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Several experimental studies have been conducted on concrete confined with FRP sheets, and
various models have been proposed in previous research to determine its compressive
strength. However, studies have shown that Machine Learning (ML)-based methods offer
higher accuracy than these models. In this study, the effectiveness of different machine
learning methods is investigated for predicting the ultimate compressive strength of
Rectangular/Square (R/S) FRP-confined concrete columns. These methods include ELM,
GMDH, ANFIS, and the Kriging interpolation method. Also, this study proposes utilizing
optimization science as a solution to enhance the performance of the ANFIS method. As an
innovation in this study, the Marine Predators Algorithm (MPA), a nature-inspired
metaheuristic, has been used to optimize the parameters of the ANFIS method. To show the
ability of ML methods to estimate compressive strength, statistical indices were calculated
and ML methods were compared; the correlation coefficient (R%) for ELM, GMDH, ANFIS,
ANFIS-MPA, and Kriging interpolation methods was equal to 0.89, 0.92, 0.92, 0.93, and 0.98,
respectively. Also, these results show that the proposed methods have better performance
than the best models in previous studies, with an average error reduction of 62%.

© 2025 The Author(s). Mechanics of Advanced Composite Structures, published by Semnan University Press.

This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/)

1. Introduction

FRP-confined concrete was presented by Nanni
and Bradford [1]. Three kinds of FRP were used

In civil engineering, FRP is widely used due to
its high strength-to-weight ratio. One of the
applications of FRP is the confinement of
concrete with FRP sheets to increase its
compressive strength. Due to the Ilateral
expansion of concrete, FRP confinement in the
hoop direction has received significant attention.
The effect of various parameters, such as the
shape and dimensions of the cross-section, the
compressive strength of concrete, and the type of
FRP, has been experimentally investigated in
previous studies. The first experimental study on
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for confining concrete with ordinary strength
under uniaxial compressive loading. The results
of their study showed that compressive strength
and ductility increase with FRP confinement.
Early research attempted to develop analytical
models for FRP-confined concrete based on those
previously used for steel plates [2, 3]. Later
researchers realized that the results of these
models were incorrect and non-conservative [4].
After that, different models were presented to
determine the compressive strength of concrete
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confined with FRP [5-21]. It is noteworthy that
the majority of these models are empirical and
calibrated based on a limited number of
experimental data.

Recently, artificial intelligence methods have
been widely used in various fields of civil
engineering due to their ability to simulate
complex processes. [22-28]. Ilkhani et al. [29]
proposed a shear strength estimation
relationship for reinforced concrete beam-
column joints strengthened by FRP using neural
networks. In 2019, Rezaie-Balf [30], gathered
data from 228 experimental case studies focused
on scour depth downstream of sluice gates with
an apron. Using multivariate adaptive regression
splines (MARS), they derived a predictive
relationship for scour depth through detailed
data analysis. Saha et al. [31] used gradient
boosting, Adaboost, LightGBM, XGBoost, and
CatBoost to predict the fresh and hardened
properties of self-compacting concrete. Gradient
Boosting Regressor, Extra Tree Regressor, Deep
Neural Network, and One-Dimensional CNN were
used for predicting the self-consolidating
concrete blends composed of recycled plastic
aggregates by Ali et al. [32]. A predictive model
for impact-loaded composite panels was
developed using artificial neural networks (ANN)
and adaptive network-based fuzzy inference
systems (ANFIS), demonstrating their
effectiveness in estimating structural response
under dynamic conditions [33]. Machine learning
methods include Bayesian posterior models,
back-propagation artificial neural networks,
multi-gene genetic programming, and support
vector machine models used for estimating the
ultimate axial strain of confined concrete by Chen
etal. [34]. Moodi et al. [35] used the RSM method
for estimating the relative bond strength of
corroded bars in lap-spliced RC beams. In 2019,
DeRousseau [36] compared various ML methods
such as linear regression, polynomial regression,
kernelized support vector regression, kernelized
Gaussian process, regression trees, boosted trees,
and random forest to predict the compressive
strength of field-placed concrete. In the
Naderpour et al. [37] study, the flexural strength
of ferrocement members was evaluated by
GMDH. In 2020, Kummar et al. [38] developed an
ANFIS model for the prediction of the surface
roughness of the thermally drilled hole. In
Amirkhani [39] DNA-binding remains in local
parts of protein sequences were predicted by the
Fuzzy Cognitive Map (FCM) model.

Cihan [40] showed that the fuzzy logic method
provides more accurate predictions than any
other regression method for estimating concrete
compressive strength and slump. In predicting
the bond strength between concrete and FRP
sheets, Gaussian Process Regression (GPR) was
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compared with Regression Tree, ANN, SVM, and
Multiple Linear Regression (MLR). The results
showed that GPR achieved the highest accuracy.

In 2020, Faramarzi et al. [41] proposed MPA,
a swarm intelligence algorithm inspired by the
Lévy and Brownian search strategies used by
ocean predators to locate prey. The Lévy
approach is utilized in prey-rich environments,
while the Brownian method is preferred in prey-
scarce conditions. MPA has demonstrated
effectiveness in solving a wide range of problems
in diverse research fields.

In previous research, researchers have
employed various machine-learning methods to
estimate the compressive strength of columns
confined by FRP sheets, both for circular and
square/rectangular cross-sections. Table 1
provides a summary of these studies, including
the number of specimens used, the machine
learning method applied, and the type of cross-
section (circular and R/S). It is evident from
Table 1 that there have been relatively fewer
studies that specifically focused on using machine
learning methods for estimating the compressive
strength of R/S concrete confined by FRP. This
suggests that there might be a potential area for
further exploration and research in this specific
domain.

In this study, the researchers collected
experimental data from rectangular/square
(R/S) concrete specimens confined by FRP from
previous studies. To ensure a more reliable
modeling process, a wider range of statistical
populations was considered compared to
previous research efforts, resulting in a
comprehensive  database comprising 485
specimens.

A key contribution of this study is the
application of ELM, GMDH, ANFIS, and Kriging
interpolation methods for predicting the
compressive strength of R/S FRP-confined
concrete, which, to the best of our knowledge, has
not been explored in previous studies.
Additionally, while meta-heuristic algorithms
have been extensively employed for parameter
optimization in various engineering and
computational fields, this study is the first to
utilize the Marine Predators Algorithm (MPA) to
optimize the parameters of the ANFIS model. This
novel ANFIS-MPA approach, along with other ML
models, is used for the first time to estimate the
compressive strength of R/S concrete confined
by various FRP types. The results indicate that
Kriging interpolation achieves the highest
accuracy, with a correlation coefficient of 0.98,
outperforming other methods. Furthermore,
replacing the Mamdani system with MPA in the
ANFIS method reduces the total error by 12%
across all specimens, demonstrating the
effectiveness of this optimization strategy.
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Table 1. Approaches for predicting the compressive strength of FRP-confined columns

Study Year Section(s) Method(s) Types of concrete Number of specimens
Jin etal. [42] 2010  Rectangular, Circular RBFNN Plain 154, 362

Pham and Hadi [43] 2014  Rectangular ANN Plain 209

Doran et al. [44] 2015 Rectangular MFIS Plain 140

Lim et al. [45] 2016  Circular GP Plain 832

Moodi et al. [11] 2018  Rectangular RSM Plain 416

Sharifi et al. [46] 2019  Rectangular ANN Plain 190

Mohana [47] 2019  Rectangular ANN, SVR RC 163

Moodi et al. [48] 2021  Rectangular ANN, SVR Plain 463

2. Some Existing Models of Previous
Studies

In previous studies, different methods have
been proposed to estimate the compressive
strength of R/S FRP-confined concrete. To
compare the methods of this study with previous
studies, some of which are summarized in Table
2 of Moodi et al. [48] study was used.

3. Experimental Data

Many tests have been done on concrete
confined by FRP. Among these tests, the share of
circular specimens is higher than rectangular
specimens. However, due to stress concentration
in rectangular specimens, these specimens have
more complexity than circular specimens.
Therefore, providing a model wusing a
comprehensive database can be of great help in
providing a community model to estimate the
compressive strength of these specimens. In this
study, a comprehensive statistical population
including 485 S/R specimens confined by FRP
types, extracted from various types of research,
was used. In this statistical comprehensive, it has
been made to collect all kinds of specimens
available in past studies. Therefore, the range of
variable changes is large. In this statistical
population, there are concretes with different
types of strength (normal-strength concrete and
high-strength concrete). The types of FRP used in
this data—CFRP, AFRP, and GFRP—are
summarized under the headings C, A, and G in
Table 2, respectively. All the FRP wraps used in
this data are unidirectional or unidirectional
(with ring direction). The details of the
specimens are given in Table 2. In this table, b and
h, the length and width of the specimens (cm), fc
is the compressive strength of unconfined
concrete (MPa), and r is the corner radius of the
concrete section (cm).

It is worth mentioning that in this dataset, 44
concrete specimens had a confined compressive
strength lower than that of unconfined concrete.
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Therefore, these specimens were identified as
outliers and removed from the dataset.
Information on the outlier data is not included in
Table 2. Seventy percent (309 samples) of the
data were used for training, while the remaining
132 samples were used for testing.

By correctly knowing the data and knowing
their statistical details, a better understanding of
them can be obtained. For this purpose, the
histogram diagram to show the distribution of
each of the mentioned parameters can be seen in
Fig. 1. Also, the normal fitting diagram of the data
is drawn on the histogram of the data. Fig. 2
shows the correlation matrix of the considered
data for determining compressive strength. The
variables included are b, h, r, fe, t;, Ff, Ef, and Fee.
The heatmap highlights the degree of linear
relationship between these variables, with values
close to 1 or -1 indicating strong positive or
negative correlations, respectively. Also, the
range of variables of this database is presented in
Table 3.

4. Extreme Learning Machine (ELM)

Huang et al. [87] introduced the Extreme
Learning Machine, which has gained significant
attention due to its remarkably fast training
process and strong generalization capabilities.
ELM is a modern algorithm designed for single-
hidden-layer feedforward neural networks, with
applications in  statistical classification,
regression tasks, and clustering. ELM is based on
the empirical theory that minimizes risk and
avoids  multiple repetitions and local
minimization because the learning process
requires only one repetition [88]. Due to better
generalizability, controllability, and fast learning
speed, it has been used in various fields and
applications.

The ELM model employs a straightforward
three-step construction process [89]: (i) weights
and biases are randomly initialized, avoiding the
iterative approach typical of ANN methods; (ii)
the input data is processed through hidden layer



parameters to generate the hidden layer output
matrix; and (iii) the Moore-Penrose generalized
inverse is applied to the hidden layer output
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Table 2. Details of the database

matrix, allowing for the inversion needed to
calculate output weights and solve a system of
linear equations.

Reference n n' Type of FRP b(cm) h (cm) r(cm) fe

[49] 8 8 C 15 15 0.5-5 26.7-31.8
[50] 6 6 G 10 10 0-1.6 54.8

[51] 2 2 C 15 15 0.3 13

[52] 1 1 C 15.2 15.2 0.3 20.1

[53] 4 4 C 15 15 1-3 33.5-36.5
[54] 24 24 C 9.525-13.335 13.335-19.05 2.54 21.4-55.4
[55] 5 4 C G 15.2 15.2 0.5 32.3-42.2
[56] 1 1 C 15 15 2.5 10

[5] 9 9 C 7.9-13.2 13.2-21.4 1.5 18.9-21.5
[57] 4 4 G 15.2 15.2 1.1-2.5 31.2-32.4
[58] 1 1 C 20 20 3 38.1

[59] 3 3 C 10-10.5 10-20 1 323

[6] 12 10 C 15-25 25-30 4 32.8-34
[7] 12 12 C 15 15-22.5 1.5-2.5 24-41.5
[60] 15 15 C 10-15 10-15 2.5 21.3-25.7
[61] C 15.25 15.25 0.635 40.6

[62] 6 CG 15 15-20 1-2.5 17.6-25
[63] C 10.8 10.8 0.826 22.6

[64] 26 24 CA 15.2 15.2-20.3 0.5-3.8 35.8-43.9
[65] 15 15 CG 20 20 3 33-39.9
[66] CG 20 20 3 255

[67] 8 8 C 9.4-15 15-18.8 1 23.7-29.5
[68] 14 13 CGA 15 15 0.5-2.5 33.9-36.7
[69] 24 24 C 15 15-30 2-5 19.5-49.5
[70] 60 59 C 15 15 0-6 29.3-55.2
[71] 9 9 A 10 10 1 46.4-101.2
[72] 15 15 A 7-15 7-15 0.7-1.5 34.6-52.1
[73] 10 10 C 10-40 10-40 1-4.5 244

[74] 8 8 C 20.4-30.5 20.4-30.5 2-3 255

[75] 30 22 C 15 15-30 3 32.3-42.4
[76] 2 2 C G 279 279 1.9 15.2

[77] 28 26 C 15-45 15-60 3 20.6

[78] 37 31 C G 25.4-38.1 38.1 3.8 29.2-38.7
[79] 2 A 15 15 1.5 45-50
[80] 15 6 C 15-20 20-30 1-4 24-26.7
[81] 24 11 C 11.25-15 15-22.5 1.5-3 107.3-110.8
[82] 24 19 C 11.25-15 15-22.5 1.5-3 76.6-79.6
[83] 4 4 A 15 15 3 98.2

[84] 2 2 C 15 15 3 104.8
[85] 4 3 C 15 15-22.5 2.5 93.8-106
[86] 4 4 C 11.25-15 15-22.5 1.5-3 107.8
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Fig. 2. Correlation matrix of variables affecting confined-FRP compressive strength

Table 3. The range of variables

Variable Range

Width (b) 70-450 mm
Length (h) 70-600 mm
Corner radius (r) 0-60 mm
Compressive strength (feo) 10-110.8 MPa

Different types of FRPs CFRP, AFRP, and GFRP
Modulus of elasticity of FRP (Ef)  10.3—257 GPa
FRP thickness (tr) 0.072-9.6 mm

Tensile strength of FRP (Fr) 154—4830 GPa

For a set of training examples (N number), (x;
ti), where (x; ti) € RxRm (i=1,2,...,, N), the output
of a single hidden layer feedforward neural
networks (SLFN) with L hidden neurons and an
activation function f{x) can be represented as
follows [87]:

S .0(x,) =38, f(a,x, +5,)=¢,.
i=1 i=1
j=1..,N

(1)

where ai=[ai1,aiz,..., ain]" is the vector of weights
that connect the ith hidden neuron to the input
neurons, b; is the bias weight of the ith hidden
neuron, S=[f, f, ..., fim] is a weight vector that
connects ith hidden node to the output nodes, a;.x;
is the inner product of aj and xj. The activator
function can be selected from one of the
"Sigmoid", "Sine", and "RBF" functions.
Then, Eq. (1) can be written as follows. [87]:

(2)

HpB=T

where:
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{{(al,...,aL,bl,...,bL,Xl,...,XN2:
fla,.x, +b).. f(a,.x, +b,)
(3)
f(a,.x, +b)..1fla,x, +b,)
L AN=L
Bl
- ﬂll 'Blm
B = =| : : (4)
N ﬁLl ﬂLm
B
L A Lxm
¢
tll tlm
B = = : : (5)
ty o,
¢,
L A Lxm

where H is the hidden layer output matrix of ELM,
T is the training data target matrix, and the it
column of H is the it hidden node output to inputs

X1, X2, ..., XN.

The output weights B can be calculated using

the following equation:
L=H'T

(6)

where H is the Moore-Penrose generalized
inverse of H [90].
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Fig. 3. Architecture of the ELM model used to predict the compressive strength of confined concrete

5. Group Method of Data Handling
(GMDH)

The Group Method of Data Handling (GMDH)
is a prediction model presented by Ivakhnenko
[91]. It employs regression-based algorithms,
heuristic  self-organizing  principles, and
automatic model optimization. GMDH is mainly
used for multivariate analysis to model complex
functions with multiple variables. In the GMDH
neural network, input variables are linked to
output variables through a nonlinear function
known as the Kolmogorov-Gabor polynomial [92,
93]. This polynomial function is used to describe
the relationships between the input and output
variables in the model:

m_ _m

m
Y =4, +22/X,- +zz
=

j=1 i=1

[/l v

m_ m_ m

(7)

al.ﬂ(Xl.X/.Xk +...
k=1 j=1 i=1

where m is the number of input variables, x is the
input variable, y is the model output, and a is the
coefficients in  the Kolmogorov-Gabor
polynomial that is solved by the regression
method. Considering this, a quadratic polynomial
applied in the GMDH network can be written as:

G(x,,x,)=y=a,+ax, +a,x,+

a, x, +a (8)

2
10X, +a. X X

12771772
The objective function of the GMDH-NN is to
minimize the squared error between the
predicted outputs and the actual outputs.
Mathematically, the objective function can be
represented as:
>0, ~ ¥ OF - min ©)
The weighting coefficients of a quadratic
function (G:) are obtained through optimization
to achieve the best fit between the input-output
datasets used for training. Mathematically, G: can
be written as [25]:
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31, Cx,x,) T

m

E =

(10)

By placing Eq. 10 in partial derivative, a
matrix equation (Aa = Y) is obtained, wherein
[94]:

a=1a,,a,,a,,a,,,a5,,a,} (11)
T
Y:{yl seees ym} (12)
2 2
1 X, X, X, %, Xip X,
2 2
1 X, , X, X, ,X,, X5, X5,
A= : (13)
2 2
1 me X2q mexmq me qu

The Matrix equation (Aa = Y) is solved by
using the singular value decomposition method.
In this method, a is calculated based on [95]:

a=(A"A)"AY (14)

In this study, an advanced version of the
GMDH neural network was utilized, where more
than two variables are initially selected, enabling
the formation of higher-order polynomial
relationships.

6. Fuzzy System Theory (FIS)

The theory of fuzzy sets was first proposed by
Zadeh [96]. Over time, this theory has been well-
received in various fields, so now fuzzy sets are
used in all fields of industry and various sciences.
Applications of fuzzy inference systems include
designing a decision support system, dynamic
system identification, interpolation,
approximation, estimation, and so on. Indeed,
one of the most significant advantages of fuzzy
logic is its capability to handle and represent
uncertainty in a parametric or structural context.
Additionally, it serves as a novel tool for
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addressing problems where probability theory
lacks applicability. The fuzzy inference system
establishes a nonlinear mapping between input
and output, effectively processing the input using
a set of rules and converting it to the output.
These rules are obtained through human
knowledge, consciously and empirically, or
unconsciously and empirically. A membership
function can be defined for each input or output
in a fuzzy logic system. These functions are
responsible for mapping the membership value,
which lies between 0 and 1, of each point in the
input or output space [97]. Trimf, Trapmf,
Dsigmf, Gussmf, etc., are among the membership
functions in fuzzy systems [98]. Fig. 4 illustrates
the steps of a fuzzy system along with the
membership functions employed in this research.

The Mamdani fuzzy system and the Takagi-
Sugeno-Kang fuzzy system (TSK), better known
as Sugeno, are among the most widely used fuzzy
inference systems. The fuzzy system utilized in
this research is the Mamdani system. This system
is particularly well-suited for decision support
systems due to its intuitive and interpretive
nature of the rules. It allows for a clear
representation and understanding of the fuzzy
rules and their implications. Moreover, the
Mamdani system can be implemented in different
configurations, including multi-input and multi-
output, as well as multi-input and single-output
setups, providing flexibility in modeling complex
relationships and decision-making processes.
The Mamdani inference system employs fuzzy
sets as outputs for its rules, producing results
that are both nonlinear and fuzzy [99].

7. ANFIS

In 1993, Jang introduced the fuzzy neural
model, which was a pioneering approach that
combined the principles of artificial neural
networks and fuzzy systems. [100]. The most
important feature of this system is the

simultaneous use of neural network learning
capabilities and the transfer of human knowledge
using fuzzy logic to the desired system. ANFIS is
trained using an input and output database and
then creates a fuzzy system (FIS) that allows for
the prediction and estimation of various
phenomena in different scientific fields. Fig. 5
illustrates the flowchart of a fuzzy neural system.
[101].

8. Combining Fuzzy System with MPA
(ANFIS-MPA)

The optimization method, developed by
Faramarzi et al. [41], is inspired by nature and
based on various foraging strategies (Lévy and
Brownian) observed in marine predators. The
MPA optimization process simulates predator-
prey interactions and is divided into three main
stages: (1) the prey moves faster than the
predator, (2) both the predator and prey move at
the same speed, and (3) the predator moves
faster than the prey. In each stage, the predator's
optimal movement is used to determine the step
size towards the prey. During the first stage, the
predator remains stationary; in the second, it
follows Brownian motion; and in the third, it
adopts the Lévy strategy. Each stage corresponds
to one-third of the total iterations.

The mathematical modeling of these three
phases is given in Eqns. 15 to 18.

* The 1st. phase: (Vyredator < Vprey)

stepsize, = ﬁB ®(El1'te/ —1?5, ®Prey,)
i=1,..,n

s (15)
Prey, = Prey . + P.R ® stepsize,

where Ry = random-numbers vector (based on
Normal distribution); R= entry-wise
multiplications; P= 0.5; R = a random numbers
vector in [0,1].

Y

Fuzzy inference
engine

Input

= Fuzzification

'

Outpu
Defuzzification

Knowledge-base

Fuzzy

sets

h 4

Rule-
base

» " » »

Triangular membership function Trapezoidal membership function

Gaussian membership function

Fig. 4. Fuzzy System Structure [102]
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ANFIS performance parameters

accepted

Does Error

No

Fig. 5. Flowchart of the ANFIS process [103]

* The 2nd. phase: (V,redator = Vprey)
For the primary half of the populace

stepsize, = ﬁL ®(El1'te,- —ﬁL ®Prey,.)
i=1,.,n/2 B (16)
Prey, = Prey, + P.R® stepsize,

where ffL = random-numbers vector (based on
Lévy distribution); For the second half of the
populace

stepsize, = ﬁE ®(ﬁ5 ®Prey,)

i=n/2,...,n an
Prey , = Elite; + P.CF ® stepsize,
2 Iter

where CF = (1 — fer )( =

MaxIt
* The 3rd. phase: (Vyredator > Vorey)
stepsize,; = I?L ®(1§L ® Elite; —Prey,.)
i=1,..,n (18)

Prey , = Elite; + P.CF ® stepsize,
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Impact of FADs: Fish Aggregating Devices
(FADs) are environmental concerns that affect
the behavior of marine predators [104].
Incorporating FADs into the algorithm helps
prevent the algorithm from getting stuck in local
optima. The mathematical modeling of this effect
is represented by Equation 19:

Prey, = Prey ; + CF[X +R  if R<FADs
_ Ed n
(X X __)I®U
max min
Prey, = Prey ; +[FADs(1 — r) (19)
+r](Prey ,q —Prey ,») if R > FADs

where FADs=0.2; U = a binary vector (It is a
random vector, values greater than 0.2 become
one, and values less than 0.2 become zero.); r =a
random number between 0 and 1.

The overall process of the marine predator’s
algorithm is given in Fig. 6.
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Fig. 6. The overall trend of the MPA

9. Kriging Interpolation Method

The foundation of this method was initially
proposed by Danie G. Krige and quickly gained
popularity as an efficient and cost-effective
simulation technique. [105]. The Kriging
estimation method focuses on interpolating data
based on spatial variance, which depends on the
distance between points. This model is also
sufficiently flexible to capture nonlinear
functions. Kriging is widely applied in reliability
assessments and failure probability analyses
[106, 107]. When considering the response
function G(x), the basic Kriging model is
formulated as Equation 20. G(x) is composed of
two components: the first part, F(x, ), represents
regression models, while the second part, Z(x),
corresponds to random processes [108, 109]:

G(xX)=F(x,B)+Z(x)+F(x)"B+Z(x) (20)
where:[f; (). f1(x) ... fin()]T and pT =

[B1.By ... Biy]” are the basis functions and the
corresponding regression coefficient. F(x.f8) =
F(x.B) +Z(x) is a Gaussian function with a
mean value of zero Covariance is presented as
follows:

Cov(p,r):o‘zR(H.p.r) (21)
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where 02 and R (6.p.r) are selected respectively,
as the variance and Gaussian correlation function
between the points p and r using the parameter
6 [109].

10.How to Set the Parameters of ML
Methods

Machine learning methods contain several
regulatory parameters; if they are set optimally,
they will improve the accuracy of the method. In
the GMDH method, in each layer, a limited
number of neurons (Neurons with less error) are
selected to form the next generation. The
criterion error for selecting neurons is
determined from the following equation:

e =ae +(1-w)e

c mi max

(22)

where emin and emax are the minimum and
maximum error in each layer, and « is the factor
of selection pressure.

In the fuzzy network, the fuzzy clustering
algorithm (FCM) is utilized, and its function is
introduced in MATLAB software as "genfis3". The
regulatory parameters of the fuzzy method
include the following:
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1. Number of clusters: This parameter
determines the number of clusters the
algorithm will attempt to identify in the data.

2. Type of input and output membership
functions: Fuzzy logic systems use
membership functions to represent the
degree of membership of elements in a set.
The type of these membership functions (e.g.,

Gaussian, triangular, etc.) can significantly
influence the performance of the FCM.

3. [Iterations number: This parameter specifies
the maximum number of iterations allowed
for the algorithm to converge and achieve a
solution.

Details of the setting parameters can be found
in Table 4.

Table 4. Details of the parameters of the methods used

ELM parameters

N.Iteration N. Hidden neurons

Activation function

20 17 Hyperbolic tangent sigmoid (f(x){i:rz:))
GMDH parameters
N.Iteration o4 N. Layer Neurons
100 0.7 Minimum (75 and number of neurons that e<e. with a=0.7)

MPA parameters

N.O. population N.O.Iteration FADs Constant number
50 100 0.2 0.5

ANFIS parameters
train_ train_ N.O.Epoch  N.O.teration = Membership Function Type
StepSizelncrease StepSizeDecrease Output Input N.O.Cluster
1.15 0.95 250 150 linear gussmf 20

Kriging

Correlation Functions Regression Polynomial Threshold for equal
Exponential 1 degree le-14

11.Results and Discussion

The performance of the machine learning
methods used in this study was compared to
previous study models to estimate the
compressive strength of R/S columns confined by
FRP. For this purpose, two models that were
selected as the best methods of previous studies
by Moodi et al. [48] study are compared with the
methods of this study. To evaluate the
performance of methods of this study, widely-
used indicators have been used in Moodi et al.
[48] study are used in this study. These
indicators include Standard Deviation (SD), Mean
Squared Error (MSE), Absolute Integral Error
(IAE), and total Error (erotar).

12.Comparison of Accuracy of the
Proposed ML Methods

To compare the accuracy of ML methods,
statistical indices were computed separately for
training and test specimens, as shown in Table 5.
The statistical indices of test specimens were
used for comparison since these specimens were
not involved in training. If the indices of the test
specimens are equal, the indices of the training
specimens can be considered. As shown in Table
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5, statistical indices of the Kriging method are
less than those of the other models, in both
training and testing specimens. Also, the total
error of the ANFIS-MPA and GMDH methods is
almost equal for test specimens. Among other
statistical indicators for the test specimens, the
ANFIS-MPA method performed better than the
GMDH method with a slight difference. Therefore,
it is better to use training specimens to specify
the method with better performance between the
ANFIS-MPA and GMDH methods. The statistical
indicators of the training specimens for the
ANFIS-MPA method are smaller than those of the
GMDH method. Thus, the total error of the ANFIS-
MPA method is approximately 9% less than the
total error of the GMDH method. This difference
can also be seen in the statistical indices of all
specimens. Therefore, in this study, the Kriging
method can be selected as the best method, and
the ANFIS-MPA method as the next best method.
It is noteworthy that when the difference
between training statistical indicators and test
ones is large, it indicates that this method does
not work well. For this purpose, the average ratio
of statistical indicators of training specimens to
test ones was calculated, which is equal to 0.98,
0.99, 0.87, 0.93, and 0.08 for ELM, GMDH, ANFIS,
ANFIS-MPA, and Kriging methods, respectively.
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This indicates that the difference between the
statistical indices of the training and test
specimens in the Kriging method is greater than
in the others and that there is the least difference
in the GMDH method. Thus, the GMDH method
can be selected as one of the best methods for
estimating the compressive strength of FRP-

confined concrete. It is noteworthy that the large
difference between the statistical indicators of
training and test specimens in the Kriging
method is due to its very small statistical
indicators for training specimens. Otherwise, the
statistical indicators of test specimens in this
method are lower than those of other models.

Table 5. Statistical indicators related to LM methods

Method MSE AAE SD €tot
ELM 2.53 12.54 15.96 11.50
GMDH 1.80 9.83 13.36 9.27
Train ANFIS 1.94 10.70 14.38 9.78
ANFIS-MPA 1.47 9.22 12.57 8.52
Kriging 0.019 0.45 1.40 0.55
ELM 2.57 12.42 16.14 12.26
GMDH 1.80 9.87 13.47 9.29
Test ANFIS 2.66 11.08 16.37 10.45
ANFIS-MPA 1.61 9.65 12.79 9.39
Kriging 1.02 7.028 10.17 6.72
ELM 2.54 12.51 16.00 11.73
GMDH 1.80 9.84 13.38 9.28
Total ANFIS 2.16 10.82 14.76 9.98
ANFIS-MPA 1.51 9.35 12.34 8.78
Kriging 0.321 2.42 5.68 2.36
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Fig. 7. Estimated and actual values of compressive strength through ML methods

To illustrate the efficiency of ML methods, Fig.
7 presents the experimental compressive
strength versus the compressive strength
predicted by ML models, separately for test and
training specimens. To enhance the visualization
and facilitate interpretation, additional reference
lines at +15% and £30% error margins have been
included in the plot. These lines help the reader
assess the deviation of predicted values from
experimental data. Points located within the 15%
band indicate highly accurate predictions,
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whereas those within the 30% band still suggest
reasonable estimations but with higher
variability. As shown in Fig. 7, data points in the
Kriging method are more closely distributed
around the midline, indicating higher prediction
accuracy. The Kriging method has the majority of
its data points within the 15% margin,
reinforcing its superior performance. The
correlation coefficient (R?) for the Kriging
method is 0.95 for test specimens, which is the
highest among all models. Following the Kriging
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method, the hybrid ANFIS-MPA model
demonstrates better alignment with the midline,
with an R2 value of 0.91 for test specimens. This
suggests that ANFIS-MPA also provides reliable
predictions but with slightly lower accuracy
compared to Kriging.

The results show that when the classic
training algorithm of the Mamdani system was
replaced by the MPA, in the ANFIS method,
statistical indicators were reduced. For example,
the total error of the ANFIS-MPA method is
reduced by 13, 10, and 12% for the training,
testing, and total specimens, respectively,
compared to the ANFIS method with the
Mamdani algorithm.

13.Comparison of ML Methods and the
Models of Previous Studies

To compare the performance of the two best
models of previous studies (Moodi et al. [13] and
Weiand Wu [9]) with ML methods should be used
with statistical indices of total specimens because
models of previous studies have not been trained
with the database. Those statistical indices are
presented in Table 6.

According to Table 6, the two best methods of
ML perform much better than the two best
models of previous studies. On average, the error
of the two best methods of ML is 62% less than
the two best models of previous studies.
Specifically, the total error (etot) of the Kriging
method is 81.7% lower than that of Moodi et al.

[13] and 85.7% lower than that of Wei and Wu
[9]. Similarly, the ANFIS-MPA model reduces the
total error by 32.0% compared to Moodi et al.
[13] and by 46.8% compared to Wei and Wu [9].
It should be noted that among the ML methods,
the ELM method has the highest error, so this
method performs poorer than Moodi et al. [13]
(Best models of previous studies).

To show the performance of ML and the
models of past studies, experimental
compressive strength against compressive
strength computed from GMDH, ELM, ANFIS,
ANFIS-MPA, and Kriging methods, and Moodi et
al. [13] and Wei and Wu [9] Models are drawn in
Fig. 8. Amongst ML methods and the models of
past studies, ML methods are closer to the
midline and have had a higher correlation
coefficient (R?), according to Table 6. Among the
ML methods, the correlation coefficient of the
Kriging and ANFIS-MPA methods has been the
highest.

Contrary to statistical indices, the correlation
coefficient (R?) of the ELM method is higher than
the models of past studies, and this shows that
the worst ML method works better than the
models of previous studies. It should be noted
that the speed of the ELM method is very high.

The results of this study and Moodi et al. [48]
study show that the Kriging method has better
performance than the MLP method in Moodi et al.
[48] study so the correlation coefficient of the
Kriging method is 2% higher than the MLP
method.

Table 6. Statistical parameters for confined-FRP concrete specimens

Method MSE AAE SD Etot R2

Moodi et al. [13] 2.43 12.15 15.59 1291 0.87
Wei and Wu [9] 3.73 14.90 18.74 16.51 0.86
ELM 2.50 12.10 15.80 11.29 0.89
GMDH 1.80 9.84 13.38 9.28 0.92
ANFIS 2.16 10.82 14.76 9.98 0.92
ANFIS-MPA 1.51 9.35 12.34 8.78 0.93
Kriging 0.321 242 5.68 2.36 0.98
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Fig. 9 shows box plots of the ratio of the "
compressive strength of confined-FRP concrete .
predicted by different models to that found from T
experiments. In this plot, if the mean of the data £ 14
is lying next to one, it means the models have had \bi
precise estimations of the compressive strength. £ 101 E
The short length of the box plot in the models 5
means greater certainty and a high level of 91
agreement in their predicted results. The length o | L
of the box plot in Moodi et al. [13], Wei and Wu - S
[9], and ELM models is higher than other S = -
methods, showing greatly dispersed and s % - . % 5
scattered data in them. According to the length of g § = g % % B

the box plot, the Kriging model had the highest
certainty. The box plot length of the ANFIS-MPA
model is the second shortest box length, so the
data scatter in the Kriging method is less than the
ANFIS-MPA method. In all methods, the median
of the data is greater than one, indicating that
none of these methods is conservative and that
the estimated value is slightly higher than the
experimental value. But in the Kriging and ANFIS-
MPA methods, the median of the data is very close
to one, which indicates that the performance of
these two methods is better than the other
methods. In the ANFIS-MPA method, data scatter
is high and this method cannot be selected as a
suitable method.
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Fig. 9. Box plots of the “predicted-to-experimental” FRP-
confined concrete strength ratios for different models,
highlighting accuracy and dispersion

Fig. 10 illustrates the cumulative frequency
plots obtained for seven models investigated in
this study. This figure shows that the Kriging
method had the higher portions of data points
estimated at low absolute relative error and Wei
and Wu [9] had the lowest of those. For example,
for an absolute relative error of 0.2, the
cumulative frequency is around 59%, 43%, 56%,
59%, 63%, 70%, and 76% for Moodi et al. [13],
Wei and Wu [9], ELM, GMDH, ANIS, ANFIS-MPA,
and Kriging methods, respectively.
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14.Sensitivity Analysis

In this section, the importance of each input
parameter, including b, h, 1, ty, Ff, feo, and Ef, on the
output parameter (f) is investigated. Equation
23 is employed to show the contribution of each
parameter. The provided equation suggests that
as the value of "S" increases for each parameter,
the corresponding parameter has a greater
impact on the model output. This implies that
variations or changes in the input parameters,
particularly those with higher "S" values, have a
more pronounced effect on the overall output of
the model.

> (x, - %)y, -9

s(x,.v)= 23)

$x, Xfi[y, YJ

In the above equation, X; and Y; represent the
input parameter and the output for the given
input parameter X;, respectively. X and ¥ denote
the mean of the input parameters and the output
values, respectively. n represents the number of
data. The sensitivity analysis results, according to
Equation 23, are presented in Table 7.

Table 7. Results of sensitivity analysis

b h r t  tyb

-0.14

t/h  Fffeo

-0.10 0.46

E¢/feo

0.43

S 022 043 032 0.11

A positive or negative "S" value in the input
variables indicates a direct or inverse effect of the
input variable on the output variable,
respectively. Among the eight investigated
parameters, t;/b and tg/h parameters have an
inverse effect on the output parameter. Also,
Ef/fco, Ft/fco, and r/h parameters having the
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highest S value, have the highest effect on the
compressive strength of confined concrete
pressure resistance, and r/t; and t;/h variables
have the least effect on the output variable.

15.Conclusions

In this study, a database of FRP-confined
concrete with rectangular/square (R/S) cross-
sections has been collected and used to find the
method for determining the compressive
strength. For this purpose, several methods of
machine learning (ML) methods were compared
with each other. These methods included ELM,
GMDH, ANFIS, ANFIS-MPA, and Kriging. The
novelty of this study is finding a suitable method
for estimating the compressive strength of those
specimens with all types of concrete and FRP
sheets. The database of this study consisted of
485 samples, 30% and 70% of which were used
for training and testing, respectively. By
comparing the results of ML methods with each
other and with the models of past studies, the
following results are obtained:

e The obtained findings from this study show
that the ML methods are more accurate than
the previous study relationship for
estimating the compressive strength of
confined-FRP concrete with R/S cross-
section.

e The use of ML methods reduces the error by
an average of 43% compared to the two best
relationships of previous studies. Also, the
correlation coefficient (R%Z) of the ML
methods is 7% higher than that of past
studies.

e Amongst the ML methods in this study, the
Kriging and ANFIS-MPA methods have
better accuracy than the other methods,
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with the correlation coefficient of Kriging
and ANFIS-MPA being 0.98 and 0.93,
respectively.

e In all comparisons of methods (statistical
indicators, box plots, cumulative frequency),
the Kriging method is better than the ANFIS-
MPA method. Also, the Kriging method has
better accuracy than the MLP method in
Moodi et al. [48] study.

e Using the MPA instead of the Mamdani
system in the ANFIS method reduces the
total error by 12% for total specimens.
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