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The main goal of this paper is to introduce a finite element formulation to investigate the
nonlinear static response of the 2DFG-McrB resting on EF under four different loads. The
governing equations are established using the principle of minimum potential energy,
incorporating the RBT and geometric nonlinearity based on the von Karman assumptions. A
weak-form finite element method is developed and solved iteratively through the Newton-
Raphson method. The proposed formulation is validated against benchmark results from the
literature, demonstrating its accuracy and computational efficiency. Furthermore, a
comprehensive parametric study is conducted to evaluate the effects of geometrical
dimensions, material properties, foundation stiffness, length-scale parameters, and BCs on
the nonlinear response of 2DFG-McrBs. The findings provide valuable insights for the design
and analysis of McrBs in engineering applications and serve as a basis for future studies on
advanced microstructures.
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1. Introduction

Early investigations were primarily based on
classical beam theories, which do not adequately

McrBs play a crucial role in various small-
scale systems and devices, particularly in MEMS
and NEMS [1]. Owing to the complexity of loading
conditions, McrBs in these applications often
undergo significant deformations. Studying their
behavior under such conditions is essential for
the effective design and operation of
microdevices. This has driven extensive research
on the nonlinear static response of
microstructures in general and McrBs in
particular.

Extensive research has been conducted to
predict the behavior of McrBs under various
mechanical and electrical loading conditions.
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capture size-dependent effects. To address large
rotations, many of these studies employed the
von Karman nonlinear assumption, analyzing
McrB responses using methods such as the
shooting method [2] and exact solutions [3, 4].
To overcome the limitations of classical beam
theories in capturing size-dependent effects in
microscale  structures, several advanced
continuum theories have been developed,
including SGET [5, 6] and MCST [7]. These
theories introduce length-scale parameters,
enhancing the accuracy of modeling the
mechanical behavior of McrBs. Over the past few
years, numerous studies have utilized these
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advanced models to examine the impact of
microscale effects on the mechanical behavior of
McrBs. For instance, Mohammadi and Mahzoon
[8] formulated the governing equations for post-
buckling analysis of Euler-Bernoulli McrBs,
incorporating size effects through both SGET and
MCST. Xia et al. [9] developed a nonlinear beam
model with a length-scale parameter, facilitating
size-dependent analyses of static bending, post-
critical behavior, and vibration in MecrBs.
Likewise, Asghari et al. [10] introduced a
Timoshenko McrB model for nonlinear vibration
and bending analysis, integrating size effects
using MCST and SGET. Pham et al. [11] used
a finite element modeling based on SGET and the
refined HSDT to examine the dynamic instability

of magnetically embedded FG porous
nanobeams.
Furthermore, Akgoz and Civalek [12]

explored the buckling behavior of McrBs under
various BCs using EBBT and MCST. Ramezani
[13] integrated the TBT with SGET to investigate
the large-amplitude vibration of McrBs,
emphasizing the crucial role of geometric
nonlinearity in increasing beam frequencies.
Ansari et al. [14] utilized DQM along with MCST
to examine the bending, stability, and vibration of
FG-McrBs, focusing on how frequencies and
critical loads depend on the Ilength-scale
parameter. Additionally, Wang et al. [15] applied
EBBT with MCST to study the nonlinear bending
and thermal post-buckling behavior of McrBs,
accounting for the influence of Poisson’s ratio.
Their analysis employed the shooting method in
combination with the Newton iterative method to
determine deflections and post-critical paths.
Belabed et al. [16-20] used finite element
procedure as a primary computational approach
to investigate the mechanical behavior of various
beam structures under different loading and BCs.
Their comprehensive studies focused on
analyzing key mechanical responses, including
static bending, free vibration, and stability. The
numerical results obtained from these analyses
are presented in a thorough and systematic
manner, providing valuable insights into the
performance and reliability of beam systems in
engineering applications. In addition, Meftah et
al. [21] introduced FEM to describe the nonlinear
modelling of masonry walls under in-plane
loading. Tounsi et al. [22] analyzed the forced
dynamical responses of FG porous beams using
FEM.

Incorporating FGs into microstructures
further enhances their potential by leveraging
the materials’ adaptability and
multifunctionality. According to Benmesssaoud
and Nasreddine [23], these materials are
increasingly investigated for applications in
micro-sensors, actuators, and flexible electronics.
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As a result, accurate and efficient computational
modeling approaches have become essential [24,
25]. Using various shear deformation theories
and MCST, researchers have extensively studied
the linear static bending, vibration, and buckling
behaviors of microbeams, microplates, and
microshells. Notable contributions in this area
include works by Simsek et al. [26], Thai et al.
[27], Deyhoriy-Semnani et al. [28]Sheikholeslami
et al. [29], Akbas [30], Karamanli et al. [31, 32],
Hu et al. [33] and Attia and Mohamed [34]. The
nonlinear bending, vibration, and stability of
microstructures have also been investigated by
Shafiei et al. [35, 36] Attia and Mohamed [37].
Recently, Shenas et al. [38] analyzed the large
amplitude vibration of pre-twisted FG-McrBs
using the Chebyshev-Ritz method, and in [39]
they employed the Ritz method to study the post-
buckling thermal load-deflection path of rotating
pre-twisted FG-McrBs in a thermal environment.
Besides, Malekzadeh and Moradi [40]
investigated large amplitude vibrational
characteristics of variable-section thin beams
with edge rotations restrained by elastic
torsional springs and supported on a cubic non-
linear EF using DQM. Pham et al. [41] used FEM
to study free vibration of FG porous curved
nanobeams resting on EF in hygro-thermo-
magnetic environment.

In this study, we further investigate the size-
dependent nonlinear static response of McrBs
using a finite element procedure. A nonlinear
beam element is developed based on RBT and
MCST to derive the equilibrium equations. The
model incorporates the von Karman nonlinear
assumption, with transverse shear rotation-
rather than cross-sectional rotation-chosen as a
variable to ensure a quadratic variation of
moments along the beam length. Additionally, the
nonlinear response of McrBs under various
loading conditions is analyzed using the Newton-
Raphson iterative method. This study also
provides a comprehensive examination of the
influence of geometrical parameters, material
properties, foundation stiffness, length-scale
parameters, and BCs on the nonlinear static
response of 2DFG-McrB resting on an EF.

Beyond theoretical contributions, the findings
of this study offer practical insights for the design
and optimization of micro-scale devices, such as
MEMS components, micro-sensors, actuators, etc.
The proposed approach provides a valuable tool
for engineers to predict structural performance
more accurately, ensuring reliability and
efficiency in real-world applications.

2. The 2DFG-McrB Resting on EF

Consider a 2DFG-McrB resting on an EF,
having dimensions L,b,h along the x,y, and
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z axes, respectively, as shown in Fig. 1. The 2DFG-
McrB includes two constituent phases: ceramic
(denoted as ¢) and metal (denoted as m). The
volume of these materials varies smoothly and
continuously along the x and z directions
following a power-law distribution. A two-
parameter foundation model is employed,
characterized by the spring stiffness ky, and the
shear stiffness k. The beam is supported at both
ends (at coordinates x =0 and x = L) and is
under a distributed load g(x) along its length.
Four types of load distributions are considered in
this study: uniform load distribution (UL) q(x) =

qo, linear distribution load (LL) q(x)zqzx,

2
parabolic distribution load (PL) q(x) = q, (’L—C) ,
load

and sinusoidal distribution
q(x) = q, sin% as shown in Fig. 2.

(SL)

| kL J

Fig. 1. The 2DFG-McrB model resting on EF

g

L ! L ! L
X xz X
9(x)=4 q(x)=qOZ q(x)=q0§ q(x)=q05m7
Uniform Linear Parabolic Sinusoidial

Fig. 2. Various types of loads

The mechanical properties of a 2DFG-McrB,
including the elastic modulus E (x, z), Poisson’s
ratio 9(x,z), and the length-scale parameter
£(x, z), vary continuously along both directions.
These properties are collectively denoted as
F(x,z) and are defined by the following
expression:

Fx,z) = Ve(x, 2)F; + Vi (x, 2) e (1)

here, V; represents the volume fraction of
material i (i = ¢,m), which is defined by the
following expression:

wen = (3+7) (1-5)"

Vm(x,Z) =1- VC(X,Z)

(2)

where, n, and n, are non-negative values
representing the material distribution exponents
(power-law index) along the x and z directions,
respectively.
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Figure 3 demonstrates variations in the
volume fractions of phases, as well as the
variation in effective elastic modulus along the x
and z directions. The material properties of the
components are listed in Table 2 with
n,=n, =2

0.8
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a) The volume fraction of phases
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b) The effective elastic modulus

Fig 3. The variation in volume fraction of phases and
effective elastic modulus of 2D-McrBs

3. Basis Formulations

The displacement field u in the beam includes

two displacement components: the axial
displacement u(x,z) and the transverse
displacement w(x). It is defined by [42]:

_ (ulx, Z)} _ {uo — ZWpx — f(Z)Ws,x}
u_{w(x) —lwy, +wg (3)

where u, is the axial displacement component on
the midplane of beams, w, and w, are the
transverse displacement components on the
midplane are due to bending deformation and

shear deformation, respectively. The derivative
owp _ Owg
ax’ S* T oax

components are given by wy,, =

N 473
va f(Z) = m

The strain field € is determined based on the
displacement field using the Cauchy strain
relations and the nonlinear von Karman strain-
displacement equations as follows:
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&y ou 1 /0w\*
e={be=a+3(G)

du ow
sz=5+§

(4)

Substituting the displacement components u
and w into the strain-displacement relations
given in Eq. (4), we obtain:

€= £L +£NL'

e={"0) 2"} - ()
FA-f) {WO}

1/0we\* 1 2
EnL ZE( WO) :—{(Wb,x +Ws,x) }

(5)

ox 2 0

here, € and gy, represent the linear and
nonlinear strain components, respectively.

The stress field o is determined from the
strain field € using Hooke’s law as follows:

1 0
o
o=} *l=E(, )[ 1 ]S=Q£ 6
{sz} z 0 —2[1+19(X,Z)] ( )

The curvature components ) (curvature
tensor) are defined as follows:

 (Xay 196, 106,
x= oo =33 02 =373, 7
in which
1/0u ow 1
=1 ] = — - = ! 8
Y 2(62 6x> Whx 2(1+f)Ws,x (8)

Substituting the curvature expressions from

Eq. (8) into Eq. (7), we obtain:
X= _l{wb,xx} _ l{(l +’]’“)Ws,xx} (9)
200 4 W

The vector of the deviatoric components of
the symmetric couple stress tensor m is defined
by the following expression:

E(x,2)¢?*(x, z)
1+9(x,2)

where €(x, z) is a length-scale parameter.

m = My with M = (10)

Based on MCST, the variational form of the
elastic strain energy potential in the beam is
given by the following expression. [7]:

oU = chésdQ+f2mT6de (11)
Q Q

The variational form of the elastic foundation
potential energy can be expressed as
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sUl = f [kywdw + kow, 8w, |dx (12)
L
The variational form of the work done by
external forces acting on the McrB is given by

W = fq(x)Swdx (13)

Based on the principle of minimum total
potential energy, the equilibrium equations of the
McrB are derived by

SU+ 38U —86W =0 (14)

4. Finite Element Procedure

Using a two-node beam element, where each
node has five DOF, the displacement vector of the
node d, of the beam element has the following
form:

d, =[d}, dj dil",

10x1

d,, = {Uo1
2x1

= {Wbl

ds = {Wsl
4x1

uo2}T, d,,
4x1
Wh2

(15)
sz,x}T,

WsZ,x}T

Whi,x

Wsl,x WsZ

The displacement variables on the midplane

of the beam element are approximated by
Uy = Ndm, Wy = Hdb,WS = Hds (16)

in which N and H are the Lagrange and Hermitian
function matrices, respectively, defined by the
following formula:

N=[N;, N, H=[H, H, Hz H,,
Ny =1-n,N; =1,

Hy =1-3n%+2n3,

H, =x(1—2n+n?),

Hy = 3n% — 213,

(17)

H, = %(-n+n*),n =

mb‘_| R

here, x is the local coordinate following x
direction, and L, is the length of the beam
element.

Substituting Eq. (16) into Eq. (3), the
displacementfield in an elementis determined by

u=N,d,,

il

(18)

Substituting Eq. (16) into Eq. (5) and Eq. (9),
the deformation field in the element is:
The linear strain vector g;:
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g, =B, d,, By

10%x2
_ [N,x —zH ., —fH (19)
“lo o @a-fH,
The nonlinear strain vector gy, :
1 Wh x + Ws x 1
EnL = E{ b 0 ’ }(Wb,x + Ws,x) = EBNLder
cd (20)
BNL = [ Oe] G, G= [0 H,x H,X]
Curvature vector x:
X =Bd., B,
10x2
1[0 2H, @1+ f)OH, (21)
410 o f'H,

Substitute Eqgs. (19) and (21) into Eq. (11) to
get the variational potential energy of the elastic
deformation of the beam element:

8U, = 6d7K,d,,

1
K, = (B, + BNL)TQ (BLI + _BNL> dQ

. 2 (22)

+ f 2BT, M'B,,dQ
Q

e

Substituting Eq. (16) into Egs. (12) and (13),
we get the variational expressions of the
potential energy of the foundation element and
the assignment of the external force as follows:

vl = 6dTK/d,, sW, = §dTF,,
K/ = f [N N + kNl Ny e (23)
Le

= f q(x)Ny, dx
L

e

where K£ is the foundation stiffness and F, is the
nodal load of an element.

Substituting Eqgs. (22) and (23) into Eq. (14),
the system of nonlinear static equilibrium
equations of the beam element is:

(K, +K.)d, - F, =0 (24)
Eq. (24) is rewritten as
R(de) = Fein(de) - Feout =0,
(25)

F*(d,) = (K, + K})d,, F“ =F,

where, R(d,) is called the residual force vector,
F*(d,) and F2*¢ are the internal force vector and
external force vector of the element, respectively

The nonlinear static equilibrium equation
system of the McrB is obtained after assembling
the elements, as follows

R(D,)) = F*(D) — AF°%“ = 0 (26)
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where, R(D, A) is the overall residual force vector,
D is the overall nodal displacement vector, Fin
and F°%* are the overall internal and external
force vectors collected from F* and Fo%
respectively, and A € [0; 1] is the load parameter.

The nonlinear Eq. (26) is solved based on the
use of the Newton-Raphson iteration algorithm
for each load level. [43], the load levels are
divided according to the parameter A, (n =
1;2;3...). Accordingly, the node displacement
vector in the i + 1 iteration step is determined as
follows:

Ditl = D}, + AD4! (27)

where ADi'! is the displacement increment,
defined by the expression:

AD; = —[K7(D})]7'R(Dy, Ar) (28)

where K is the overall tangent stiffness matrix,
which is collected from the element tangent
stiffness matrix K,;. The K, matrix has the
following expression:
_0R(d,) _0Fi"(d,)
Ker = ad, ~  ad,

=KL+ KM + K + K9,

KL = f B[ QB, dQ + f 2BJ,MB,,dQ, K¢
Q Q (29)

e e

= f GTo,GdQ,
Q

KL = f (BT QBy, +BI,QB,, + B}, QBy,)d0)
Qe

and the residual force vector R(DY,1,) is
determined by Eq. (26).

Note that the element matrices and element
node load vectors in formulas (23) and (29) are
calculated by Gauss quadrature numerical
integration method.

To solve Eq. (28), it is necessary to have the
initial value of the displacement in each load
level, specifically in this paper, D? = 0 and D9 =
D,,_;. The convergence condition is checked after
each loop according to the following expression:
IR, 2] < Wil Fo || (30)
where 1 is the error, chosen to be 1074,

The Eq. (28) is solved with the given BCs. In
this paper, BCs are shown in Table 1.

Table 1. Boundary conditions of McrBs

BCs Atx =0 Atx =1L
CF Uy =Wy = W = freedom
Whx =Wsyx =0
SS Ug=w, =ws =0 Ug=wp =ws =0
CS Ug =W, = W Ug=wp =ws =0
=Wpy = Wsx =0
CC Ug =W, = W Uy = Wy = W

= Wpyx = Wsx =0 =Wpy =W =0
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5. Numerical Results and Discussion

In the following sections, except for the
comparative  verification results, material
components for 2DFG-McrBs are composed of
two component material phases: the ceramic
phase (SiC) and the metal phase (Al), with the
properties given in Table 2. The results for the
case h = oo are calculated for normal beams
(macrobeams).

Table 2. Material properties of the component
materials [44]

Componentes Symbol E (GPa) 9 £(um)
SiC c 427 0.17 225
Al m 70 0.3 15

Some dimensionless quantities used in the
paper are defined by the following expressions:

. 100E,,I (L)
W = )

qol* w 2
(=0 (%,2)
O-X z qOLO- Z’Z ]
. bh
UxZ(Z) _LT(OlZ)F (31)
0
h _ L*
h* = > Q = %o ]
L. E,bh*
X kL ke L? bh3
W EL T E, I’ 12

5.1. Verification

Firstly, Table 3 lists the comparison result of
linear static displacement parameter
W= MW (E) and linear static stress

qoL 2

parameters for SS 2DFG macrobeams under
uniformly distributed force (q,) between the
present method and those of Karamali [45] using
an exact solution based on Quasi-3D. In which the
beam is made of ceramic (4l,05) and metal (Al)
with characteristics E, = 380GPa,9, = 0.3 va
E,, = 70GPa,?,, = 0.3. The result is calculated
with n, = 0.5. It can be seen that the results
converge at a uniform mesh size of nE = 18 and
are close to the results of Karamali [45] with an
error of approximately 1%.

Secondly, Table 4 shows the result of

comparing the nonlinear  displacement
+x _ 100Ebh3 L

parameter W= ———w (E) of SS

homogeneous McrBs under  uniformly

distributed force (q,) with geometric

dimensions: L = 250um, h = 3um, b = 50um,

and material properties as FE = 169MPa,
9 = 0,06. Observing that the obtained results also
converge at a uniform mesh size of nE = 18 and
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are in good agreement with the results of Dang et
al. [46] with an error of nearly 1%. From the
above two examples, the accuracy and reliability
of the proposed algorithm and calculation
program can be confirmed. To ensure the
smoothness of the deformation field, we use a
uniform mesh size of nE = 20 for further studies.

5.2. Nonlinear Static Response

First, Figure 4 illustrates the influence of
different load types on the static response of SS
2DFG-McrBs, given the following input
parameters: £, = 22.5um, £, = 15um, h = 44,
b =h,L =20h, Ky, =50, and K; = 10. Using the
same input parameters, Figure 5 presents the
static response of CC 2DFG-McrBs. The results
indicate that the 2DFG-McrB under UL exhibits
the largest displacement response, followed by
beams under SL, LL, and PL. Moreover, for 2DFG-
McrBs under LL and PL, the displacement curve
is asymmetric, with the maximum displacement
shifting toward the region experiencing the
higher distributed force. Besides, the transverse
shear stress oy, distribution follows a parabolic
profile, reaching zero at the top and bottom
surfaces for SS 2DFG-McrBs. For CC 2DFG-McrB,
the shear stress is theoretically predicted to be
zero across the entire edge thickness at the
clamped boundary (Fig. 5d).

Second, Tables 5, 6, and 7 illustrate the effects
of the power-law indexes in the x and z directions
(n,,n,) on the displacement, normal stress, and
shear stress of SS 2DFG-McrBs for different
values of the parameter h*. It can be observed
that increasing n, and/or n, results in a higher
beam displacement, as these parameters reduce
the ceramic volume fraction, thereby decreasing
the beam’s stiffness. Furthermore, an increase in
h* leads to a larger displacement of the 2DFG-
McrB. This occurs because a higher
h* corresponds to a decrease in the length scale,
which in turn reduces the total elastic energy and,
consequently, the beam’s stiffness. As h*
approaches infinity, the beam displacement
increases significantly, corresponding to the
macroscopic case mentioned earlier.

Third, Figure 6 illustrates the influence of
foundation  stiffness  (Ky,K;) on  the
displacement of SS 2DFG-McrBs under different
loading conditions and various values of the
parameter h* (which is related to the length-scale
parameter). It can be observed that an increase in
foundation stiffness reduces the beam’s
displacement, as expected. This is because the EF
contributes to the total energy of the system,
making the beam "stiffer." Furthermore, an
increase in h* (corresponding to a decrease in the
length scale) leads to greater beam displacement,
with the maximum displacement occurring in the
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macroscopic beam case (h* — o0). Additionally,
the shear layer provides more effective support
than the spring layer, as anticipated.

Next, Figure 7 provides a more detailed
illustration of how the length-scale parameter on
the static response of CC 2DFG-McrBs under PL,
through the dimensionless parameter h*. From
the results, it is evident that incorporating the
length-scale parameter, particularly at higher
values of h*, significantly enhances the overall
stiffness of the McrBs. Physically, this can be
attributed to the size-dependent effects captured
by the SGET, which become increasingly
prominent at micro- and nano-scales, where

classical theories tend to underestimate
structural rigidity. As the effective stiffness
increases, the beam's ability to resist

deformation under external loading improves,
thereby reducing the observed deflections.
Furthermore, the displacement evolution across
different load steps exhibits smooth and
continuous curve profiles, aligning with
theoretical expectations for such micro-scale
structures. This consistency reaffirms the validity
of the applied model in capturing the essential
mechanical behaviors of FG-McrBs.

Furthermore, Figures. 8 and 9 respectively
depict the effects of the material gradation
indices n, and/or n, on the static response of
2DFG-McrBs under CC and CS boundaries. As
anticipated, increasing the values of n, and/or n,
results in larger beam displacements. This
phenomenon is fundamentally linked to the
material distribution across the beam's length
and thickness: higher values of n, and/or n,
correspond to a reduced volume fraction of the
stiffer ceramic phase, leading to a more metal-
rich composition. Since metals generally possess
lower elastic moduli compared to ceramics, the
overall stiffness of the beam diminishes as the
gradation indices increase. Consequently, the
beam exhibits a more compliant (flexible)

response under applied loading. Another
physically meaningful observation lies in the
load-load-displacement behavior. Specifically,
for cases involving the CC boundary, the
displacement-load step curves tend to maintain a
nearly linear relationship, resembling straight
lines. This characteristic reflects the dominance
of linear elastic bending behavior in the regime of
small deformations, where geometric
nonlinearity remains negligible.

Finally, Figure 10 presents a comprehensive
comparison of how different BCs affect the static
response of 2DFG-McrBs subjected to UL. As
theoretically  anticipated, the maximum
displacement of the beam exhibits a clear
increasing trend following the order of boundary
constraint severity: CC, CS, SS, CF boundaries.
This behavior is fundamentally governed by the
degree of kinematic restrictions imposed at the
beam ends. Specifically, the CC boundary
provides the most rigid constraint by restraining
both translations and rotations, thereby
minimizing deflection. Conversely, the CF
boundary, commonly referred to as a cantilever
beam, allows for maximal deformation due to the
absence of support at the free end. An important
physical insight is revealed through the
symmetry (or asymmetry) of the displacement
profiles. For beams with symmetric BCs, such as
CCand SS boundaries, the displacement response
curves maintain geometric symmetry about the
beam's midspan. This is a direct consequence of
the uniform distribution of constraints and
loading, which enforces a balanced deformation
pattern. On the other hand, in configurations
where BCs are asymmetric (e.g, CS and CF
boundaries), the displacement curves exhibit
noticeable asymmetry, with the deformation
profile skewing towards the less restrictive
(weaker) boundary. This deviation reflects the
beam's natural tendency to bend more freely
where constraints are minimal, highlighting the
critical role of BCs in dictating the mode shapes.

Table 3. Comparison results of the static response of SS 2DFG macrobeams with different mesh sizes

Power-law index

L/h  Parameters Methods

n, = n, = 0.1 n, =05 n,=1 n, =2
10 w* Karamali [45] 45015  4.5957 49843 54912  6.5521
Present 45304  4.6244 5.0125 5.5224  6.6008

nkE =12
nkE =14 45308  4.6248 5.0130 5.5229  6.6013
nkE =16 45311 4.6251 5.0133 55232 6.6016
nkE =18 45315  4.6255 5.0137 5.5235 6.6018
nkE =20 45315  4.6255 5.0137 5.5235 6.6019
Error (%) 0.6664  0.6484 0.5899  0.5882  0.7601
ox(h/2) Karamali [45] 9.8766  9.5863 9.7674  9.6417  9.3574
Present 9.9270  9.9046 9.8133  9.6963  9.4573
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nk =12
nk =14 9.9116 9.8893 9.7987 9.6824 9.4439
nE =16 9.9016 9.8795 9.7894 9.6735 9.4354
nE =18 9.8898 9.8679 9.7785 9.6633 9.4257
nE =20 9.8898 9.8679 9.7785 9.6634 9.4258
Error (%) 0.1336 2.9375 0.1136 0.2251 0.7310
0,,(0) Karamali [45] 0.7532 0.7598 0.7852 0.8143 0.8617
Present 0.7655 0.7721 0.7975 0.8265 0.8733
nE =12
nkE =14 0.7648 0.7714 0.7969 0.8259 0.8729
nE =16 0.7642 0.7708 0.7963 0.8254 0.8725
nk =18 0.7632 0.7697 0.7952 0.8244 0.8716
nk =20 0.7632 0.7698 0.7953 0.8245 0.8717
Error (%) 1.3277 1.3161 1.2863 1.2526 1.1605
20 w* Karamali [45] 4.4347 4.5274 4.9092 5.4076 6.4513
Present 4.4575 4.5498 4.9309 5.4319 6.4931
nkE =12
nk =14 4.4580 4.5502 49314 5.4324 6.4936
nE =16 4.4583 4.5505 49317 5.4327 6.4939
nE =18 4.4586 4.5508 4.9320 5.4329 6.4941
nE =20 4.4586 4.5509 49321 5.4330 6.4942
Error (%) 0.5389 0.5191 0.4665 0.4697 0.6650
ox(h/2) Karamali [45] 19.7048 19.6642 19.4863 19.2343 18.6648
Present 19.8006 19.7559 19.5738 19.3410 18.8663
nk =12
nk =14 19.7697 19.7253 19.5446 19.3131 18.8394
nE =16 19.7497 19.7055 19.5259 19.2953 18.8224
nE =18 19.7260 19.6822 19.5040 19.2749 18.8029
nE =20 19.7261 19.6823 19.5041 19.2750 18.8031
Error (%) 0.1081 0.0920 0.0913 0.2116 0.7410
05,(0) Karamali [45] 0.7599 0.7667 0.7933 0.8240 0.8750
Present 0.7688 0.7754 0.8006 0.8293 0.8755
nkE =12
nE =14 0.7687 0.7752 0.8004 0.8292 0.8754
nE =16 0.7685 0.7750 0.8002 0.8290 0.8753
nE =18 0.7680 0.7745 0.7998 0.8285 0.8749
nk =20 0.7681 0.7746 0.7999 0.8286 0.8750
Error (%) 1.0791 1.0304 0.8320 0.5583 0.0000
Table 4. Comparison results of the nonlinear displacement of SS McrBs
£/h
BCs 9o Methods
0.1 0.2 0.4 0.6 0.9
cC 5 Dang etal. [46] 0.9545 0.8764 0.6374 0.4204 0.2324
Present
nk =12 0.9475 0.8711 0.6358 0.4203 0.2325
nkE =14 0.9490 0.8722 0.6362 0.4204 0.2325
nkE =16 0.9500 0.8730 0.6365 0.4204 0.2325
nE =18 0.9511 0.8738 0.6367 0.4205 0.2324
nkE =20 0.9512 0.8739 0.6368 0.4205 0.2325
Error (%) 0.3457 0.2853 0.0941 0.0238 0.0430
10 Dang etal. [46] 1.4633 1.3877 1.1185 0.8003 0.4604
Present 1.4483 1.3744 1.1114 0.7982 0.4604
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nkE =12
nkE =14 1.4516 1.3773 1.1129 0.7987 0.4604
nkE =16 1.4538 1.3792 1.1139 0.7991 0.4605
nkE =18 1.4562 1.3813 1.1150 0.7994 0.4604
nkE =20 1.4563 1.3814 1.1151 0.7995 0.4605
Error (%) 0.4784 0.4540 0.3040 0.1000 0.0217
SS 5 Dang etal. [46] 1.5142 1.4917 1.4000 1.2492 0.9517
Present
nk =12 1.4970 1.4749 1.3854 1.2383 0.9467
nk =14 1.4980 1.4759 1.3864 1.2391 0.9471
nkE =16 1.4986 1.4766 1.3870 1.2396 0.9474
nE =18 1.4993 1.4773 1.3878 1.2402 0.9476
nkE =20 1.4994 1.4774 1.3878 1.2402 0.9477
Error (%) 0.9774 0.9586 0.8714 0.7205 0.4203
10 Dang etal. [46] 1.9704 1.9538 1.8837 1.7624 1.4965
Present
nk =12 1.9481 1.9315 1.8626 1.7442 1.4845
nkE =14 1.9492 1.9327 1.8638 1.7454 1.4854
nE =16 1.9499 1.9334 1.8646 1.7462 1.4860
nE =18 1.9507 1.9342 1.8655 1.7472 1.4866
nk =20 1.9508 1.9343 1.8656 1.7472 1.4866
Error (%) 0.9947 0.9981 0.9609 0.8625 0.6615
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Fig. 4. Effect of load types on the nonlinear static response of SS 2DFG-McrBs
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Fig. 5. Effect of load types on the nonlinear static response of CC 2DFG-McrBs
Table 5. Nonlinear displacement w* of SS 2DFG-McrB under UL
(Input parameters: Q = 300; L = 30h; K, = 75; K, = 15)
. Power-law index
h n,
n, = 0.5 1 2 5 10
1 0 0.2904 0.3247 0.3570 0.4160 0.5495 0.6517
0.5 0.3544 0.3837 0.4116 0.4633 0.5792 0.6652
1 0.3920 0.4194 0.4456 0.4939 0.5988 0.6747
2 0.4427 0.4682 0.4922 0.5355 0.6253 0.6879
5 0.5271 0.5484 0.5679 0.6015 0.6659 0.7078
10 0.5936 0.6102 0.6249 0.6494 0.6935 0.7207
2 0 0.3816 0.4053 0.4286 0.4742 0.5869 0.6743
0.5 0.4189 0.4415 0.464 0.5074 0.6091 0.6854
1 0.4467 0.4689 0.4907 0.5322 0.6255 0.6942
0.4887 0.51 0.5305 0.5684 0.6493 0.7071
0.5629 0.5812 0.5982 0.6282 0.6873 0.7268
10 0.6228 0.6373 0.6504 0.6726 0.7135 0.7393
4 0 0.4052 0.4256 0.4465 0.4885 0.5956 0.6788
0.5 0.4353 0.456 0.4769 0.5181 0.6157 0.6894
1 0.4609 0.4815 0.502 0.5416 0.6315 0.6982
0.501 0.5209 0.5403 0.5765 0.6547 0.7113
0.5723 0.5896 0.6058 0.6347 0.6922 0.731
10 0.6299 0.6438 0.6565 0.678 0.7179 0.7434
8 0 0.4109 0.4305 0.4507 0.4919 0.5975 0.6797
0.5 0.4393 0.4595 0.4801 0.5206 0.6172 0.6902
1 0.4645 0.4847 0.5049 0.5438 0.6328 0.6991
0.5042 0.5237 0.5428 0.5785 0.656 0.7123
0.5747 0.5917 0.6077 0.6363 0.6934 0.7321
10 0.6317 0.6455 0.658 0.6793 0.719 0.7444
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0 0 0.4127 0.4321 0.4521 0.493 0.5982 0.68
0.5 0.4406 0.4607 0.4811 0.5215 0.6177 0.6905
1 0.4657 0.4857 0.5058 0.5446 0.6333 0.6994
2 0.5053 0.5247 0.5436 0.5792 0.6565 0.7127
5 0.5755 0.5924 0.6084 0.6368 0.6938 0.7324
10 0.6323 0.646 0.6585 0.6797 0.7194 0.7447
Table 6. Normal stress oy (h/2) of SS 2DFG-McrB under UL
(Input parameters: Q = 300; L = 30h; Ky, = 75; K; = 15)
Power-law index
h* n,
n,=0 0.5 1 2 5 10
1 0 3.6627 3.7622 3.7975 3.7398 3.2622 2.68
0.5 4.6257 4.577 4.4898 4.2526 3.4968 2.7282
1 5.2187 5.0969 49478 4.6125 3.6704 2.7611
2 6.0923 5.8737 5.6394 5.16 3.9204 2.8012
5 7.8139 7.3903 6.9706 6.1726 4.3105 2.8466
10 9.425 8.762 8.1324 6.9923 4.5624 2.8653
2 0 5.2085 5.0154 4.8166 4.4308 3.5212 2.7602
0.5 5.7821 5.5189 5.263 4.7868 3.7048 2.8091
1 6.2282 5.9216 5.6271 5.0841 3.8592 2.8445
2 6.9657 6.5895 6.2308 5.5737 4.0953 2.888
5 8.5404 7.9894 7.4695 6.5285 44761 2.9356
10 10.0619 9.2911 8.5768 7.3161 4.7229 2.9535
4 0 5.5961 5.3108 5.0448 45708 3.5540 2.7619
0.5 6.0641 5.7383 5.4348 4.8931 3.7308 2.8162
1 6.4737 6.1134 5.7774 5.1770 3.8839 2.8546
2 7.1740 6.7533 6.3601 5.6549 41210 29012
5 8.7068 8.1226 7.5766 6.5993 4.5048 29512
10 10.2041 9.4064 8.6709 7.3809 4.7525 2.9694
8 0 5.6795 5.3732 5.0917 4.5972 3.557 2.7604
0.5 6.1288 5.7872 5.4714 49131 3.7328 2.8165
1 6.5314 6.1568 5.8097 5.1943 3.8861 2.856
2 7.2232 6.7906 6.3881 5.6703 4.1244 2.9035
5 8.7466 8.1535 7.6005 6.6138 4.5101 2.9544
10 10.2386 9.4336 8.6924 7.395 4.7586 2.9728
0 0 5.7050 5.3922 5.1058 4.6048 3.5574 2.7597
0.5 6.1498 5.8026 5.4826 49186 3.7328 2.8165
1 6.5505 6.1707 5.8196 5.1990 3.8862 2.8563
2 7.2397 6.8026 6.3967 5.6745 4.1250 2.9042
5 8.7602 8.1637 7.6080 6.6180 45115 2.9553
10 10.2506 9.4426 8.6994 7.3993 4.7604 29738
Table 7. Shear stress g, (0) of SS 2DFG-McrB under UL
(Input parameters: Q = 300; L = 30h; Ky, = 75; K; = 15)
Power-law index
h* n,
n,=0 0.5 1 2 5 10
1 0 0.0804 0.0808 0.0801 0.0764 0.0619 0.0456
0.5 0.1926 0.1970 0.1991 0.1984 0.1847 0.1703
1 0.2422 0.2456 0.2468 0.2448 0.2312 0.2200
0.2369 0.2381 0.2379 0.2348 0.2240 0.2169
0.1579 0.1578 0.1572 0.1552 0.1499 0.1461
10 0.1320 0.1319 0.1315 0.1301 0.1264 0.1229
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0.52
0.5

0.35

c) The McrB under PL

0.54
0.52

0.5
0.48
0.46

0.44 <

d) The McrB under SL

2 0 0.1307 0.1305 0.1293 0.1251 0.1055 0.0766
0.5 0.3361 0.3345 0.3313 0.3216 0.29 0.259
1 0.4219 0.4181 0.4129 0.4002 0.3663 0.3388
2 0.4157 0.4109 0.4054 0.3935 0.3659 0.3457
5 0.2719 0.2694 0.2665 0.2605 0.247 0.2356
10 0.2158 0.2143 0.2125 0.2087 0.1996 0.1899
4 0 0.1636 0.164 0.1633 0.1588 0.1332 0.0893
0.5 0.3396 0.3376 0.3344 0.3252 0.2924 0.2519
1 0.4243 0.4203 0.4154 0.4037 0.3699 0.335
2 0.4358 0.4309 0.4254 0.4138 0.3852 0.3587
5 0.3032 0.3002 0.297 0.2903 0.2745 0.2577
10 0.2391 0.2369 0.2346 0.2299 0.218 0.2032
8 0 0.1751 0.1751 0.1740 0.1682 0.1368 0.0828
0.5 0.2999 0.2995 0.2978 0.2915 0.2624 0.2187
1 0.3756 0.3739 0.3712 0.3635 0.3356 0.2992
0.4010 0.3980 0.3943 0.3859 0.3616 0.3340
0.2955 0.2930 0.2902 0.2843 0.2690 0.2503
10 0.2345 0.2322 0.2299 0.2252 0.2126 0.1957
oo 0 0.1784 0.1780 0.1764 0.1697 0.1345 0.0754
0.5 0.2733 0.2739 0.2732 0.2687 0.2420 0.1973
1 0.3441 0.3438 0.3425 0.3374 0.3132 0.2767
0.3768 0.3750 0.3726 0.3661 0.3447 0.3170
0.2872 0.2851 0.2826 0.2773 0.2626 0.2432
10 0.2290 0.2267 0.2244 0.2199 0.2072 0.1895
- 0.4 -
0.58 22 0.42 }2
0.56 J 0.4 S
® ~0o N =00
= 0.54 038

Fig. 6. Effect of the foundation stiffness (K}, K;) on the nonlinear displacement of SS 2DFG-McrBs under LL
(Input parameter: Q = 250; L = 30h; n, = n, = 1)
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Fig. 8. Effect of the parameter n, on the nonlinear static response of CC 2DFG-McrBs under SL

(Input parameter: Q = 300; L = 20h; n, = 1; Ky, = 75; K; = 50; h* = 2)
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6. Conclusions

This study presents a finite element
framework for analyzing the nonlinear static
response of 2DFG-McrBs under various loads
while resting on an EF. The influence of
microstructural size effects on the nonlinear
response is captured using the MCST.
Geometrical nonlinearity due to mid-plane
stretching of the beam is modeled based on the
von Karman assumption. The resulting
discretized nonlinear equilibrium equations are
solved using the Newton-Raphson iterative
method. The reliability and accuracy of the
proposed solution methods are validated by
comparing the obtained results with previously
published data. Furthermore, the effects of
geometric parameters, material properties, four
different loads, and BCs on the static nonlinear
response of 2DFG-McrBs are thoroughly
examined.

Based on the obtained results, for all the load
cases and boundary conditions, several key
conclusions are drawn as follows:

e The length-scale parameters contribute to
increasing the rigidity of 2DFG-McrBs
compared to macrobeams.

e EFs play a crucial role in the mechanical
response of 2DFG-McrBs. They enhance the
beam stiffness, leading to a reduction in
displacement. Additionally, the shear layer
provides better support than the spring layer.

e As the power-law index increases, the McrB
stiffness  decreases. Consequently, the
displacement of 2DFG-McrBs increases, as
expected.

e The proposed algorithm and computational
program can be applied to analyze other
microstructures with complex geometries
embedded in multi-physical environments.
This serves as a powerful tool for testing,
designing, manufacturing, and optimizing
microstructures.

In addition, the developed methodology
demonstrates clear advantages in terms of
flexibility, = accuracy, and computational
efficiency. By incorporating microstructural size
effects and geometric nonlinearity within a finite
element framework, the approach offers a
reliable and versatile tool for analyzing
microscale structures under realistic loading and
boundary conditions. The model's capability to
adapt to various design scenarios ensures its
potential application in advanced MEMS/NEMS
devices and microstructural optimization tasks.
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Nomenclature
FG Functionally graded material
2DFG Bi-directional functionally graded

material

McrB Microbeam
SGET Strain gradient elasticity theory
MCST  Modified couple stress theory
FEM Finite element method
DQM Differential quadrature method
RBT Refined beam theory
TBT Timoshenko beam theory
EBBT  Euler-Bernoulli beam theory
MEMS  Microelectromechanical systems
NEMS  Nanoelectromechanical systems
BC Boundary condition
DOF Degree of freedom
EF Elastic foundation
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