters Meshfree method is used to analyze the vibration response of rectangular plates [31]. The effects of variations in the Poisson's ratio are studied [32].

In the CDF method, the fields for lateral displacement and total rotations are coupled through the static equilibrium equation [33]. The CDF method uses only one undetermined coefficient. In the CDF method, a single-term admissible function is used in the principle of conservation of total energy. The admissible trial function was assumed, where the lateral displacement function is attained by using coupling equations [34, 35]. The axial, bending, and shear displacements of a thick clampedclamped functionally graded material under a uniform load are developed [36]. Due to the utilization of coupling equations, the transverse displacement distribution comprises identical undetermined coefficient as existing in the rotation direction. Material properties vary continuously through thickness according to a power law distribution in terms of the volume fraction of the constituents [37, 38]. The RR method uses two undetermined coefficients, which are reduced to one determined coefficient in the CDF method, which significantly minimizes the complexity of vibrations. The effects of the power-law, aspect ratio, thickness-length ratio, and various boundary conditions on the vibration characteristics of the FG rectangular plate are examined [39-41]. Free vibration analysis of rectangular plates under various boundary conditions is done [42]. The results of a plate on the natural frequencies under clamped and simply supported conditions are observed [43].

The objective of the present work is to study the free vibration analysis of an FG plate subjected to simply supported and clamped boundary conditions using the CDF method. To satisfy the essential boundary conditions the trail functions that denote the displacement fields are expressed in simple algebraic polynomial forms. The results obtained under simply supported and clamped boundary conditions are compared with the frequencies obtained in 8, 23, 24, [26-29], 32 and [41-43] are found to be in good agreement.

2. Functionally Graded Plate

FG plate length (a), breadth (b), and thickness (h) are displayed in Fig. 1.



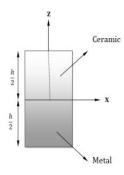


Fig. 1. Geometry of a functionally graded rectangular plate.

The FG plate used is a combination of ceramic on the upper and metal on the lower, where the mechanical attributes differ continuously in axis z. Since the thickness property varies, the upper surface (z=h/2) and lower surface (z=h/2) are treated as ceramic and metal respectively. It is observed that the properties of the FG plate become pure ceramic at k=0 and metallic at a very high equivalent of k.

The power-law function is written as

$$p(z) = (p_c - p_m) \left(\frac{z}{h} + \frac{1}{2}\right)^k + p_m$$
 (1)

where p_c and p_m are the attributes of ceramic and metal, h is thickness and k is the power-law exponent of the FG plate. Accordingly, E and M vary continuously along the z direction as shown below.

$$E(z) = (E_c - E_m) \left(\frac{z}{h} + \frac{1}{2}\right)^k + E_m$$

$$M(z) = (M_c - M_m) \left(\frac{z}{h} + \frac{1}{2}\right)^k + M_m$$
(2)

3. First-Order Shear Deformation Theory

The displacements u, v and w are given by

$$u(x, y, z, t) = u_0(x, y, t) + z\alpha_x(x, y)$$
 (3)

$$v(x, y, z) = v_0(x, y, t) + z\alpha_v(x, y)$$
(4)

$$w(x, y, z, t) = w_0(x, y, t)$$
 (5)

where $\left(u_0,v_0,w_0,\alpha_x,\alpha_y\right)$ are unknown functions that are to be resolved. $\left(u_0,v_0,w_0\right)$ indicates the displacements of the mid-plane $\left(z=0\right)$ and t denotes the time. α_x and α_y denotes rotations of the transverse normal about the y and x axis.

Axial strain and shear strain are

$$\varphi_{xx} = z \frac{\partial \alpha_x}{\partial x}, \quad \varphi_{yy} = z \frac{\partial \alpha_y}{\partial y}, \quad \varphi_{zz} = 0$$
 (6)

$$\psi_{xy} = z \left(\frac{\partial \alpha_x}{\partial y} + \frac{\partial \alpha_y}{\partial x} \right), \quad \psi_{xz} = \alpha_x + \frac{\partial w}{\partial x}, \quad \psi_{yz} = \alpha_y + \frac{\partial w}{\partial y}$$
 (7)

here, φ_{xx} , φ_{yy} and φ_{zz} indicate normal strains whereas ψ_{xy} , ψ_{xz} and ψ_{yz} indicate shear strains. Strain and kinetic energies represented by U and T are

$$U = \frac{1}{2} \int_{0}^{b} \int_{0}^{a} \frac{1}{1 - v^{2}} \left\{ \frac{\partial \alpha_{x}}{\partial x} + \left(\frac{\partial \alpha_{y}}{\partial y} \right)^{2} + 2v \left(\frac{\partial \alpha_{x}}{\partial x} \frac{\partial \alpha_{y}}{\partial y} \right) + 2\left(1 - v \right) \left(\frac{\partial \alpha_{x}}{\partial y} \frac{\partial \alpha_{y}}{\partial x} \right) dx dy \int_{-h/2}^{h/2} E(z) z^{2} dz \right\}$$

$$+ \frac{1}{2} \int_{0}^{b} \int_{0}^{a} \frac{k}{2(1 + v)} \left\{ \left(\alpha_{x} + \frac{\partial w}{\partial x} \right)^{2} + \left(\alpha_{y} + \frac{\partial w}{\partial y} \right)^{2} \right\} dx dy \int_{-h/2}^{h/2} E(z) dz$$

$$(8)$$

$$T = \frac{\omega^2}{2} \int_{0.0}^{b.a} \left[w^2 + \frac{h^2}{12} \left(\alpha_x^2 + \alpha_y^2 \right) \right] dx dy \int_{-h/2}^{h/2} M(z) dz$$
 (9)

Using the above equations, The undetermined coefficients are derived by $\partial (U-T) = 0$

4. Coupled Displacement Field Method

By considering α_x and α_y , estimate the transverse displacement denoted by w along the x and y directions.

$$\frac{\partial w}{\partial x} = -\alpha_x + S \left[\frac{12}{5(1-\nu)} \left(\frac{\partial^2 \alpha_x}{\partial x^2} + \nu \frac{\partial^2 \alpha_y}{\partial y \partial x} \right) + \frac{6}{5} \left(\frac{\partial^2 \alpha_x}{\partial y^2} + \frac{\partial^2 \alpha_y}{\partial y \partial x} \right) \right]$$
(10)

$$\frac{\partial w}{\partial y} = -\alpha_y + S \left[\frac{12}{5(1-\nu)} \left(\frac{\partial^2 \alpha_y}{\partial y^2} + \nu \frac{\partial^2 \alpha_x}{\partial y \partial x} \right) + \frac{6}{5} \left(\frac{\partial^2 \alpha_y}{\partial x^2} + \frac{\partial^2 \alpha_x}{\partial y \partial x} \right) \right]$$
(11)

where

$$S = \frac{\int_{-h/2}^{h/2} E(z)z^2 dz}{\int_{-h/2}^{h/2} E(z) dz}$$

$$\alpha_{x} = \sum_{i=1}^{n} c_{i} \zeta_{i} \tag{12}$$

$$\alpha_{y} = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \xi_{j}$$
 (13)

Transverse lateral displacement w is obtained by applying Eqs. (12) and (13) in Eqs. (10) and (11). After integration and evaluation of the constant, we get

$$w = \sum_{i=1}^{n} \sum_{k=1}^{n} c_i \varsigma_k \tag{14}$$

here, c_i is the undetermined coefficient and ζ_i , ξ_i and ζ_k are the admissible functions.

$$\zeta_{i} = \Upsilon \eta_{i}
\xi_{j} = \Upsilon \eta_{j}
\zeta_{k} = \Upsilon \eta_{k}$$
(15)

here, $i, j, k = 1, 2, 3, \ldots n$, where n indicates the number of polynomials. The boundaries are controlled by the exponent's r, s, t, and u of the function $\Upsilon = x^r y^s (a-x)^t (b-y)^u$ which can be 0, 1, or 2. Here, 0 indicates free (F), 1 indicates simply supported (S) and 2 indicates clamped (C). Using Pascal's triangle, $\eta_{i,j,k}$ parameters are given in Table 1.

Table 1. Ten parameters of $\eta_{i,j,k}$ [24]

i	1	2	3	4	5	6	7	8	9	10
$\eta_{_{i,j,k}}$	1	x	у	\mathbf{x}^2	xy	y ²	x ³	x²y	xy³	y ³

Using Eqs. (12), (13), and (14) in Eqs. (8) and (9) we get

$$U_{1} = \frac{1}{2} \int_{0}^{b} \int_{0}^{a} \frac{1}{1 - v^{2}} \left\{ + 2v \left(\frac{\partial}{\partial x} \sum_{i=1}^{n} c_{i} \zeta_{i} \right)^{2} + \left(\frac{\partial}{\partial y} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \zeta_{j} \right)^{2} + 2v \left(\frac{\partial}{\partial x} \sum_{i=1}^{n} c_{i} \zeta_{i} \frac{\partial}{\partial y} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \zeta_{j} \right) \right\} dx dy \int_{-h/2}^{h/2} E(z) z^{2} dz$$

$$+ 2(1 - v) \left(\frac{\partial}{\partial y} \sum_{i=1}^{n} c_{i} \zeta_{i} \frac{\partial}{\partial x} \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \zeta_{j} \right)$$

$$U_{2} = \frac{1}{2} \int_{0}^{b} \int_{0}^{a} \frac{k}{2(1+\nu)} \left\{ \left(\sum_{i=1}^{n} c_{i} \zeta_{i} + \frac{\partial}{\partial x} \sum_{i=1}^{n} \sum_{k=1}^{n} c_{i} \zeta_{k} \right)^{2} + \left(\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \zeta_{j} + \frac{\partial}{\partial y} \sum_{i=1}^{n} \sum_{k=1}^{n} c_{i} \zeta_{k} \right)^{2} \right\} dx dy \int_{-h/2}^{h/2} E(z) dz$$
(17)

$$T = \frac{\omega^{2}}{2} \int_{0}^{b} \int_{0}^{a} \left[\left(\sum_{i=1}^{n} \sum_{k=1}^{n} c_{i} \zeta_{k} \right)^{2} + \left(\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \zeta_{j} \right)^{2} + \left(\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} \zeta_{j} \right)^{2} \right] dx dy \int_{-h/2}^{h/2} M(z) dz$$
(18)

Reducing the lagranzian concerning ci

$$\frac{\partial (U_x - T)}{\partial c_i} = 0; \quad i = 1, 2, 3 n$$
 (19)

where $U_x = U_1 + U_2$

The governing equation is given by

$$[\mathbf{A}] - \lambda^2 [\mathbf{B}] \{\Delta\} = 0 \tag{20}$$

 $\begin{bmatrix} A \end{bmatrix} \ \ \text{and} \ \ \begin{bmatrix} B \end{bmatrix} \ \ \text{indicate} \ \ \text{stiffness} \ \ \text{and} \ \ \text{inertia}$ $\ \ \text{matrices} \ \ \text{and} \ \ \{\Delta\} \ \ \ \text{represent} \ \ \text{unknown}$ $\ \ \text{coefficients in the column vector. where}$

$$\{\Delta\} = [c_1, c_2, c_3, c_4, \dots, n]^T$$

The frequency parameters obtained by Eq. (21) are discussed in the next chapter.

5. Results and Analysis

The behavior of vibrations in an FG rectangular plate using CDF with respect to thickness ratio (h/a) is obtained. The FG plate Non-dimensional frequency parameters may be expressed as

$$\lambda = \omega a^2 \sqrt{\frac{\rho_c h}{D_c}} \tag{21}$$

The properties of the materials used in the FG plate differ, i.e., for aluminum $E_m=70$ GPa, $\rho_m=2700$ kg/m³ and $v_m=0.3$ and for alumina $E_c=380$ GPa, $\rho_c=3800$ kg/m³ and $v_c=0.3$ respectively.

(16)

Table 2. Frequency parameters for all edges of the SSSS FG plate with k = 0 and h/a = 0.001 using CDF.

a/b	CDF	Ref. value	CDF	Ref. value	CDF	Ref. value	CDF	Ref. value	CDF	Ref. value
0.2	10.264	10.2643	11.466	11.4493	13.504	13.495 ³	16.423	16.4333	28.319	28.5143
0.5	12.337	12.337 $^{\odot}$	19.74	19.739 3	32.423	32.4213	41.945	41.947③	49.654	49.6593
		12.337⑦		19.739⑦		32.076⑦		41.945⑦		49.3487
1	19.739	19.7391	49.34	49.3481	49.345	49.3481	79.386	78.956 ^①	100.17	$98.696^{ ext{1}}$
		19.7393		49.3483		49.3483		79.4013		100.17 $^{\odot}$
		19.739⑤		49.3495		49.349 ^⑤		78.9633 ^⑤		98.719 ^⑤
		19.7396		49.3476		49.34756		78.9556		98.6946
		19.739®		49.348®		49.348®		78.956 [®]		98.696®
		19.7399		49.3489		49.3489		$78.957^{\textcircled{9}}$		99.3049
		19.74^{10}		49.35 ¹⁰		-		79.03^{10}		99.25^{10}
		19.74^{\oplus}		49.3511		49.3511		78.96^{\oplus}		-
1.5	32.076	32.078②	61.684	61.6882	98.698	98.6972	111.48	111.03 ^②	129.06	128.31 ^②
		32.076®		61.685 [®]		98.696®		111.03 [®]		128.30®
		32.08 ¹⁰		61.71 ¹⁰		98.76^{10}		$111.57^{\textcircled{10}}$		-
2	49.353	49.3483	78.942	78.958 $^{\odot}$	129.69	129.68 ³	167.77	167.79^{3}	198.63	198.63③
		49.3484		78.957^{4}		128.304		$167.78^{\textcircled{4}}$		$197.39^{\textcircled{4}}$
		49.348⑦		78.956⑦		128.30⑦		167.78⑦		197.39⑦
2.5	71.558	71.556 [®]	101.161	$101.16^{\textcircled{8}}$	151.83	$150.51^{\textcircled{8}}$	220.74	$219.59^{ ext{@}}$	256.62	256.60°
		71.5559		101.169		150.999		222.919		256.619
		71.55^{\oplus}		101.1910		150.95⑩		219.71 ¹⁰		-

①,②,③,④,⑤,⑥,⑦,⑧,⑨,⑩,⑪ parameters are captured from RR, Ref. Papers [8, 23, 24, 26, 27, 28, 29, 32, 41, 42, 43].

Table 3. Frequency parameters for all edges of the CCCC FG plate with k = 0 and h/a = 0.001 using CDF.

a/b	CDF	Ref. value	CDF	Ref. value	CDF	Ref. value	CDF	Ref. value	CDF	Ref. value
0.2	22.633	22.633③	23.443	23.440③	24.625	24.877③	26.752	27.039③	62.046	30.816③
0.5	24.585	24.5793	31.831	31.829③	44.954	44.8193	64.021	63.598③	64.868	63.986③
1	35.996	35.9972	73.385	73.432②	73.42	73.432②	108.28	108.38②	132	131.65②
		35.9893		73.399③		73.399③		108.27°		131.89③
		$35.992^{\textcircled{8}}$		$73.413^{\textcircled{8}}$		73.413 [®]		$108.27^{\textcircled{8}}$		131.64®
		35.985⑨		73.3959		73.395®		108.229		131.789
		35.9910		73.41 ¹⁰		-		108.26 ¹⁰		131.66 [®]
		$37.22^{(j)}$		$76.24^{\scriptsize{\scriptsize{\scriptsize{(1)}}}}$		$76.24^{\scriptsize{\scriptsize{\scriptsize{(1)}}}}$		113.4 ⁽ⁱⁱ⁾		-
1.5	60.813	$60.782^{ ext{@}}$	93.72	93.9012	148.8	148.85②	149.86	149.76°	179.63	179.86 ^②
		60.762 $^{\odot}$		98.8413		148.78 $^{\odot}$		149.68③		179.573
		$60.772^{\textcircled{8}}$		$93.860^{\textcircled{\$}}$		$148.82^{\textcircled{8}}$		$149.74^{\textcircled{8}}$		$179.66^{\textcircled{8}}$
		$60.762^{\textcircled{9}}$		93.835 ⁹		148.78^{9}		149.85°		179.57^{9}
		60.77^{10}		93.87 ¹⁰		148.83 ¹⁰		$149.88^{\textcircled{10}}$		-
2	98.28	$98.318^{③}$	127.4	127.32^{3}	179.32	$179.28^{③}$	255.19	254.39③	255.78	255.95③
2.5	147.73	$147.8^{\textcircled{8}}$	174.04	$173.85^{\textcircled{8}}$	221.62	$221.54^{\textcircled{8}}$	291.36	291.89®	394.29	$384.71^{\textcircled{8}}$
		147.78 ¹⁰		173.84 ¹⁰		221.5210		291.87 ¹⁰		-

②, ③, ⑧, ⑨, ⑩, ⑪ parameters are captured from RR, Ref. Papers [23, 24, 32, 41, 42, 43].

Table 4. Frequency parameters for all edges of the SSSS FG plate with k = 1 and h/a = 0.001 using CDF.

a/b	CDF	Ref. value	CDF	Ref. value	CDF	Ref. value	CDF	Ref. value	CDF	Ref. value
0.2	8.54	8.5405°	9.5408	9.5260°	11.236	11.228°	13.675	13.673°	23.563	23.725 ³
0.5	10.265	10.2653	16.425	16.4243	26.976	26.976 ³	35.039	34.9023	41.315	41.319③
1	16.423	16.4243	41.065	41.0613	41.066	41.0613	66.061	66.0653	83.353	83.3493
1.5	26.688	-	51.3238	-	82.124	-	93.572	-	149.085	-
2	41.061	41.060 ³	65.692	65.6973	107.93	107.9^{3}	139.61	139.613	165.249	165.27③
		41.0594		65.6974		107.934		139.614	-	165.274
2.5	59.54	-	84.177	-	126.37	-	126.37	-	213.53	-

, ③, ④, parameters are captured from RR, Ref. Papers [24, 26].

Table 5. Frequency parameters for all edges of the CCCC FG plate with k = 1 and h/a = 0.001 using CDF.

a/b	CDF	ef. value	CDF	Ref. value	CDF	lef. value	CDF	Ref. value	CDF	ef. value
0.2	18.829	18.832③	19.506	19.503③	20.489	20.699③	22.258	22.498③	51.626	25.642③
0.5	20.452	20.451③	26.493	26.484③	37.391	37.292③	53.263	52.916③	58.976	53.239③
1	29.959	29.945③	61.049	61.072③	61.049	61.072③	90.084	90.082③	100.82	100.75
1.5	50.512	-	78.11	-	123.79	-	124.77	-	149.45	-
2	81.857	81.805③	106.01	105.93③	149.17	149.17③	212.12	211.67③	213.24	212.96③
2.5	123.17	-	144.16	-	184.16	-	244.28	-	327.99	-

³ parameters are captured from RR, Ref. Paper [24].

Table 6. Frequency parameters for all edges of the SSSS FG plate with k = 2 and h/a = 0.001 using CDF.

a/b	CDF	tef. value	CDF	ef. value	CDF	Ref. value	CDF	ef. value	CDF	ef. value
0.2	8.1635	8.1639③	9.164	9.106③	10.733	10.733③	17.111	13.069③	22.736	22.679③
0.5	9.1823	9.8125③	15.701	15.7③	25.788	25.787③	33.496	33.363③	39.493	39.497③
1	15.701	15.699③	39.247	39.25③	39.25	39.251③	63.149	63.153③	79.675	79.674③
1.5	25.511	-	49.071	-	78.502	-	89.463	-	102.64	-
2	39.25	39.249③	62.808	62.8③	103.16	103.15③	133.45	133.45③	157.98	157.99③
2.5	56.918	-	80.429	-	120.77	-	179.67	-	204.09	-

³ parameters are captured from RR, Ref. Paper [24].

Table 7. Frequency parameters for all edges of the CCCC FG plate with k=2 and h/a=0.001 using CDF.

a/b	CDF	Ref. value	CDF	Ref. value	CDF	Ref. value	CDF	Ref. value	CDF	Ref. value
0.2	18.001	18.002③	18.642	18.643③	19.71	19.7863	21.231	21.506③	49.315	24.512③
0.5	19.556	19.5493	25.326	25.316 ³	35.764	35.6483	50.933	50.5833	56.506	50.8933
1	28.635	28.624 3	58.373	58.379 ³	58.402	58.3793	86.108	86.1113	104.96	104.913
1.5	48.343	-	74.67	-	118.43	-	119.21	-	142.87	-
2	78.161	78.199③	101.25	101.26③	142.6	142.593	202.81	202.33③	203.44	203.57③
2.5	117.44	-	138.4	-	176.31	-	233.23	-	313.84	-

³ parameters are captured from RR, Ref. Paper [24].

Table 8. Frequency parameters for all edges of the SSSS FG plate with k = 0 for using CDF.

h /a			•		Aspect	ratio(a/b)			•	
h/a	0.2	0.4	1/2	2/3	1	1.5	2	2.5	3	5
0.001	10.263	11.448	12.336	14.266	19.738	32.075	49.353	71.558	98.705	256.61
0.01	10.206	11.433	12.32	14.247	19.731	32.067	49.336	71.539	98.676	256.56
	-	11.4466	12.336	14.2526	19.7326	32.0576	49.3046	71.4636	-	-
0.02	9.8526	11.374	11.689	14.221	19.709	32.041	49.305	71.493	98.615	256.41
0.03	9.2671	11.210	11.688	14.163	19.638	31.99	49.242	71.412	98.508	256.15
0.04	8.594	10.903	11.688	14.047	19.593	31.791	48.705	71.277	98.317	255.72
0.05	7.7076	10.518	11.671	13.841	19.476	31.792	48690	70.847	97.992	255.12

[©] parameters are captured from RR, Ref. Paper [28].

 $\textbf{Table 9.} \ \ \text{Frequency parameters for all edges of the CCCC FG plate with } \ k = 0 \ \text{for using CDF}.$

h/a					Asp	ect ratio(a/b	o)			
11/ a	0.2	0.4	1/2	2/3.	1	1.5	2	2.5	3	5
0.001	22.633	23.648	24.585	27.006	35.996	60.813	98.28	147.73	208.84	568.16
0.01	22.181	23.521	24.496	26.969	35.956	60.751	98.307	147.75	208.78	565.96
0.02	20.890	23.155	24.241	26.804	35.843	60.670	98.258	147.72	208.76	566.12
0.03	19.091	22.555	23.813	26.504	35.663	60.545	98.182	147.61	208.73	566.55
0.04	17.160	21.743	23.237	26.107	35.388	60.279	97.884	146.18	208.59	566.92
0.05	15.337	20.809	22.535	25.609	35.025	60.065	97.706	145.45	207.98	566.90

Table 10. Frequency parameters for all edges of the SSSS FG plate with k = 1 using CDF.

h /a	Aspect ratio(a/b)												
h/a	0.2	0.4	1/2	2/3	1	1.5	2	2.5	3	5			
0.001	8.54	9.5259	10.264	11.862	16.423	26.688	41.061	59.545	82.113	213.47			
0.01	8.4918	9.513	10.256	11.854	16.417	26.681	41.050	59.524	82.103	213.47			
0.02	8.1979	9.4640	9.7259	11.832	16.399	26.660	41.025	59.485	82.052	213.34			
0.03	7.7107	9.3278	10.142	11.784	16.340	26.623	40.971	59.418	81.964	213.13			
0.04	7.1506	9.0723	9.9741	11.688	16.302	26.452	36.364	59.306	81.805	212.77			
0.05	6.1131	8.7518	9.7114	11.516	16.205	26.452	16.205	58.948	81.534	212.27			

 $\textbf{Table 11.} \ \ \text{Frequency parameters for all edges of the CCCC FG plate with } \ k = 1 \ using \ CDF.$

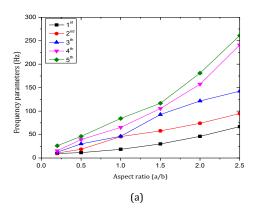
h /o	Aspect ratio(a/b)												
h/a	0.2	0.4	1/2	2/3.	1	1.5	2	2.5	3	5			
0.001	18.829	19.664	20.452	22.478	29.959	60.511	81.856	123.16	173.92	471.93			
0.01	18.455	19.571	20.382	22.431	29.917	50.548	81.795	122.95	173.72	470.89			
0.02	16.816	19.266	20.169	22.302	29.823	50.480	81.756	122.91	173.70	471.84			
0.03	15.885	18.767	19.814	22.053	29.674	50.377	81.692	122.82	173.67	471.80			
0.04	14.278	18.091	19.334	21.723	29.445	50.155	81.444	123.29	173.55	471.70			
0.05	12.761	17.314	18.750	21.308	29.142	49.977	81.297	123.52	173.05	471.69			

Table 12. Frequency parameters for all edges of the SSSS FG plate with k = 2 using CDF.

h /a	Aspect ratio(a/b)												
h/a	0.2	0.4	1/2	2/3	1	1.5	2	2.5	3	5			
0.001	8.1635	9.1058	9.1823	11.339	15.700	25.511	39.25	56.918	78.494	204.09			
0.01	8.1098	9.0924	9.8025	11.331	15.693	25.507	39.24	56.898	78.481	204.05			
0.02	7.7901	9.037	9.7650	11.309	15.674	23.507	32.24	50.898	78.481	203.05			
0.03	7.2882	8.8843	9.6739	11.254	11.254	15.621	56.788	56.788	78.333	203.71			
0.04	7.1507	9.0723	9.9741	11.688	16.302	26.452	36.364	59.306	81.805	212.77			
0.05	5.8457	8.2744	9.2028	10.947	15.448	25.256	38.915	56.470	77.918	202.57			

 $\textbf{Table 13.} \ Frequency \ parameters \ for \ all \ edges \ of \ the \ CCCC \ FG \ plate \ with \ k=2 \ using \ CDF.$

h/a	Aspect ratio(a/b)									
	0.2	0.4	1/2	2/3.	1	1.5	2	2.5	3	5
0.001	18.001	18.809	19.555	21.487	28.635	48.343	78.260	117.44	165.80	458.66
0.01	17.600	18.684	19.475	21.434	28.595	48.312	78.194	117.37	166.08	450.63
0.02	16.468	18.369	19.251	21.287	28.521	48.228	78.139	117.36	166.07	450.36
0.03	14.928	17.451	18.875	21.036	28.341	48.109	77.781	117.34	166.06	450.02
0.04	13.311	17.138	18.367	20.695	28.117	47.910	77.614	117.32	166.04	450.01
0.05	11.817	16.332	17.748	20.248	27.767	20.431	77.521	117.30	165.03	450.00



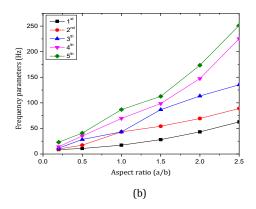
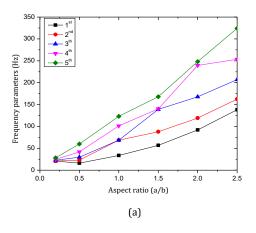


Fig. 2. Effect of aspect ratio on frequency parameters (The first five frequencies) of functionally graded simply-supported plate with k = 0.2 and h/a with (a) 0.01 (b) 0.02



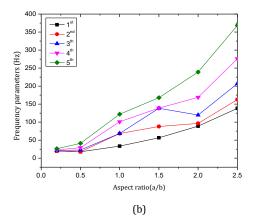


Fig. 3. Effect of aspect ratio on frequency parameters (The first five frequencies) of the functionally graded clamped plate with k = 0.2 and h/a with (a) 0.01 (b) 0.02

The vibration behavior of functionally graded plates was evaluated with different thickness ratios (h/a), aspect ratios (a/b), and power law index (k) subjected to different boundary conditions. The fundamental frequencies for all edges are simply supported and clamped with a thickness ratio of h/a = 0.001, different aspect ratios and power law index are presented in Tables 2-7. The results obtained in the present method are compared with the RR method [24] and it was observed that they are accurate with a maximum variation of 0.05%, which shows the efficacy of the proposed method.

The fundamental frequencies for all edges simply supported and clamped with different thickness ratios, aspect ratios, and power law indexes are presented in Tables 8-13. It is observed that the fundamental frequency parameters decrease with an increase in the plate thickness ratio and frequencies increase with an increase in the aspect ratio. Fundamental frequencies are decreasing with an increase in power-law for a fixed aspect ratio, irrespective of boundary conditions.

The effect of aspect ratios (a/b) on frequency parameters (The first five frequencies) of a simply supported functionally graded plate and a clamped functionally graded plate is plotted in Figs. 2 and 3, respectively with k=0.2 and different h/a. It is observed that the frequency parameters increase with the increase in aspect ratio.

6. Conclusions

The vibration characteristics are investigated for an FG rectangular plate subjected to all edges SSSS and CCCC boundary conditions using the CDF method. The energy formulations in the CDF method contain half the number of undetermined coefficients when compared with the RR method. To inspect the vibration characteristics of the FG rectangular plate, various aspect ratios, thickness ratios, and power-law indexes are utilized. It is observed that the frequency parameters are decreasing with increasing k and increasing with increasing aspect ratios. The numerical results acquired from the present work are validated with other literature and are found to be similar.

Other shear deformation plate theories can be easily handled in the above analysis to compare the results obtained from FSDT. Further, the CDF method can be extended to study the free vibration behavior of isotropic shells, cylindrical panels, laminate composite plates, and non-linear dynamic responses of the structures.

Nomenclature

- a Dimension of the plate in x direction
- *b* Dimension of the plate in y direction
- h Thickness of the plate
- k Material variation profile
- E_m Metal Young's modulus
- *E_c* Ceramic Young's modulus
- G Shear modulus at functionally graded material
- *M_c* Density of Ceramic
- M_m Density of Metal
- α_r y-axis rotation
- α_{y} x-axis rotation
- w Transverse displacement
- a/b Aspect ratio
- h/a Thickness ratio
- k Shear correction factor (= 5/6)
- U Strain energy
- T Kinetic energy
- ν Poisson's ratio

Acknowledgments

The authors thank the officials of our university for their encouragement in producing this paper and assure you that the authors do not have any affiliations with other organizations or any financial competing interests in the content discussed in this paper.

Funding Statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflicts of Interest

The author declares that there is no conflict of interest regarding the publication of this article.

References

- [1] Hosseini-Hashemi, S., Taher, H.R.D., Akhavan, H. and Omidi, M., 2010. Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. *Applied Mathematical Modelling*, 34(5), pp.1276-1291.
- [2] Amirpour, M., Das, R. and Flores, E.I.S., 2017. Bending analysis of thin functionally graded plate under in-plane stiffness variations. *Applied Mathematical Modelling*, 44, pp.481-496.
- [3] Amini, M.H., Soleimani, M., Altafi, A. and Rastgoo, A., 2013. Effects of geometric nonlinearity on free and forced vibration analysis of moderately thick annular functionally graded plate. *Mechanics of Advanced Materials and Structures*, 20(9), pp.709-720.
- [4] Yousefzadeh, S., Jafari, A. and Mohammadzadeh, A., 2019. Hydroelastic vibration analysis of functionally graded circular plate in contact with bounded fluid by Ritz method. *Journal of Science and Technology of Composites*, 5(4), pp.529-538.
- [5] Yousefzadeh, S., Akbari, A. and Najafi, M., 2019. Dynamic response of FG rectangular plate in contact with stationary fluid under moving load. *Journal of Science and Technology of Composites*, 6(2), pp.213-224.
- [6] Akavci, S.S. and Tanrikulu, A.H., 2015. Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories. *Composites Part B: Engineering*, 83, pp.203-215.
- [7] Rahmani, B. and Naghmehsanj, M.R., 2015. Robust vibration control of a functionally graded beam with a variable cross-section.

- Journal of Science and Technology of Composites, 2(2), pp.17-29.
- [8] Eftekhari, S.A. and Jafari, A.A., 2012. High-accuracy mixed finite element-Ritz formulation for free vibration analysis of plates with general boundary conditions. *Applied Mathematics and Computation*, 219(3), pp.1312-1344.
- [9] Leissa, A.W., 2005. The historical bases of the Rayleigh and Ritz methods. *Journal of Sound and Vibration*, 287(4-5), pp.961-978.
- [10] Cheung, Y.K. and Zhou, D., 2000. Vibrations of moderately thick rectangular plates in terms of a set of static Timoshenko beam functions. *Computers & Structures*, 78(6), pp.757-768.
- [11] Kumar, Y., 2022. Effect of Elastically Restrained Edges on Free Transverse Vibration of Functionally Graded Porous Rectangular Plate. *Mechanics of Advanced Composite Structures*, 9(2), pp.335-348.
- [12] Dawe, D.J. and Roufaeil, O.L., 1980. Rayleigh-Ritz vibration analysis of Mindlin plates. *Journal of Sound and Vibration*, 69(3), pp.345-359.
- [13] Sadrnejad, S.A., Daryan, A.S. and Ziaei, M., 2009. Vibration equations of thick rectangular plates using mindlin plate theory. *Journal of Computer Science*, 5(11), p.838.
- [14] Lee, J.M. and Kim, K.C., 1995. Vibration analysis of rectangular Isotropic thick plates using Mindlin plate characteristic functions. *Journal of Sound and Vibration*, 187(5), pp.865-867.
- [15] Senjanović, I., Tomić, M., Vladimir, N. and Cho, D.S., 2013. Analytical solution for free vibrations of a moderately thick rectangular plate. *Mathematical Problems in Engineering*, p.207460.
- [16] Kashtalyan, M., 2004. Three-dimensional elasticity solution for bending of functionally graded rectangular plates. *European Journal of Mechanics-A/Solids*, 23(5), pp.853-864.
- [17] Kolarevic, N., Nefovska-Danilovic, M. and Petronijevic, M., 2015. Dynamic stiffness

- elements for free vibration analysis of rectangular Mindlin plate assemblies. *Journal of Sound and Vibration*, 359, pp.84-106.
- [18] Ghaheri, A. and Nosier, A., 2015. Nonlinear forced vibrations of thin circular functionally graded plates. *Journal of Science and Technology of Composites*, 1(2), pp.1-10.
- [19] Torabi, K., Afshari, H. and Heidari-Rarani, M., 2014. Free vibration analysis of a rotating non-uniform blade with multiple open cracks using DQEM. *Universal Journal of mechanical Engineering*, 2(3), pp.101-111.
- [20] Uymaz, B. and Aydogdu, M., 2007. Three-dimensional vibration analyses of functionally graded plates under various boundary conditions. *Journal of Reinforced Plastics and Composites*, 26(18), pp.1847-1863.
- [21] Chi, S.H. and Chung, Y.L., 2006. Mechanical behavior of functionally graded material plates under transverse load—Part I: Analysis. *International Journal of Solids and Structures*, 43(13), pp.3657-3674.
- [22] Ma, Y.Q. and Ang, K.K., 2006. Free vibration of Mindlin plates based on the relative displacement plate element. *Finite elements in analysis and design*, 42(11), pp.1021-1028.
- [23] Verma, Y. and Datta, N., 2018. Comprehensive study of free vibration of rectangular Mindlin's plates with rotationally constrained edges using dynamic Timoshenko trial functions. *Engineering Transactions*, 66(2), pp.129-160.
- [24] Chakraverty, S. and Pradhan, K.K., 2014. Free vibration of functionally graded thin rectangular plates resting on Winkler elastic foundation with general boundary conditions using Rayleigh-Ritz method. International Journal of Applied Mechanics, 6(04), p.1450043.
- [25] Sakiyama, T. and Matsuda, H., 1987. Free vibration of rectangular Mindlin plate with mixed boundary conditions. *Journal of Sound Vibration*, 113(1), pp.208-214.

- [26] Kumar, S., Ranjan, V. and Jana, P., 2018. Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method. *Composite* Structures, 197, pp.39-53.
- [27] Pratap Singh, P., Azam, M.S. and Ranjan, V., 2019. Vibration analysis of a thin functionally graded plate having an out of plane material inhomogeneity resting on Winkler–Pasternak foundation under different combinations of boundary conditions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(8), pp.2636-2662.
- [28] Hashemi, S.H. and Arsanjani, M., 2005. Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. International *Journal of Solids and Structures*, 42(3-4), pp.819-853.
- [29] Bert, C.W. and Malik, M., 1996. Free vibration analysis of tapered rectangular plates by differential quadrature method: a semi-analytical approach. *Journal of Sound and Vibration*, 190(1), pp.41-63.
- [30] Biswas, A., Mahapatra, D., Mondal, S.C. and Sarkar, S., 2024. Higher Order Approximations for Bending of FG Beams Using B-Spline Collocation Technique. *Mechanics of Advanced Composite Structures*, 11(1), pp.159-176.
- [31] Srivastava, M.C. and Singh, J., 2023.
 Assessment of RBFs Based Meshfree Method for the Vibration Response of FGM Rectangular Plate Using HSDT Model. *Mechanics Of Advanced Composite Structures*, 10(1), pp.137-150.
- [32] Leissa, A.W., 1973. The free vibration of rectangular plates. *Journal of sound and vibration*, 31(3), pp.257-293.
- [33] Rao, G.V., Saheb, K.M. and Janardhan, G.R., 2006. Concept of coupled displacement field for large amplitude free vibrations of shear flexible beams. *Journal of and* acoustics, 128(2), pp.251-255.

- [34] KrishnaBhaskar, K. and MeeraSaheb, K., 2017. Effect of aspect ratio on large amplitude free vibrations of simply supported and clamped rectangular Mindlin plates using coupled displacement field method. *Journal of Mechanical Science and Technology*, 31(5), pp.2093-2103.
- [35] Reddy, G. and Kumar, N.V., 2023. Free vibration analysis of 2d functionally graded porous beams using novel higher-order theory. *Mechanics Of Advanced Composite Structures*, 10(1), pp.69-84.
- [36] Razouki, A., Boutahar, L. and El Bikri, K., 2020. A New Method of Resolution of the Bending of Thick FGM Beams Based on Refined Higher Order Shear Deformation Theory. *Universal Journal of Mechanical Engineering*. 8(2), pp.105-113.
- [37] Khorshidi, K., Fallah, A. and Siahpush, A., 2017. Free vibrations analaysis of functionally graded composite rectangular na-noplate based on nonlocal exponential shear deformation theory in thermal environment. *Journal of Science and Technology of Composites*, 4(1), pp.109-120.
- [38] Talha, M. and Singh, B., 2010. Static response and free vibration analysis of FGM plates using higher order shear deformation theory. *Applied mathematical modelling*, 34(12), pp.3991-4011.
- [39] Baferani, A.H., Saidi, A.R. and Jomehzadeh, E., 2011. An exact solution for free vibration of thin functionally graded rectangular plates. *Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science*, 225(3), pp.526-536.
- [40] Chauhan, M., Ranjan, V. and Sathujoda, P., 2019. Dynamic stiffness method for free vibration analysis of thin functionally graded rectangular plates. *Vibroengineering Procedia*, 29, pp.76-81.
- [41] Bhat, R.B., 1985. Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-Ritz method. *Journal of sound and vibration*, 102(4), pp.493-499.

- [42] Liew, K.M., Lam, K.Y. and Chow, S.T., 1990. Free vibration analysis of rectangular plates using orthogonal plate function. *Computers & Structures*, 34(1), pp.79-85.
- [43] Boay, C.G., 1993. Free vibration of rectangular isotropic plates with and without a concentrated mass. *Computers & structures*, 48(3), pp.529-533.