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 3D printing is one of the most popular methods for prototyping and manufacturing 

lightweight and complex parts in recent years. The fused filament fabrication (FFF) method 

is preferred due to its ease of operation. Different plastics can be used as additive materials, 

such as filaments.  To enhance the mechanical properties of 3D printed products researchers 

are developing new composite materials. By varying the parameters associated with the 

manufacturing of these materials, mechanical properties can be altered. This study aimed to 

find out the effect of printing parameters in Carbon fiber-reinforced Nylon to get better 

mechanical properties. In this study chopped carbon fibers are reinforced in Nylon base 

material to get the ‘FFF 3D printing’ filament material. Infill density and shell perimeter were 

varied to get different specimen types. The specimens were prepared as per the ASTM 

standards for the tensile, flexural, and impact testing.  Machine learning is used to predict the 

parameters for tensile, flexural, and impact strength. The study shows the effect of printing 

parameters on mechanical properties like flexural strength and tensile strength. Infill 

percentage shows a significant effect on mechanical strength. The ML regression model shows 

higher accuracy for tensile strength than the flexural and impact strength. 
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1. Introduction 

3D printing is also known as rapid 
prototyping. It is popular for producing 
prototypes at a fast speed and with low wastage. 
Different types of 3D printing are selective 
stereolithography (SLA), selective laser melting 
(SLM), fused filament fabrication (FFF) or 
material extrusion (MEX), and laminated body 
manufacturing (LBM) [1]. The plastic filament of 
small diameter is fed to the nozzle and the object 
is built layer by layer [2,3]. This ease in FFF is 

popular among industry and researchers. The 
lightweight part is easy to post-process [4-6]. The 
deposition of layers and forming of the part is 
carried out with the help of slicing software. In 
the slicing process, various parameters are 
selected. Studies are carried out to see the effect 
of infill percentage, infill pattern, shell thickness, 
raster angle, printing temperature, and printing 
speed[7,8]. Different studies have been carried 
out to optimize different parameters for 3D 
printing. ‘Desing of Experiments, DoEs’ have been 
set up to get the results [9]. 
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The polymers used in 3D printing need to be 
optimized for suitable industrial use. The need 
for better working properties led to the use of 
composite filament[10-12]. The flexibility of the 
process is that the user can use different 
materials in different filament forms. 
Researchers have tried to improve properties by 
adding natural fibers, synthetic fibers, metallic 
particles, wooden particles, and natural particles 
to get better results. In natural fibers, coconut 
husk, bamboo, hemp, and rice straw fibers are 
used in the composite material. Natural fibers 
have limitations in use [13]. To overcome these 
limitations synthetic fibers like glass, Kevlar, 
Graphene, and Carbon fiber are used [14,15]. 
Carbon fiber is the most preferred material by 
researchers. Carbon fibers are used with 
different base materials like PLA, Nylon, PETG, 
and ABS [16,17]. In one of the studies for 
biomedical and aerospace applications, layer 
thickness was found to play a key role in 
determining material strength. This study found 
that thinner layers (0.1 mm) and higher infill 
densities improve the tensile, flexural, and 
impact strengths of polyamide samples due to 
better bonding and fewer air voids [18]. The 
degradation of mechanical properties in the 
composite material exposed to sunlight was 
studied with reference to the infill density and 
layer thickness. FTIR analysis and scanning 
electron microscopy (SEM) revealed the surface 
degradation, the internal structure remained 
stable, primarily influenced by infill density and 
layer thickness [19]. Carbon fibers are used in 
two methods. It can be extruded by a nozzle on 
plastic, or it can be embedded in the filaments 
[20,21]. Digamba Bilkar et al.  [22]developed a 
filament by adding Carbon nanofiber to the ABS 
filament and tested the mechanical properties. 
Improved mechanical properties were found in 
this study. Dilip S. Choudhari et al [23] added 
chopped Carbon fiber to Nylon 66 in different 
weight percentages. Better mechanical 
properties were observed for an increased 
percentage of Carbon fiber. Common printing 
errors like nozzle jams and layer misalignments 
remain a challenge in Fused Filament Fabrication 
(FFF), leading to material and time waste. Zhang 
et al. introduced a deep learning (DL)--based 
method to monitor and detect printing failures in 
real-time, achieving high accuracy in beta tests on 
a commercial FFF setup [24]. In a one-of-a-kind 
review, Nishata Royan et al. [25] summarized the 
advantages and limitations of natural fiber. It also 
highlighted that the use of natural fiber 
composite led to the betterment of properties. 
Ibrahim M. Alarifi [26] evaluated the 
performance of the 3D-printed combination of 
nylon and glass fiber. He considered different 
raster orientations and performed flexural tests. 

Improved flexural strength was observed in his 
study. Ismail Fidan et al. [27] studied the current 
trends in fiber-reinforced additive 
manufacturing (FRAM). They highlighted the 
effect of different fibers used and their effect on 
the mechanical properties. The study also 
pointed out the application of FRAM in the 
current scenario. Mahdi Mohammadizadeh et Al. 
[28] found out that the orientation of carbon fiber 
has a substantial effect on mechanical properties. 
Orkhan Huseynov et al. [29] studied the effect of 
the matrix on the thermal properties of the 
composite materials. Mishra et. al. [30] examined 
the low-energy impact resistance of 3D-printed 
thermoplastic and thermoset carbon fiber 
composites, focusing on infill density effects 
through Izod impact testing. Heat treatment 
effects were also evaluated, with fracture 
surfaces analyzed by scanning electron 
microscopy. It was found that infill density and 
fiber type strongly affect the impact resistance, 
with coextruded fiber composites at 75% infill 
achieving the highest impact resistance. 

It was felt that instead of testing the 3D 
printed part for one particular type of loading; 
impact, tensile, and flexural testing need to be 
carried out in a single study. It was concluded 
that a machine learning approach is necessary to 
predict the 3D printing parameters. Hence as a 
novel approach, machine learning was applied to 
find the optimal 3D printing parameters for 
improving the mechanical properties of Carbon 
fiber-reinforced nylon. The following tasks were 
identified and accomplished in this study. 

1. Selection of the material - Carbon fibers were 
chopped and reinforced into a Nylon base to 
create the filament material for FFF 3D 
printing. 

2. To vary infill density and shell perimeter to 
produce different specimen types. 

3. To prepare the samples in accordance with 
ASTM standards for tensile, flexural, and 
impact testing. 

4. Apply a machine learning regression model 
to predict the effect of printing parameters to 
enhance the tensile, flexural, and impact 
strength. 

2. Material and Methodology  

2.1. Methodology 

Based on the literature review 3D printing 
parameters were selected with the help of 
literature reviews. External shell perimeter and 
infill percentage affect the mechanical properties 
of the 3D printed part. Three levels were selected 
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as low, medium, and high for the Taguchi L9 
array. The external shell count 2 was selected as 
low and 6 as high level. Infill density was varied 
from 20 to 60 percent. Table 1 shows three 
different levels selected for the specimen 
preparation. 

Table 1. Design of experiment 

Level 

Parameters 

External Shell 

Count 

Infill 

Density 

Level I (Low) 2 20  

Level II (Medium)  4 40 

Level III (High) 6 60 

2.2.  Material 

The filament was provided by Anisoprint. It 
was manufactured by adding chopped Carbon 
fiber to the Nylon polymer material. Chopped 
Carbon fiber with 1.75 mm diameter was used for 
this addition.  

2.3.  3D Printer 

Composer A4, a 3D printer manufactured by 
Anisoprint was used for this study. This is one of 
the desktop 3D printers, that works on composite 
fiber co-extrusion as well as FFF technology. This 
printer uses Aura II as slicing software. The 
nozzle (hardened) diameter was 0.4 mm. This 
printer has a layer resolution of up to 100 
microns. Figure 1 shows the Anisoprint 
Composer A4, a 3D printer used for 
manufacturing the specimen whereas Table 2 has 
the key parameters used in the 3D printing of the 
specimen. 

 
Fig. 1. Anisoprint Composer A4, 3D printer 

Table 2. A key parameter in 3D printing 

Sr. 

No. 
Parameter Value Set 

1 Printing temperature 250° 

2 Build plate temperature 40° 

3 Infill pattern Anisogrid 

4 Top and bottom layer count 2 

5 Layer height 0.2 mm 

2.4.  External Shell Count 

The shell perimeter in 3D printing refers to 
the outer walls or layers that form the external 
boundary of the printed object. It represents the 
number of solid layers or "shells" that are printed 
around the infill structure. A thicker shell (with 
more perimeter layers) increases the strength, 
durability, and surface quality of the object, as it 
provides a more robust outer structure, 
protecting the internal infill. The shell perimeter 
is typically set in terms of the number of layers or 
wall thickness, and adjusting it influences the 
mechanical properties and print quality of the 
final part. Three levels of shell perimeters 
selected for this study are mentioned below. 

Shell count 2 was assigned as low level as it is 
the basic level required to form a rigid body 
whereas 4 was assigned to a medium level. 6 was 
assigned as high level as the increase in shell 
thickness increases material requirement and 
deposition time. 

2.5.  Infill Density 

Infill density in a 3D-printed part refers to the 
amount of material used to fill the interior of the 
object. It is expressed as a percentage, where 0% 
represents a completely hollow object, and 100% 
indicates a fully solid part. The infill density 
affects the part's weight, strength, and material 
usage. Higher infill densities increase the 
strength and rigidity of the printed object but use 
more material and require longer printing time. 
Lower infill densities make the object lighter and 
quicker to print but reduce its structural 
integrity. Three levels of densities were selected 
20%, 40%, and 60%. 20% is considered a low 
level, as it provides sufficient infill strength 
against compression required to form a rigid 
body. 60% is considered a high level because the 
increase in infill percentage beyond 60% will 
decrease the air gap inside the body, resulting in 
a nearly solid body. 

2.6.  Sample Preparation 

Specimens were prepared as per the ASTM D 
standards. The following subsection discusses 
the details of the three different tests. 

2.6.1. Izod Impact Test  

The impact test specimen is a small, notched 
sample. The notch is a critical feature as it creates 
a localized stress concentration, which influences 
how the material will fracture under the impact. 
The absorbed impact energy is recorded in Joules 
and indicates the material's ability to resist the 
impact forces. Higher energy absorption 
indicates better impact resistance.  
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Figure 2a shows the Izod impact test 
specimen prepared as per the ASTM D 256 
standard [31] whereas Figure 2b shows the Izod 
impact test setup. 

 
Fig. 2a. Izod impact test specimen (Notched) 

 ASTM D256 standard 

 
Fig. 2b. Izod impact test setup 

2.6.2. Flexural Test  

The ASTM D 790 standard [32] Specifies the 
procedure for conducting a flexural test. Unlike 
impact tests, the flexural test specimens typically 
do not require notches. The focus is on measuring 
bending strength and modulus without 
introducing stress concentrations. The span 
between the supports should be 16 times the 
thickness of the specimen. This ensures that the 
bending stress is distributed properly across the 
specimen. The flexural strength is calculated 
based on the maximum load the specimen can 
withstand before the failure. The standard 
formula involves the applied load, span length, 
and specimen dimensions. Figure 3a shows the 
specimen prepared as per the ASTM D790 
standards whereas Figure 3b shows the flexural 
test setup. 

 

Fig. 3a. Flexural-test-specimen-as-per-ASTM-D790 

 
Fig. 3b. Flexural test setup 

2.6.3. Tensile Test  

ASTM D 638 [33] is the standard for testing 
the tensile properties of a plastic material. 
Specimens were clamped in a tensile testing 
machine using grips designed to hold the 
specimen securely without introducing 
additional stress or deformation. Figure 4a shows 
the specimen prepared for the tensile test 
whereas Figure 4b shows the tensile test 
experiment setup. 

 

Fig. 4a. Tensile strength sample ASTM D 638 standard 

 

Fig. 4b. Tensile test setup 

2.7.  Taguchi method 

The Taguchi method was employed in this 
study to enhance the quality of the process by 
using carefully designed experiments. It involves: 

• Design of Experiments (DOE): Selecting 
factors and levels to test. 

• Orthogonal Arrays (OAs): Utilizing predefined 
arrays like L4, L8, L9, L27, etc., to efficiently 
assess the impact of various factors while 
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reducing the number of required 
experiments. 

• Analysis: Evaluating results through the 
calculation of S/N ratios and mean values to 
identify optimal conditions. 

In Taguchi’s experimental design, the 
procedure involves the use of orthogonal arrays 
of various levels to optimize design parameters 
(controllable factors) and noise factors 
(uncontrollable factors). For this study, a three-
factor, three-level setup was selected. 

2.7.1. Signal-to-Noise (S/N) Ratio 

In Taguchi’s approach, the S/N ratio is a 
crucial metric for assessing the robustness of the 
process or product: 

• Higher is Better: For characteristics where 
larger values are preferable, the S/N ratio is 
calculated to quantify performance stability. 
In this regard, the S/N ratio is calculated from 
equation no. 1 

S/N = −10*log(Σ(1/Y2)/n) (1) 

      where ‘Y’ is responses for the given factor 

level combination and ‘n’ is the number of 

responses in the factor level combination. 

• Lower is Better: For characteristics where 
smaller values are desired, the S/N ratio 
reflects the reduction in undesired outcomes. 
S/N value is calculated from equation no. 2 

      where ‘Y’ is responses for the given factor 

level combination and ‘n’ is the number of 

responses in the factor level combination. 

• Nominal is Better: For characteristics aimed 
at a specific target value, the S/N ratio 
measures how closely the results approach 
the desired nominal value. For this S/N value 
is calculated from equation no. 3 

      where ‘s’ is the standard deviation of the 

responses for all noise factors for the given 

factor level combination. 

The S/N ratio considers both the mean 
performance and the variability. It provides an 
indication of how consistently the desired 
outcomes are achieved. 

2.7.2. Mean vs. Control Factors 

When analyzing experimental results, both 
mean values and S/N ratios are considered. 

➢ Mean Values: Represent the average 
performance under different experimental 
conditions. These values are used to 
determine which settings produce the best 
average outcome. 

➢ S/N Ratios: Reflect the robustness of the 
process or product, indicating how stable the 
performance is; with respect to the 
variability. Higher S/N ratios are preferred as 
they denote better performance consistency. 

2.8.  Machine Learning in MATLAB 

Machine learning has become increasingly 
important in modern times, and the use of AI is 
proving to be highly beneficial in the field of 
engineering. As a subset of AI, machine learning 
enables systems to receive input data and 
generate corresponding outputs. Through 
various algorithms and datasets, machines can 
learn and improve their performance over time. 
In MATLAB, regression models serve as powerful 
tools for analyzing and predicting relationships 
between variables. The R-squared value plays a 
key role in assessing the quality of these models, 
as it indicates how well the independent 
variables account for the variance in the 
dependent variable. The results obtained are 
used to predict values by utilizing the regression 
learner in MATLAB.  

The result and discussion section compiles all 
the data from the experiment. It also discusses 
analysis performed on the data through the 
Taguchi method as well as through machine 
learning. 

3. Figures and Tables 

3.1.  Results from the Experiments 

Results conducted on impact, tensile as well 
as flexural setup are mentioned in Table 3. 

Table 3. Result for Izod Impact, Tensile, and flexural tests  

Sample. 
No. 

Impact 
Value 
(J/m) 

Tensile 
Strength 
(MPa) 

Flexural 
Strength 
(MPa) 

1 100 11.31 30.35 

2 100 15.11 33.33 

3 109.5 18.27 34.52 

4 95.2 15.22 31.54 

5 119.5 16.70 37.50 

6 133.3 19.95 36.30 

7 104.7 16.01 35.71 

8 109.5 17.73 36.90 

9 138.0 20.97 36.30 

S/N = −10*log(Σ(Y2)/n) (2) 

S/N = −10*log(s2) (3) 
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3.1.1. Impact Test Results 

Impact value is a measure of the material's 
toughness, indicating the amount of energy it can 
absorb before fracturing. From the above table, 
we can say that the impact strength value ranges 
from 100 J/m to 138 J/m. The impact values 
increase from sample 1 to sample 9. It has one 
exception of 95.2 J/m. This implies that sample 9 
can absorb more energy and may be tougher 
compared to the others. 

3.1.2. Tensile Test Results 

Tensile strength is the maximum stress that a 
material can withstand while being stretched or 
pulled before breaking. It ranges from 11.31 MPa 
to 20.97 MPa. The tensile strength increases as 
well as the impact value increases, with sample 9 
having the highest tensile strength. Sample 1 has 
the lowest tensile strength and impact value, 
indicating it might be more brittle. Samples with 
higher impact values exhibit higher tensile 
strengths, suggesting a correlation between 
toughness and tensile strength. 

3.1.3. Flexural Strength Results 

Flexural strength measures a material's 
ability to resist deformation under the load. In 
this work, it ranges from 30.35 MPa to 37.50 MPa.  
Flexural strength shows less variation compared 
to tensile strength. The values are quite close, 
ranging between 30.35 MPa and 37.50 MPa. It 
suggests that the material’s ability to resist 
bending does not change drastically across the 
samples, though sample 5 stands out with the 
highest flexural strength. 

Overall performance of sample 9 seems to be 
the best-performing in terms of toughness and 
tensile strength, while sample 5 performs best in 
terms of flexural strength. Sample 1, on the other 
hand, shows the lowest performance in both 
impact and tensile strength. 

Results mentioned above were analyzed by 
two methods 

1) Taguchi design in MINITAB  

2) Machine learning in MATLAB. 

3.2.  Result Analysis?  

In the first method of result analysis the result 
of the above tests was carried out by Taguchi 
design method in MINITAB software. 

3.2.1. Result Analysis of Impact Strength 

The results of the Impact Test were put into 
Minitab software’s Taguchi L9 array and the 
following output was obtained. Table 4 indicates 
the response table for means for impact strength 

wherein larger is better. Whereas Table 5 shows 
the signal-to-noise ratio. 

Table 4. Response Table for Means  

Level Shell count Infill density 

1 0.4333 0.4200 

2 0.4867 0.4600 

3 0.4933 0.5333 

Delta 0.0600 0.1133 

Rank 2 1 

As the infill percentage increases the response 
value increases from level 1 to level 3. This 
indicates that infill percentage has a positive 
effect on manufactured products. Delta 
represents the range of variation in the response 
due to changes in the shell count. The 
comparatively small delta indicates that shell 
count has a small influence. Shell count is less 
significant compared to infill density. An increase 
in shell count shows the response values increase 
as the infill density increases. 

Table 5. Response Table for Signal-to-Noise Rations 
(Larger is better) 

Level Shell count Infill density 

1 -7.272 -7.542 

2 -6.339 -6.767 

3 -6.202 -5.504 

Delta 1.069 2.037 

Rank 2 1 

The response value increases as the infill 
density goes from Level 1 to Level 3. This 
indicates that increasing the infill density has a 
positive effect on the outcome, suggesting that 
higher infill density leads to stronger or more 
durable structures. The relatively small delta 
suggests that while shell count influences the 
outcome, its effect is less significant compared to 
infill density. Shell count is the second most 
influential factor in this experiment. 

 

Fig. 5. Main effects plot for means for impact test 
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The key impact plot for methods frequently 
employed in the design of experimentation (DOE) 
is shown in Figure 5. It is beneficial to 
comprehend how various factors influence a 
process or system's mean response. A greater 
impact on the reaction is indicated by an increase 
in the slope. A discernible rise in the mean 
reaction occurs when the shell count is increased 
from two to four. There is just a small 
improvement when it is increased from 4 to 6, 
indicating that the benefits decrease as the 
number of shells grows. Compared to shell count, 
infill density has a more noticeable impact. There 
is a sharp increase in the average reply when the 
infill density is increased from 20 to 40. 

 

Fig. 6. Main Effects Plot for Signal-to-Noise Ratios  
for Impact Test 

Figure 6 is a main effects plot for SN ratios 
(Signal-to-Noise Ratios), which is often used in 
robust design and Taguchi methods for quality 
improvement. The purpose of this plot is to show 
the effects of different factor levels on the signal-
to-noise (S/N) ratio, where higher values 
typically indicate better performance. The S/N 
ratio increases significantly from shell count 2 to 
4. There is a slight increase from shell count 4 to 
6, indicating a diminishing return on increasing 
the shell count. The S/N ratio sharply increases as 
the infill density increases from 20 to 60, which 
suggests that higher infill density positively 
affects the signal-to-noise ratio. Increasing infill 
density has a more pronounced positive effect on 
the s/n ratio than shell count, as shown by the 
steeper slope in the second panel. Shell count 
shows improvement, but the effect diminishes 
after reaching a certain point. 

3.2.2. Result Analysis of Tensile Strength  

Table 6 shows that the response value rises 
with each level of infill density, indicating that the 
performance parameter gets better as the infill 
density rises. At Level 3, the greatest reaction is 
observed. The response value increases with the 
increase in infill density. This suggests that 
improved performance is achieved by a higher 

infill density. The values range from 19.73 to 
14.18, showing a difference larger than the shell 
count delta. 

Table 6. Response Table for Means (Larger Is Better) 

Level Shell count Infill density 

1 14.90 14.18 

2 17.29 16.51 

3 18.24 19.73 

Delta 3.34 5.55 

Rank 2 1 

As the shell count increases from Level 1 to 
Level 3, Table 7 displays an increase in response 
values, indicating that a greater shell count has a 
beneficial impact on the result. A comparatively 
decreasing delta indicates that the shell count has 
a moderate impact on the result. Greater infill 
densities are correlated with greater response 
values, indicating that more infill shows better 
results. At Level 3, a significant response is 
observed.  

Table 7. Response Table for Signal-to-Noise Rations 
(Larger is better) 

Level Shell count Infill density 

1 23.30 22.94 

2 24.70 24.34 

3 25.16 25.89 

Delta 1.87 2.95 

Rank 2 1 

 

Fig. 7. Main Effects Plot for Means for Tensile Test 

Figure 7 indicates that the response variable 
is positively affected by the infill density and the 
shell count. The effect of infill density seems to be 
greater compared to that of the shell count, 
especially when the infill density rises from 40 to 
60. Increasing these parameters (such as infill 
density) can result in greater efficiency in the 
response to the variable under consideration.  
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Figure 8 demonstrates that the SN ratio is 
benefited by both shell count and infill density, 
indicating that increasing both parameters 
increases the quality or performance. The effect 
of infill density becomes more apparent and 
steadier, especially at higher densities (40 and 
60). 

 

Fig. 8. Main Effects Plot for Signal-to-Noise Ratios 
 for Tensile Test 

This shows that improving infill density than 
shell count is giving more significant gains in 
quality or strength. Shell count has a saturation 
effect after four shells, which means that more 
shell count will not improve the results. 

3.2.3. Result Analysis of Flexural Strength  

As shown in Table 8, as the shell count 
increases from Level 1 to Level 3, the outcome 
improves. The outcome improves as infill density 
increases, but the highest performance is 
observed at Level 2 with a value reading of 35.91, 
whereas Level 3’s value is recorded as slightly 
lower at 35.71. The variation between level 1 and 
level 2 is very small, this shows that infill density 
has a slightly smaller effect compared to the shell 
count. Infill density is ranked as the second factor, 
indicating it has a smaller impact than the shell 
count. 

Table 8. Response Table for Means (Larger Is Better) 

Level Shell count Infill density 

1 32.73 32.53 

2 35.11 35.91 

3 36.30 35.71 

Delta 3.57 3.38 

Rank 1 2 

From Table 9, we can observe that 
performance outcome improves as the shell 
count increases from Level 1 to Level 3, but the 
changes are relatively small. The highest outcome 
is at Level 3 value of 31.20, indicating that a 

higher shell count does lead to improved 
performance. This is indicated by a delta 0.91 
which is the difference between the highest  
31.20 and lowest 30.29 values. The small delta 
shows that infill density has no significant effect 
on the outcome. Its significance is slightly less 
than the shell count. Infill density is ranked as the 
second most influential factor. 

In Figure 9, we can see that shell count has a 
strong positive effect on the response, with no 
indication of diminishing returns in the observed 
range. A higher shell count directly leads to an 
improved outcome.  

Table 9. Response Table for Signal-to-Noise Rations  
(Larger is better) 

Level Shell count Infill density 

1 30.29 30.23 

2 30.89 31.09 

3 31.20 31.05 

Delta 0.91 0.87 

Rank 1 2 

 
Fig. 9. Main Effects Plot for Means for Flexural Test 

Infill density also affects the response, but 
there appears to be an optimal level at 40. 
Increasing the infill density after 40 can cause a 
small decline in strength. This may cause an 
increase in infill density, leading to a change in 
physical properties. 

 

Fig. 10. Main Effects Plot for Signal-to-Noise Ratios  
for Flexural Test 
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The increase in shell count shows an increase 
in mechanical properties. An increase in infill 
density after a point shows a decline in flexural 
strength. This point needs further attention. 
From Taguchi analysis, it is observed that a 
higher shell count shows better output. However, 
in some cases, it is observed that after shell count 
4, there is no significant rise in mechanical 
properties. That means the shell count should be 
moderate; increasing the shell count largely will 
not give better results. Elevated infill density 
shows better results. It is observed that in the 
case of tensile and impact tests, density at 60% 
shows better accuracy than 40% density. 
However, in the flexural test, the increase in infill 
density shows a decrease in mechanical strength. 
This indicates that after 40% infill density 
flexural strength does not improve significantly. 
Further study is needed to find out what is the 
reason for this decrease and what percentage of 
drop in flexural strength is observed. 

3.3.  Result Analysis by Machine Learning 
Approach 

Regression models in MATLAB provide 
powerful tools for analyzing and predicting 
relationships between variables [34]. The R-
squared value is a crucial metric for evaluating 
the goodness of fit of these models, to understand 
how well the independent variables explain the 
variability of the dependent variable [35,36]. The 
results obtained are used for determining the 
predicted values using regression learning in 
MATLAB.  Table 10 represents the evaluation 
metrics for a trained Linear Regression model for 
the tensile test.  

Table 10. ML Models for Tensile Test Training Results 

Models Result 

RMSE (Validation)  0.93977 

R-Squared (Validation)  0.92 

MSE (Validation)   0.88317 

MAE (Validation)  0.73846 

MAPE (Validation)  5.0% 

Table 10 shows how the model, with an R-
squared value of 0.92, or 92%, can account for the 
variance of the target variable. It indicates that 
the data fits well. The model with low levels of 
error metrics such as RMSE (0.93977), MSE 
(0.88317), and MAE (0.73846) shows that the 
model's predictions are near to actual data. The 
predictions by the model deviate 5% from the 
true values. The mean absolute percentage error 
(MAPE) of 5.0%, is acceptable. 

In Table 11, the R-squared value is 0.67, 
showing that the model explains 67% of the 
variance in the target variable. This indicates a 
moderate fit. This model shows a higher error 
compared with other models. The values RMSE 
(1.6087), MSE (2.5881), and MAE (1.4034) 
indicate that the predictions have less 
preciseness. The model's average deviation from 
true values is 4.1%, as indicated by the 
comparatively low degree MAPE of 4.1%. There 
are numerous real-world situations when this 
10% mistake is acceptable. With comparatively 
higher error rates and reasonable accuracy  
(R-squared = 0.67), this linear regression model 
shows potential for improvement in prediction 
ability. Though not very accurate, the model's 
small size and low MAPE (4.1%) make it a good 
choice in situations where speed and resource 
efficiency are important.  

The R-squared value of 0.65 in Table 12 
means that 65% of the variation in the variable of 
interest, can be explained by the model. This 

Table 11. ML Models for Flexural Test Training Results  

Models Result 

RMSE (Validation)  1.6087 

R-Squared (Validation)  0.67 

MSE (Validation)  2.5881 

MAE (Validation)  1.4034 

MAPE (Validation)  4.1% 

Indicates a mediocre fit, which means that the 
model may not account for all the factors 
influencing the target variable. Relatively small 
prediction mistakes are indicated by error 
metrics. These modest RMSE (0.040514), MSE 
(0.0016414), and MAE (0.035516) values 
indicate that the model performed reasonably 
well, with predictions that are close to the actual 
values. The model's predictions differ from the 
true values by an average of 7.7%, as shown by 
the MAPE of 7.7%. Even though this is a little 
higher, the scenario and the application area still 
make it appropriate. 

Table 12. ML Models for Impact Test Training Results 

Models Result 

RMSE (Validation)  0.040514 

R-Squared (Validation)  0.65 

MSE (Validation)  0.0016414 

MAE (Validation)  0.035516 

MAPE (Validation)  7.7% 
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Fig. 11a. Predicted versus actual plot tensile test 

 

Fig. 11b. Response plot for tensile test 

A scatter plot comparing the true (x-axis) and 
expected (y-axis) responses is shown in Figure 
11(a). It displays the line of perfect prediction, 
where values that are anticipated coincide with 
actual values exactly. A point completely aligns 
the model's predicted value with the actual value 
if it falls on this line. Every dot shows the 
difference between the model's forecast and the 
actual value. The accuracy of the model increases 
with the distance between these spots and the 
black line. There is some variance, most of the 
locations are quite close to the diagonal line, 
suggesting that the model is reasonably accurate. 
However, there is some deviation. The spread of 
the points indicates that while predictions are 
generally good, there may be some degree of 
under-prediction (where points fall below the 
line) and over-prediction (where points fall 
above the line). Improving the model to handle 
these cases in a better way will improve its 
overall accuracy. Further statistical metrics, such 
as RMSE or R-squared, would help quantify the 
exact performance. 

Figure 11 (b) is a response plot of the data 
points which are numbered from 1 to 9, 
representing different observations or records. 
The Y-axis (Response – Tensile Strength) 
represents the response variable as a tensile 
strength. The difference between the actual and 
projected figures can be seen by the vertical lines 
joining the orange and blue dots. The error, or 
discrepancy, between the actual value and the 
model's projected one, increases with the length 
of the line. The projected values for a number of 
records (records 5 and 9) are extremely close to 
the true values, suggesting that the model 
performs well in terms of prediction for those 
data points. The longer vertical error bars for 
records 1 and 7 suggest that there are more 
substantial differences between the true and 
anticipated values. 

 
Fig. 12a. Predicted versus actual plot flexural test 

  

Fig. 12b. Response plot for flexural test 

The plots for flexural and impact tests (Figure 
12 and Figure 13) show the models have less 
accuracy compared to the models for tensile 
strength. It also shows more errors. This needs 
further attention. 
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Fig. 13a. Predicted versus actual plot impact test 

 

Fig. 13b. Response plot for impact test 

4. Conclusions 

The study investigated the effects of infill 
density and shell count in FDM 3D printing on the 
mechanical properties of Carbon fiber-reinforced 
nylon specimens. Optimal combinations were 
found to be 60% infill density with 6 shells, which 
yielded the highest impact and tensile strength, 
while maximum infill with 4 shells provided the 
best flexural strength. Sample 9 excelled in 
tensile strength and impact resistance, suitable 
for tough applications, while Sample 5 had 
superior flexural strength for bending resistance. 
Analysis showed infill density as the dominant 
factor. Regression modeling yielded high 
accuracy for tensile strength but moderate 
accuracy for flexural and impact strength, 
indicating further study is needed. The use of 
different parameters and an increase in the 
number of samples can be done in the future. 
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