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The present study utilized an artificial neural network (ANN) model to anticipate Barcol
hardness, impact strength, and heat deflection temperature data for epoxy resin specimens
with varying weight percentages of graphite additive exposed in different types of water. A
feedforward backpropagation algorithm was used for predictive modeling with two input
parameters: the weight percentage of the graphite additive (0, 5, 10, 15, and 25 wt.%) and the
type of water used (dry specimen, potable water, distilled water, alkaline solution, and acidic
solution). Experimental test data for mechanical properties were used to train the ANN
model. The network was validated by comparing the predicted outputs with experimental
data and by evaluating performance metrics. The results conclude that the ANN model is a
practical and accurate approach for rapidly predicting mechanical performance and can be
considered a substitute for traditional procedures used to characterize composite materials
through experimental methods. Among the two input parameters, the weight percentage of
the graphite additive was the most essential input parameter used to predict the mechanical
properties of composites. Besides, the key findings of this work can also be a reference for the
engineering practice of composite materials under mechanical and moisture environments.
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1. Introduction

Composite materials,

known for their

conditions. Traditional methods for predicting
the mechanical and physical properties of
composites often involve extensive experimental

superior mechanical properties and lightweight
characteristics, have become indispensable in
modern engineering applications. They are
widely used across industries such as aerospace,
automotive, construction, and marine
engineering. However, the design and
optimization of composite materials remain
challenging due to their complex and
heterogeneous nature, where properties depend
on various factors such as constituent materials,
manufacturing processes, and environmental
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testing, which is time-consuming, labor-
intensive, and costly. As a result, there is a
growing need for advanced computational
techniques to accurately model and predict the
behavior of composites under different
conditions. Artificial neural networks (ANNSs)
have emerged as a powerful tool for addressing
these challenges. ANNs are computational
models inspired by the human brain, capable of
learning complex patterns and relationships
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from data. They have demonstrated remarkable
success in various scientific and engineering
fields due to their ability to model nonlinear
systems, handle large datasets, and generalize
predictions for new conditions.

Recently, numerous studies have focused on
applying artificial neural networks (ANNSs) in the
characterization of composite materials.
Researchers have explored various ANN-based
techniques for predicting mechanical properties,
damage detection, and optimizing material
structures. Zenzen et al. [1] proposed a modified
damage indicator and an ANN model to estimate
the location and size of damage in composite
structures. Their approach effectively identified
damaged elements with reduced computational
time. Similarly, Tan et al. [2] developed a
procedure for detecting damage in a composite
slab-on-girder bridge using vibration
characteristics and ANN. Their results confirmed
its feasibility in damage detection and
quantification. Khatir et al. [3] introduced an
improved artificial neural network using an
arithmetic optimization algorithm for damage
assessment in functionally graded material
(FGM) composite plates, achieving high precision
in predicting damaged elements. Mardanshahi et
al. [4] employed guided wave propagation and
artificial intelligence to develop an intelligent
model for detecting and classifying matrix
cracking in glass/epoxy composites using data
from Lamb wave propagation. In mechanical
property prediction, Marani and Nehdi [5]
utilized a dataset of 154 cement-based mixtures
with phase change material microcapsules and
various machine learning regression algorithms
to predict the compressive strength of
composites, achieving superior accuracy. Sharma
et al. [6-7] investigated the effect of filler aspect
ratio on the fracture toughness of glass-filled
epoxy composites under impact loading using
ANN. They applied a multi-layer perceptron
feedforward network to predict the stress
intensity factor history, achieving a 91%
prediction accuracy. Wang et al. [8] proposed a
standard ANN model for predicting the fracture
behavior of carbon fiber-reinforced polymer
laminates under continuous wave laser heating
and pre-tensile loads. Shabley et al. [9] explored
four machine learning techniques—logistic
regression, support vector machines, gradient
boosting on decision trees, and gradient boosting
on random forests—to predict the failure of
composite materials. Yin and Liew [10] presented
machine learning-assisted models for
determining the interfacial properties of fiber-
reinforced composites based on previous micro-
bond tests. Natrayan and Kumar [11] used an
integrated ANN and Taguchi approach to
optimize the squeeze cast process parameters of
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AA6061/A1203/SiC/Gr  hybrid  composites,
achieving 95% accuracy in predicting hardness
and tensile strength. Several studies focused on
ANN optimization and novel applications. Nikzad
et al. [12] applied the Taguchi design of
experiment method to optimize an ANN model
for predicting the elastic properties of short fiber-
reinforced composites, demonstrating the
method’s efficiency in resource-constrained
scenarios. Al-Waily et al. [13] investigated fatigue
characterization of nanoparticle-reinforced
composites using ANN to validate experimental
results and predict behavior under different
nanoparticle percentages. Devadiga et al. [14]
used ANN and microstructural evolution analysis
to predict the density and hardness of multi-
walled carbon nanotube composites produced by
powder metallurgy, confirming the technique’s
accuracy. Additionally, some researchers [15-16]
have provided a comprehensive review of Al
applications in forecasting the mechanical
properties of various types of composites. Their
study explored various machine learning and
deep learning techniques used for predictive
modeling. This body of research highlights the
growing role of artificial intelligence and ANN-
based approaches in advancing composite
material characterization, damage detection, and
performance prediction.

Based on the literature review of the
previously cited papers, no research was found
that investigates the effect of graphite additives
on the mechanical behavior of composites using
an artificial neural network (ANN) model. Since
this additive is widely applicable in many
industrial applications, especially in transition
composite pipes for petrochemical condensates,
therefore, the primary objective of this study is to
examine the impact of varying weight
percentages of graphite additives on the
mechanical properties of epoxy resin specimens
exposed to different types of water, using an ANN
framework. Traditional methods require
numerous experimental tests to study the
behavior of composite materials under various
environmental conditions. In this study, using an
ANN model significantly reduced the number of
required experimental tests. To achieve this,
epoxy resin specimens were prepared with
different graphite weight percentages (0, 5, 10,
15, and 25 wt.%). The mechanical behavior of
these specimens was evaluated by assessing their
water absorption characteristics after immersion
in various water types: potable water (PW),
distilled water (DW), a 10 vol.% alkaline solution
(NaCl), and a 10 vol.% acidic solution (HCI),
following ASTM D570-98 [17]. Mechanical
properties were measured through three
standardized tests: Barcol hardness (BH) (ASTM
D2583 [18]), impact strength (IS) (ASTM D256
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[19]), and heat deflection temperature (HDT)
(ASTM D648 [20]). Experimental data used as
input and output for the ANN model sourced from
Ref. [21]. The numerical model, developed using
ANN and validated against experimental
datasets, reliably predicts the mechanical
behavior of epoxy resin with graphite additives
when exposed to different water types. This
predictive capability eliminates the need for
extensive traditional experimental testing.

2. Artificial Neural Network

Modelling Technique
2.1. Architecture and Algorithm

Artificial neural networks (ANNs) are a
branch of artificial intelligence (Al) that automate
learning by analyzing collected data [1]. ANNs
typically consist of three primary layers: an input
layer, one or more hidden layers, and an output
layer. One of the most fundamental types of ANNs
is the feedforward neural network (FNN), which
is the foundation for many advanced
architectures. A Kkey characteristic is the
unidirectional flow of information—from the
input layer to the output layer—without any
cycles or feedback loops (as shown in Fig. 1).
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Fig. 1. A feedforward neural network schematic
representation

In this research, the Backpropagation (BP)
algorithm was used. A common training
algorithm for ANNs is the BP algorithm, which is
based on the gradient method. This approach
allows the network to learn complicated,
nonlinear associations between input and output.
BP relies on the idea of propagating data through
the network and transmitting errors backward.

For each hidden layer and output layer neuron,
denoting its input value as and output value as,

y=f (Z wex; - 9) &)
i=1

In the output layer, the model processes the
data received from the hidden layer and restricts
the output value within the range (0,1). The
hidden layer enhances the nonlinearity of the
ANN model, allowing for a more accurate
simulation of the correlations between the input
parameters and the output value [8]. In this
structure, w; represents the connection weight
between a neuron and each neuron in the
previous layer, 6 is the bias of the neuron, n is the
number of data points, and f denotes the transfer
function, which is a sigmoid function as defined in

Eq. (2).

1
fx) = 117 (2)

The performance metric for the BP algorithm
is R-squared (R2), Mean Absolute Error (MAE),
Mean Squared Error (MSE), and Root Mean
Square Error (RMSE), which are calculated as
follows: [12,16]

_ (T = P)?
RZ = (1 ~Sr Py 13)2) x 100 (3)
1 n
MAE = 5;(% ~P) @)
1w ,
MSE = ;;(Ti -P) (5)

RMSE = ,M (6)

where, T; is the target value (measured
experimental value), P; is the predicted value and
P is the mean of the response values.

In this model, we considered the weight
percentage (wt.%) of graphite additive and the
type of immersion water as input parameters to
train and test the ANN model, with values of
mechanical properties (BH, IS, and HDT) as
output parameters (Table 1).

Table 1. Levels of input parameters of the numerical model

Levels
Factors
One Two Three Four Five
wt.% Graphite additive 0 5 10 15 25

Type of water Dry specimen PW DW Alkaline solution Acidic solution
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2.2. Neural Network Training

The experimental dataset was taken from Ref.
[21] and contains 255 samples for different levels
and factors used as input/output for training the
ANN model. The study is divided into two
significant parts. In the first section, due to the
increased use of graphite as an additive in epoxy
resin in various industries, especially in gas and
petrochemical industries, they tested the water
absorption properties of the epoxy resin
containing different weights of graphite additive.
They used epoxy resin with the commercial code
EPIRAN-06-EPL with HA-11 hardener. The
graphite powder utilized was BG706, provided by
ARMINA Engineering Co. in Iran. This evaluation
was conducted using the standard ASTM D570-
98 method for exposure to different types of
water. To achieve this, epoxy resin and hardener
were mixed in a weight combination ratio of 15
units of hardener with 100 units of resin, as
recommended by the supplier. The mixture was
agitated for 3 minutes. Subsequently, the desired
weight percentage of graphite powder was added
to the resulting liquid, and the composite was
molded into specimens using specialized molds
with suitable geometric shapes for mechanical
testing. To ensure optimal strength and curing,
the specimens were cured at room temperature
for 7 days, following the manufacturer's
instructions. Their data showed a classical
Fickian pattern of water uptake, with an R? value
of 0.99. Additionally, in the second section of the
study, the effect of water absorption on the
mechanical properties of epoxy resin specimens
has been investigated. Barcol hardness (BH),
impact strength (IS), and heat deflection
temperature (HDT) tests were conducted
following the ASTM standard methods to attain
this. It found that all considered mechanical
properties were dependent on water uptake.
From Ref. [21] for detailed information
concerning the experimental procedures. See Ref.
[21] for detailed information concerning the
experimental procedures.

In this paper, the ANN model was developed
using the ‘nntool’ in MATLAB R2022a. The
network is designed with three hidden layers,
which enhance its ability to model complex
functions and capture deep, hierarchical patterns
in various datasets. However, careful
regularization is necessary to prevent overfitting
[12, 22]. Each hidden layer was assigned 30
neurons, providing increased capacity to
recognize intricate patterns in the data. While
this setup is beneficial for solving complex
problems, it also demands more computational
resources and careful tuning to mitigate the risk
of overfitting [12, 23]. Moreover, rectified linear
unit (ReLU) is considered the activation function.
Relu is popular due to its simplicity and
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effectiveness in mitigating the vanishing gradient
problem. It speeds up training but can suffer from
dead neurons [12, 22]. In addition, for the
optimizer, Adam is used, as it combines the
advantages of two other extensions of stochastic
gradient descent [12, 23]. Also, the learning rate
is set to 0.001, which ensures stable convergence
and helps fine-tune the network. It reduces the
risk of overshooting the minimum [12, 24].
Finally, the training function (trainlm) is selected.
This function is a network training function that
updates the weight and bias values according to

Levenberg-Marquardt optimization. This
training function is often the fastest
backpropagation algorithm and is highly
recommended as a first-choice supervised

algorithm, although it does require more memory
than other algorithms.

3. Results and Discussions

Before using experimental data for training
the ANN model, to avoid biased responses, all
inputs, including parameters of Table 1, and
outputs, including values of BH, IS, and HDT, are
normalized using the following equation:

B X; — Minimum of X
" Maximum of X — Minimum of X

(7

Normalization applied to the input data,
where N represents the normalized value,
X denotes the training data, and X; is the value of
each input data point in the training set i= 1,2,3,....
The normalized values range between 0 and 1. To
retrieve the original values, reverse
normalization operations (Eq. (7)) were
performed. The data points were randomly
divided into three sets: 80% for training, 15% for
validation, and 5% for testing. The ANN
algorithms were executed on a laptop with the
following specifications: 16 GB DDR4 RAM, Intel
Core i5-5200U CPU, Intel(R) HD Graphics 5500
with 4 GB dedicated VRAM, running Windows 10,
and equipped with a 1 TB SSD for fast data access.

Specifically, we chose to stop early with a
patience = 200 criterion to reduce the risk of
over-fitting the ANN algorithm. This technique is
beneficial for preventing overfitting, as it allows
early stopping to ensure that the neural network
performs well on both training and validation
data. This number of epochs is referred to as the
'patience’ parameter, which specifies how many
times  training will continue  without
improvement in validation performance before
stopping, preventing the model from stopping
early and causing an underfit model, and
preventing it from training too long and causing
an overfit model. In neural network training, for
example, model performance is constantly
evaluated by tracking overfitting on a held-out
validation set.
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During training, the loss on the training set
typically decreases, indicating that learning
occurs. However, if the model begins to overfit
the training data, its performance on the
validation set may deteriorate. To address this,
early stopping was implemented. If the validation
loss starts increasing, it signals a decline in the
model's generalization ability. A patience
parameter of 200 epochs is applied, allowing the
model to continue training for up to 200
additional epochs after the first increase in
validation loss. If the validation loss continues to
increase beyond this limit, training is halted to
prevent further overfitting. This approach
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ensures that the model remains fair, balanced,
and efficient when applied to unseen conditions,
achieving optimal accuracy and performance. As
previously mentioned, the trained model was
evaluated based on mean absolute error (MAE),
mean squared error (MSE), root mean squared
error (RMSE), and the correlation factor (R). The
correlation factor (R) was computed using the
MATLAB software package, while MAE, MSE, and
RMSE values were determined using Egs. (4-6).
The regression plots for all components of the
mechanical behavior, obtained from the ANN
model, are presented for the training and
validation sets in Figs. 2-4.
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Fig. 2. Regression fit and R values for training, testing, and validation for impact strength

249



Torabizadeh & Fereidoon / Mechanics of Advanced Composite Structures 13 (2026) 245 - 257

Training: R=0.98823

S
[531

(@)

S
<)

0.98*Target + 0.54

N
(=)

=
w1

Output ~
=
o

(31
Vo
X

40

0.96*Target + 0.45

Output ~

Output ~= 0.96*Target + 0.44

Output ~= 0.97*Target + 0.49

Validation: R=0.99297

o~

v
o)
A

O Data

S
(e}

w
(S}

w
o

N
v

[y
(=}

[
wui

[u=y
(=}

o

30 40

Target

10 20

All: R=0.98838

30 40

20
Target

Fig. 3. Regression fit and R values for training, testing, and validation for barcole hardness

The regression plots for BH in the dataset (Fig.
3) are more dispersed than those of other
mechanical behaviors. This is the case because
this mechanical response, which is related to the
material’s surface hardness, is more variable.
From a practical point of view, this means that
small changes in the inputs (wt.% Graphite
additive and type of water) can lead to a more
significant change in this response than in the
different mechanical properties. In simple terms,
a higher sensitivity to the input parameters is
believed to exist for this mechanical behavior
than for the other mechanical properties. In other
words, and loosely speaking in machine learning
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terms, the broader the distribution of the training
data, the more difficult it is for the model to make
accurate predictions, resulting in higher
residuals and greater variability in the regression
plots. Thus, the larger spread of BH in the
regression plots is likely due to the wider
distribution of this property in the training data
compared to the other properties. Even though
ANNSs can capture nonlinearities fairly well, high
variance in the output data can reduce the
model’s generalization capability, leading to
degraded performance when the model
encounters test data or out-of-sample data.
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Fig. 4. Regression fit and R values for training, testing, and validation for hot deflection temperature

Table 2. Performance matrices of the proposed ANN for the simultaneous prediction of the mechanical behavior
of the specimens exposed to water absorption

Train Test
Component
R2, % MAE MSE RMSE R2, % MAE MSE RMSE
Impact Strength 96.70 0.053 0.005 0.070 96.20 0.052 0.006 0.077
Barcole Hardness 97.66 0.137 0.029 0.170 95.63 0.135 0.032 0.178
Hot Deflection Temperature 99.80 0.018 0.002 0.044 99.80 0.018 0.002 0.044

Based on the evaluation data reported in
Table 2 for the test set, the proposed ANN model
can make reasonable predictions for unseen data
points. Furthermore, the values of the evaluation
factors MAE, MSE, and RMSE were deemed
satisfactory, as they were close to zero. After
ensuring the accuracy of the ANN model based on
the evaluation parameters in Table 2, with an
accuracy of over 95% for predicting the
mechanical properties of epoxy resin with
different weight percentages of graphite additive,
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the model’s accuracy for each studied case
determined by comparing the available
experimental data with the predicted values of

the ANN model for various mechanical
properties. Figures 5-7 illustrate the comparison
between experimental results and ANN

predictions for BH, HDT, and IS, respectively,
across different graphite weight percentages
exposed to PW, DW, alkaline solution, acidic
solution, and dry conditions.
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(a) potable water, (b) distilled water, (c) alkaline solution, (d) acidic solution, and (e) dry specimen
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Fig. 7. Comparison between experimental and ANN hot deflection temperature results for different graphite weight percentages
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Since investigating the effects of graphite
additives on the mechanical behavior of epoxy
composites is not the main objective of this paper,
only some key findings from the experimental
results are summarized here; more detailed
explanations are found in Ref. [21]. For all weight
percentages of graphite additive, Barcol hardness
decreases by approximately 16% after moisture
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absorption compared to the values before
immersion. The smallest reduction in Barcol
hardness was observed in samples immersed in
alkaline water. The deflection temperature of
immersed samples is higher than dry specimens,
with no significant variation based on the type of
water. However, under moisture conditions, the
deflection temperature is lower for samples with
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different graphite contents compared to pure
resin samples. The impact strength of immersed
samples, with varying graphite weight
percentages, decreases by about 16%.

According to Figs. 5-7, ANN-predicted data of
three mechanical properties of epoxy resin with
graphite additive were compared with
experimental ones. As observed in these figures,
the errors between the experimental and ANN-
predicted values for Barcol hardness at 0, 5, 10,
15, and 25 wt% graphite additive are 1.88%,
2.01%, 0.89%, 1.40%, and 1.36%, respectively.
Moreover, the differences between the actual and
predicted values of heat deflection temperature
for 0, 5, 10, 15, and 25 wt% graphite additive are
0.26%, 0.70%, 0.92%, 0.54%, and 1.23%,
respectively. Finally, for impact strength at 0, 5,
10, 15, and 25 wt% graphite additive, the
discrepancies between the experimental and
ANN-predicted data are 0.90%, 5.70%, 3.18%,

5.10%, and 2.56%, respectively. These
differences in the range of 1-5% can be attributed
to experimental errors. So, these accurate
predictions demonstrate the reliability of the
ANN model. This will enable the use of the ANN
technique to predict other wt% graphite additive
levels not tested experimentally (unseen data).

The primary quality identifier of an artificial
neural network is its generalization ability, its
ability to use the input to accurately predict the
output for data never seen in the training set,
which is assessed through dataset validation. The
simulation was performed to predict the values of
Barcol hardness, heat deflection temperature,
and impact strength before and after immersion
in different types of water for 20, 35, and 45 wt.%
graphite additive. Table 3 shows the ANN-
predicted values of the studied mechanical
properties of specimens for unseen experimental
data.

Table 3. ANN predicted values of unseen data for 20, 35, and 45 wt.% graphite additive

wt.%.Graphite Type of water Barcole Hot Deflection Impact
additive Hardness Temperature Strength
Dry specimen 36.394 128.627 14.186
Potable water 28.782 144.832 4.515
20 Distilled water 21.170 142.499 5.794
Alkaline solution 13.558 143.925 4.727
Acidic solution 5.945 144.674 4.350
Dry specimen 35.780 126.710 13.934
Potable water 28.168 142.915 4.263
35 Distilled water 20.556 140.582 5.542
Alkaline solution 12.944 142.008 4.474
Acidic solution 5.332 142.757 4.098
Dry specimen 35.542 125.966 13.836
Potable water 27.930 142.171 4.165
45 Distilled water 20.318 139.838 5.444
Alkaline solution 12.706 141.264 4.376
Acidic solution 5.094 142.012 4.000

4. Conclusions

This study successfully demonstrated the
predictive accuracy of an ANN model in
estimating the mechanical properties of epoxy
resin specimens with varying weight percentages
of graphite additive when exposed to different
water types. In the model, the weight percentage

255

(wt.%) of graphite additive and the type of
immersed water were used as input parameters
to train and test the ANN, while the mechanical
properties—Barcol hardness (BH), impact
strength (IS), and heat deflection temperature
(HDT)—served as output parameters. To
evaluate the model's performance, R-squared
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(R?), Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Root Mean Squared Error
(RMSE) are used as performance metrics. As
these performance metrics were close to zero and
the R-squared values were close to 1, we can be
confident in the accuracy of the proposed ANN
model (over 95%) for predicting the mechanical
properties of epoxy resin with different weight
percentages of graphite additive. The low error
values and strong agreement with experimental
results confirm the reliability of the proposed
ANN model. These differences for Barcol
hardness, heat deflection temperature, and
impact strength were 1.5%, 0.91%, and 4.3%,
respectively. Finally, the generalization ability of
the proposed model was evaluated. We applied
the ANN model to unseen data from the training
set to accurately predict the output, as
demonstrated by validating the dataset. It should
be noted that the extrapolated predictions are
intended to explore potential trends and assess
the model's behavior in untested regions, rather
than to claim definitive predictive accuracy in
those ranges. We believe this ANN model can be
effectively utilized to model improved composite
materials for specialized applications,
significantly reducing both computational and
experimental efforts.
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