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 Machine Learning has become prevalent nowadays for predicting data on the mechanical 

properties of various materials and is widely used in various polymeric applications. In the 

present study, Artificial Neural Network (ANN), a computational tool is used to predict the 

elastic modulus of a composite of longitudinally placed fiber-reinforced polymeric composite. 

The novelty in carried work is that the property prediction is carried out considering 

interphase and its properties. For this, tensile properties data of Longitudinally Placed 

Bamboo Fiber Reinforced Polyester Composite (LUDBPC), Longitudinally Placed Flax Fiber 

Reinforced Polyester Composite (LUDFPC) and Longitudinally Placed Jute Fiber Reinforced 

Polyester Composite (LUDJPC) has been procured to generate ANN models. The Levenberg-

Marquardt training algorithm is used to generate the ANN models as it gives more accurate 

results compared to other ANN algorithms based on interphase properties data. The 

validation of ANN models was also carried out based on fresh experimental results of 

BPC/FPC by doing the fabrication with hand layup technique and testing of composites with 

a Universal Testing Machine (UTM). The present work signifies that the developed ANN 

models give accurate results with experimental results for the prediction of elastic modulus 

of composite (Ecl) and it can be used for the prediction of longitudinally placed fiber-

reinforced composite and Ecl of BPC at volume fraction of fiber (vf):22% is 2248.75 MPa and 

Ecl of FPC at vf:10% is 3210.50 MPa. 
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1. Introduction 

Polymer matrix composites have been 
boomed as the best upbeat advanced material 
that can swap conventional materials such as 
metals and woods [1-3]. Polymer matrix 
composites have a high strength-to-weight ratio, 
high corrosion resistance, excellent fatigue 

resistance, low coefficient to thermal expansion, 
superior thermal insulation, recyclable and 
environmentally friendly, relatively low cost, 
aesthetic color effect, etc. over conventional 
materials [4-6]. Hence, the polymer composite is 
selected as a part of the present study. 

Mechanical characterization is an important 
cycle process for the development and design of 
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composite materials and their components [7]. 
Tensile properties for various natural fiber and 
natural fiber-reinforced polymeric composites 
were examined at different strain rates using 
experimental investigations [8-9]. Flexural 
properties of 3D printed wood dust-reinforced 
PLA composite were investigated experimentally 
[10]. Wear and friction characteristics of chopped 
carbon composite were investigated 
experimentally by varying parameters load, 
sliding distance, and disc speed [11]. Flexural 
properties were investigated at different weight 
fractions of fiber for longitudinally placed and 
transversely placed natural and synthetic fiber-
reinforced polymeric composites [12]. It has been 
found that data prediction for mechanical and 
tribological characterization of anisotropic 
composites by performing numerous 
experiments is a challenge in the field of 
composite. Machine learning can be implemented 
for data prediction in various mechanical 
engineering applications [13]. Hence, in the 
present work, the data prediction for tensile 
properties has been targeted using machine 
learning concepts because machine learning has 
become a vital part of engineering and artificial 
intelligence for data analysis [14]. Machine 
learning is a set of many algorithms and 
techniques, which utilize design systems that can 
learn from data. It is a kind of traditional 
programming that inputs data and programs to 
get the output[15]. 

Artificial Neural Network (ANN) has the 
potential to minimize the efforts & time and to 
obtain a more effective system for mechanical-
based design, fault identification, and accurate 
data prediction [16].  Artificial Neural Network is 
an effective tool for the prediction so it was 
decided to use it for the mechanical 
characterization data prediction. 

The need for natural fiber-based products has 
increased instead of synthetic fiber in many 
applications such as door panels, household 
furniture, load floors, packaging trays, chassis of 
lightweight cars, etc. [17-18] and these eco-
friendly biocomposites development is the right 
step to achieve sustainable development goals 
[19-20]. Natural fiber has lots of benefits over 
synthetic fibers in terms of properties like low 
cost, low density, recyclable, biodegradable, no 
skin irritation, relatively high strength and 
stiffness, eco-friendly behavior to the 
environment, easily processed, etc. [21-27]. NF 
takes over synthetic fiber for cases such as the 
requirement of low-cost, lightweight, and 
medium-strength fiber-based applications like 
cupboards, tables, chairs, sofas, etc., in furniture 
work [28]. Hence, a natural fiber-reinforced 
polymeric composite has been chosen for the 
present study. 

2. ANN Approach 

Chokshi & Gohil (2022) developed 
mathematical models to predict the elastic 
modulus of longitudinally placed natural fiber-
reinforced polymeric composites including 
interphase volume fraction from 1% to 20% and 
varying interphase property variations such as 
linear variation, hyperbolic variation, parabolic 
variation, power-law variation and exponential 
variation as shown in Fig. 1 [29]. 

Based on this analytical data, inputs, and 
output were decided to generate ANN models 
using Alyuda NeuroIntelligence Software as 
shown in Table 1. 

The seven training algorithms: Quick 
Propagation, Conjugate Gradient Descent, Quasi-
Newton, Limited Memory Quasi-Newton, 
Levenberg-Marquardt, Online Back Propagation, 
and Batch Back Propagation were accessible to 
generate ANN models. Using these seven training 
algorithms, results for the elastic modulus of 
composite for longitudinally placed 
Glass/Polyester composites were checked with 
49 readings by varying volume fractions of fiber: 
0.1619, 0.1618, 0.2013, 0.2729, 0.3389, 0.4108, 
0.5729, Interphase:1%, 3%, 6%, 9%, 12%, 15%, 
20% and different types of variation: Linear 
variation, Hyperbolic variation, Parabolic 
variation, Power law variation, Exponential 
variation as shown in Table 2 [31]. As per Table 
2, the Levenberg-Marquardt training algorithm 
was chosen for the present work because it gives 
more accurate results for longitudinally placed 
composites. 

Inputs were selected as Volume fraction of 
fiber (vf), Interphase volume fraction (vi), and 
Interphase property variations and output was 
selected as Elastic modulus of Composite (Ecl) to 
generate ANN models. 140 Input and Output 
values were inserted for each composite: 
LUDBPC, LUDFPC, and LUDJPC to generate ANN 
models based on Table 1. Here, bamboo fiber, flax 
fiber, and jute fiber were selected as per the 
availability of natural fibers. 

ANN approach includes design, training, and 
testing during the generating of ANN 
architecture.  The design architecture of LUDBPC 
is shown in Fig. 2. Here, [10-5-1] architecture is 
selected for training hidden layers, where 
vf1,vf2,vf3,vf4, vi, linear variation, hyperbolic 
variation, parabolic variation, power-law 
variation, exponential variation, and Ecl are 
considered as encoded data for preprocessing. 
Out of 140 records, 96 records were used for the 
Training set (68.57%), 22 records were used for 
the Validation set (15.71%) and 22 records were 
used for the Test set (15.71%). Similar kinds of 
architectures were observed for the LUDFPC and 
LUDJPC. 
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Fig. 1. Geometry to develop mathematical modeling of Composite [29-30] 

Table 1. Data of Input and Output to generate ANN models 

Input Output 
The volume fraction of fiber 
(vf) 

Interphase 
volume 
fraction vi (%) 

Interphase 
property 
variations 

Elastic 
modulus of 
Composite (Ecl) 

Composite LUDBPC LUDFPC LUDJPC 
vf1 0.37 0.36 0.30 vi1=1 

vi2=3 
vi3=6 
vi4=9 
vi5=12 
vi6=15 
vi7=20 

Linear  
Hyperbolic 
Parabolic 
Power law 
Exponential 

vf2 0.31 0.29 0.27 
vf3 0.22 0.25 0.23 
vf4 0.16 0.20 0.21 

Input : 4×7×5= 140 Values; Output = 140 Values for each 
composite 

Table 2. Results to select ANN Training Algorithm to build 
ANN model 

Sr.  

No. 
ANN Training Algorithms 

Analy
tical 

Error 
(%) 

Experi
mental 

Error 
(%) 

1 Quick Propagation 3.13 8.82 

2 
Conjugate Gradient 
Descent 

1.98 8.00 

3 Quasi-Newton 2.35 8.71 

4 
 Limited Memory Quasi-
Newton 

1.57 8.08 

5 Levenberg-Marquardt 1.55 7.72 

6 Online Back Propagation 6.62 10.23 

7 Batch Back Propagation 37.10 35.26 

 
Fig. 2. Design architecture of ANN for LUDBPC [10-5-1] 

3. Results and Discussion 

The results obtained through the ANN 
approach for longitudinally placed fiber-
reinforced composites are discussed here. ANN 
results summary actual vs output for all results 
including training, validation, and testing for 

C 

C 

N
N
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LUDBPC is shown in Table 3, where AE is 
Absolute Error and ARE is Absolute Relative 
Error. Similar kind of results were obtained for 
LUDFPC and LUDJPC. 

Table 3. Summary of ANN results: Actual vs Output for 
LUDBPC 

LUDBPC 
Target/
Actual 

Output 
 AE 

(%) 

 ARE 

(%) 

Mean 2228.23 2228.36 2.10 0.00 

Std Dev 275.96 275.84 1.78 0.00 

Min 1820.32 1827.98 0.07 0.00 

Max 2670.89 2666.37 12.59 0.01 

Correlation: 0.99 and R2: 0.99 

From Table 3, it is observed that the results of 
AE and ARE are found less and the R2 value is 
found 0.99 for LUDBPC which is close to 1, which 
reveals the good accuracy of the regression of the 
ANN model with actual. Similar observations 
were found in LUDFPC and LUDJPC. 

The analytical results were generated through 
the mathematical model and ANN model for 
interphase volume fraction 5% and 10% of fiber 
volume fraction for longitudinally placed 
unidirectional composites i.e., LUDBPC, LUDFPC, 
and LUDJPC, which were not used to generate the 
ANN models to check the developed ANN model 
perfectness. The obtained results of LUDBPC 
were compared as shown in Table 4 and measure 
error and average bias error using equation 1. 
Similar kind of results were observed for LUDFPC 
and LUDJPC.  

Table 4. Comparison of ANN results with Analytical results for LUDBPC (Sample result table) 

Sr. 
No. 

vf 
vi 
(%) 

Types of  
variation 

ANN Ecl 
(MPa) 

Analytical Ecl 
(MPa) 

Error  
(%) 

1 0.37 5 Linear 2634.40 2644.09 0.37 
2 0.31 5 Linear 2420.80 2432.20 0.47 
3 0.22 5 Linear 2107.23 2114.38 0.34 
4 0.16 5 Linear 1895.05 1902.49 0.39 
5 0.37 5 Hyperbolic 2634.38 2643.80 0.36 
6 0.31 5 Hyperbolic 2417.63 2431.96 0.59 
7 0.22 5 Hyperbolic 2104.92 2114.21 0.44 
8 0.16 5 Hyperbolic 1893.30 1902.37 0.48 
9 0.37 5 Parabolic 2627.85 2632.94 0.19 
10 0.31 5 Parabolic 2418.03 2422.84 0.20 
11 0.22 5 Parabolic 2103.42 2107.74 0.21 
12 0.16 5 Parabolic 1890.57 1897.66 0.37 
13 0.37 5 Power law 2629.53 2636.83 0.28 
14 0.31 5 Power law 2418.49 2426.13 0.31 
15 0.22 5 Power law 2104.45 2110.06 0.27 
16 0.16 5 Power law 1891.39 1899.36 0.42 
17 0.37 5 Exponential 2631.91 2636.97 0.19 
18 0.31 5 Exponential 2419.89 2426.24 0.26 
19 0.22 5 Exponential 2104.83 2110.15 0.25 
20 0.16 5 Exponential 1892.92 1899.42 0.34 
21 0.37 10 Linear 2579.61 2588.55 0.35 
22 0.31 10 Linear 2382.30 2385.67 0.14 
23 0.22 10 Linear 2078.60 2081.35 0.13 
24 0.16 10 Linear 1876.73 1878.48 0.09 
25 0.37 10 Hyperbolic 2577.62 2587.63 0.39 
26 0.31 10 Hyperbolic 2378.22 2384.90 0.28 
27 0.22 10 Hyperbolic 2075.41 2080.81 0.26 
28 0.16 10 Hyperbolic 1879.34 1878.08 0.07 
29 0.37 10 Parabolic 2566.17 2576.32 0.39 
30 0.31 10 Parabolic 2369.07 2375.42 0.27 
31 0.22 10 Parabolic 2069.64 2074.09 0.21 
32 0.16 10 Parabolic 1872.99 1873.19 0.01 
33 0.37 10 Power law 2570.02 2582.93 0.50 
34 0.31 10 Power law 2373.14 2380.97 0.33 
35 0.22 10 Power law 2072.27 2078.02 0.28 
36 0.16 10 Power law 1874.73 1876.05 0.07 
37 0.37 10 Exponential 2572.46 2583.40 0.42 
38 0.31 10 Exponential 2376.11 2381.36 0.22 
39 0.22 10 Exponential 2073.98 2078.29 0.21 
40 0.16 10 Exponential 1874.71 1876.25 0.08 

Average Bias Error (%): 0.29 
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Error(%) = |
Ecl
ANN − Ecl

Analytical

Ecl
ANN

× 100| 
(1) 

The summary of average bias errors is shown 
in Table 5. The analytical results were generated 
using mathematical models as shown in equation 
2, which can effectively predict Ecl by considering 
the vi for longitudinally placed composite. These 
developed mathematical models have good 
accuracy with experimental data, and other 
researchers’ data and are best compared to other 
researchers’ models [26]. 

Ecl = (Efvfn) + (Eivi) + (Emvm) 

Where, vi = x × vf and  x = 0.01 to 0.20  
(2) 

Table 5. Summary of average bias errors 

Sr. No. Composites 
Average Bias 
Errors (%) 

1 LUDBPC 0.29 

2 LUDFPC 0.83 

3 LUDJPC 0.50 

From Table 5, it is observed that the average 
bias errors are found 0.29% for LUDBPC, 0.83% 
for LUDFPC, and 0.50% for LUDJPC, which are 
very low and below 10%. It shows that the ANN 
model is in agreement with analytical results 
developed through mathematical models for 
longitudinally placed fiber-reinforced 
composites. Moreno et al. (2013) reported that 
mean absolute percentage error <10 is highly 
accurate forecasting for Artificial Neural Network 
(ANN) and Autoregressive Integrated Moving 
Average (ARIMA) models, which also reveals that 
presented ANN results have good accuracy in all 
types of composites [32]. 

4. Validation 

For the validation of ANN models for 
longitudinally placed fiber-reinforced 
composites with experimental work, it was 
decided to use fresh experimental results for 
bamboo/polyester composites (BPC) and 
flax/polyester composites (FPC). For this, 
fabrication and tensile testing of longitudinally 
placed BPC and longitudinally placed FPC were 
carried out using the hand layup method and 
UTM as shown in Fig. 3 and Fig. 4.  

  
Fig. 3. Fabricated plates of longitudinally placed BPC and 

FPC 

 

Fig. 4. Tensile testing of the composite specimen on 
UTM 

The tensile testing was carried out as per 
ASTM D3039/3039M-08 [33]. The experimental 
results through the fabrication and testing of 
composites are shown in Table 6 and the Stress-
Strain graph for BPC and FPC are depicted in Fig. 
5 and Fig. 6 respectively. 

Table 6. Experimental results for the validation of ANN 

Sr. No. Composites vf 
Ecl 

(MPa) 

1 BPC 0.22 2248.75 

2 FPC 0.10 3210.50 
 

 
Fig 5. Stress-Strain graph for BPC 
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Fig. 6. Stress-Strain graph for FPC 

The calculated elastic modulus composite 
through the ANN approach is compared with an 
experimental elastic modulus of composite to 
measure the error and average bias errors as 

shown in Table 7 and Table 8, where error is 
found using equation 3. 

ror(%) = |
Ecl
ANN − Ecl

Experimental

Ecl
ANN

× 100| (3) 

From Table 7 and Table 8, it is observed that 
the average bias error is 9.65% for BPC and 
2.55% for FPC, which reveals the good accuracy 
of regression of ANN results with experimental 
results. Hence, it can be said that the ANN 
approach is validated through experimental work 
for longitudinally placed fiber-reinforced 
composites. 

Table 7. Comparison of ANN results with experimental results for BPC 

Sr.  
No. 

Composites vf 
vi 
(%) 

Types of 
variation 

ANN Ecl 
(MPa) 

Experimental Ecl 
(MPa) 

Error  
(%) 

1 BPC 0.22 15 Linear 2038.96 2248.75 9.33 
2 BPC 0.22 20 Linear 2022.79 2248.75 10.05 
3 BPC 0.22 15 Hyperbolic 2040.50 2248.75 9.26 
4 BPC 0.22 20 Hyperbolic 2023.70 2248.75 10.01 
5 BPC 0.22 15 Parabolic 2040.82 2248.75 9.25 
6 BPC 0.22 20 Parabolic 2029.75 2248.75 9.74 
7 BPC 0.22 15 Power law 2034.30 2248.75 9.54 
8 BPC 0.22 20 Power law 2021.40 2248.75 10.11 
9 BPC 0.22 15 Exponential 2038.62 2248.75 9.34 
10 BPC 0.22 20 Exponential 2026.40 2248.75 9.89 

Average Bias Error (%): 9.65 

Table 8. Comparison of ANN results with experimental results for FPC 

Sr.  
No. 

Composites vf 
vi 

(%) 
Types of 
variation 

ANN Ecl 
(MPa) 

Experimental Ecl 
(MPa) 

Error  
(%) 

1 FPC 0.10 15 Linear 3134.64 3210.50 2.36 
2 FPC 0.10 20 Linear 3126.76 3210.50 2.61 
3 FPC 0.10 15 Hyperbolic 3131.21 3210.50 2.47 
4 FPC 0.10 20 Hyperbolic 3125.99 3210.50 2.63 
5 FPC 0.10 15 Parabolic 3130.07 3210.50 2.51 
6 FPC 0.10 20 Parabolic 3124.84 3210.50 2.67 
7 FPC 0.10 15 Power law 3130.95 3210.50 2.48 
8 FPC 0.10 20 Power law 3125.57 3210.50 2.65 
9 FPC 0.10 15 Exponential 3131.41 3210.50 2.46 
10 FPC 0.10 20 Exponential 3125.56 3210.50 2.65 

Average Bias Error (%): 2.55 

Table 9. Experimental Data of Bolcu et al. (2004) for Validation 

Sr. No. Composite 
Composite 
Code 

Ef Em vf Ecl (MPa) Reference 

1 
Flax/Epoxy 
Composites (FEC) 

FEC-1 28000 4500 0.40 12920 
[34] 2 FEC-2 28000 4500 0.50 15450 

3 FEC-3 28000 4500 0.60 17770 

Table 10. Comparison of Bolcu et al. (2004) experimental data with ANN results 

Sr. 
No. 

Composite 
Code 

vf 
vi 
(%) 

Types of 
variation 

ANN  
Ecl 
(MPa) 

Experimental 
Ecl 
(MPa) 

Error 
(%) 

1 

FEC-2 

0.5 15 Linear  15374.62 15450 0.49 
2 0.5 15 Hyperbolic  15242.72 15450 1.34 
3 0.5 12 Parabolic  16611.78 15450 7.52 
4 0.5 15 Powerlaw  14568.18 15450 5.71 
5 0.5 12 Exponential  16545.23 15450 7.09 

Average Bias Error (%): 4.43 
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For the validation of ANN models for 
longitudinally placed fiber-reinforced 
composites with existing literature, it was 
decided to use the results of Bolcu et al. (2004) 
for Flax/Epoxy Composites (FEC) as shown in 
Table 9 [34]. ANN model was created using the 
experimental data of FEC-1 & FEC-3 and 
validated using experimental data of FEC-2 for 
random five inputs as shown in Table 10. 

From Table 10, it is observed that the average 
bias error is 4.43% for FEC-2, which reveals the 
good accuracy of regression of ANN results with 
experimental results of Bolcu et al. (2004). Hence, 
it can be said that the ANN approach is also 
validated through existing literature for 
longitudinally placed fiber-reinforced 
composites. Therefore, the ANN approach may be 
used to predict the longitudinal elastic modulus 
of the composite. 

5. Conclusion 

Ecl of BPC at 22% vf is reported as 2248.75 
MPa and Ecl of FPC at 10% vf is reported as 
3210.50 MPa as per experimental findings. 

The predicted results for the longitudinal 
elastic modulus of composites through the ANN 
approach are in good agreement with results 
developed through proposed mathematical 
models, justifying that the ANN approach can be 
used to predict the longitudinal elastic modulus 
of composites. Similarly, the validations of ANN 
results for longitudinally placed fiber-reinforced 
composite with experimental results are also in 
good agreement, reconfirming the same fact that 
the ANN approach can be used to predict the 
longitudinal elastic modulus of composites. 

The developed ANN approach can be used for 
the tensile property prediction of longitudinally 
placed fiber-reinforced composite. 

A good amount of data is essential to generate 
an accurate ANN model. 

This ANN approach can also be used in the 
prediction of transversely placed fiber-reinforced 
composite. 

This ANN approach can also be used in the 
prediction of other mechanical properties: 
flexural properties, compressive properties, 
impact properties, tribological properties, etc. 

Nomenclature 

LUDBPC Longitudinally Placed Bamboo 
Fiber Reinforced Polyester 
Composite 

LUDFPC Longitudinally Placed Flax Fiber 
Reinforced Polyester Composite 

LUDJPC Longitudinally Placed Jute Fiber 
Reinforced Polyester Composite 

ANN Artificial Neural Network 

UTM Universal Testing Machine 

vf The volume fraction of fiber 

vi Interphase volume fraction 

Ecl Elastic modulus of Composite 

Ef Elastic modulus of fiber 

Ei Elastic modulus of interphase 

Em Elastic modulus of the matrix 

AE Absolute Error   

ARE Absolute Relative Error 

BPC Bamboo/Polyester composite 

FEC Flax/Epoxy Composites  
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