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 Several experimental studies have been conducted on concrete confined with FRP sheets, and 

various models have been proposed in previous research to determine its compressive 

strength. However, studies have shown that Machine Learning (ML)-based methods offer 

higher accuracy than these models. In this study, the effectiveness of different machine 

learning methods is investigated for predicting the ultimate compressive strength of 

Rectangular/Square (R/S) FRP-confined concrete columns. These methods include ELM, 

GMDH, ANFIS, and the Kriging interpolation method. Also, this study proposes utilizing 

optimization science as a solution to enhance the performance of the ANFIS method. As an 

innovation in this study, the Marine Predators Algorithm (MPA), a nature-inspired 

metaheuristic, has been used to optimize the parameters of the ANFIS method. To show the 

ability of ML methods to estimate compressive strength, statistical indices were calculated 

and ML methods were compared; the correlation coefficient (R2) for ELM, GMDH, ANFIS, 

ANFIS-MPA, and Kriging interpolation methods was equal to 0.89, 0.92, 0.92, 0.93, and 0.98, 

respectively. Also, these results show that the proposed methods have better performance 

than the best models in previous studies, with an average error reduction of 62%. 
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1. Introduction 

In civil engineering, FRP is widely used due to 
its high strength-to-weight ratio. One of the 
applications of FRP is the confinement of 
concrete with FRP sheets to increase its 
compressive strength. Due to the lateral 
expansion of concrete, FRP confinement in the 
hoop direction has received significant attention. 
The effect of various parameters, such as the 
shape and dimensions of the cross-section, the 
compressive strength of concrete, and the type of 
FRP, has been experimentally investigated in 
previous studies. The first experimental study on 

FRP-confined concrete was presented by Nanni 
and Bradford [1]. Three kinds of FRP were used 
for confining concrete with ordinary strength 
under uniaxial compressive loading. The results 
of their study showed that compressive strength 
and ductility increase with FRP confinement. 
Early research attempted to develop analytical 
models for FRP-confined concrete based on those 
previously used for steel plates [2, 3]. Later 
researchers realized that the results of these 
models were incorrect and non-conservative [4]. 
After that, different models were presented to 
determine the compressive strength of concrete 
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confined with FRP [5–21]. It is noteworthy that 
the majority of these models are empirical and 
calibrated based on a limited number of 
experimental data. 

Recently, artificial intelligence methods have 
been widely used in various fields of civil 
engineering due to their ability to simulate 
complex processes. [22–28]. Ilkhani et al. [29] 
proposed a shear strength estimation 
relationship for reinforced concrete beam-
column joints strengthened by FRP using neural 
networks. In 2019, Rezaie-Balf [30], gathered 
data from 228 experimental case studies focused 
on scour depth downstream of sluice gates with 
an apron. Using multivariate adaptive regression 
splines (MARS), they derived a predictive 
relationship for scour depth through detailed 
data analysis.  Saha et al. [31] used gradient 
boosting, Adaboost, LightGBM, XGBoost, and 
CatBoost to predict the fresh and hardened 
properties of self-compacting concrete. Gradient 
Boosting Regressor, Extra Tree Regressor, Deep 
Neural Network, and One-Dimensional CNN were 
used for predicting the self-consolidating 
concrete blends composed of recycled plastic 
aggregates by Ali et al. [32]. A predictive model 
for impact-loaded composite panels was 
developed using artificial neural networks (ANN) 
and adaptive network-based fuzzy inference 
systems (ANFIS), demonstrating their 
effectiveness in estimating structural response 
under dynamic conditions [33]. Machine learning 
methods include Bayesian posterior models, 
back-propagation artificial neural networks, 
multi-gene genetic programming, and support 
vector machine models used for estimating the 
ultimate axial strain of confined concrete by Chen 
et al. [34]. Moodi et al. [35] used the RSM method 
for estimating the relative bond strength of 
corroded bars in lap-spliced RC beams. In 2019, 
DeRousseau [36] compared various ML methods 
such as linear regression, polynomial regression, 
kernelized support vector regression, kernelized 
Gaussian process, regression trees, boosted trees, 
and random forest to predict the compressive 
strength of field-placed concrete. In the 
Naderpour et al. [37] study, the flexural strength 
of ferrocement members was evaluated by 
GMDH. In 2020, Kummar et al. [38] developed an 
ANFIS model for the prediction of the surface 
roughness of the thermally drilled hole. In 
Amirkhani [39] DNA-binding remains in local 
parts of protein sequences were predicted by the 
Fuzzy Cognitive Map (FCM) model. 

Cihan [40] showed that the fuzzy logic method 
provides more accurate predictions than any 
other regression method for estimating concrete 
compressive strength and slump. In predicting 
the bond strength between concrete and FRP 
sheets, Gaussian Process Regression (GPR) was 

compared with Regression Tree, ANN, SVM, and 
Multiple Linear Regression (MLR). The results 
showed that GPR achieved the highest accuracy. 

In 2020, Faramarzi et al. [41] proposed MPA, 
a swarm intelligence algorithm inspired by the 
Lévy and Brownian search strategies used by 
ocean predators to locate prey. The Lévy 
approach is utilized in prey-rich environments, 
while the Brownian method is preferred in prey-
scarce conditions. MPA has demonstrated 
effectiveness in solving a wide range of problems 
in diverse research fields. 

In previous research, researchers have 
employed various machine-learning methods to 
estimate the compressive strength of columns 
confined by FRP sheets, both for circular and 
square/rectangular cross-sections. Table 1 
provides a summary of these studies, including 
the number of specimens used, the machine 
learning method applied, and the type of cross-
section (circular and R/S). It is evident from 
Table 1 that there have been relatively fewer 
studies that specifically focused on using machine 
learning methods for estimating the compressive 
strength of R/S concrete confined by FRP. This 
suggests that there might be a potential area for 
further exploration and research in this specific 
domain.  

In this study, the researchers collected 
experimental data from rectangular/square 
(R/S) concrete specimens confined by FRP from 
previous studies. To ensure a more reliable 
modeling process, a wider range of statistical 
populations was considered compared to 
previous research efforts, resulting in a 
comprehensive database comprising 485 
specimens. 

A key contribution of this study is the 
application of ELM, GMDH, ANFIS, and Kriging 
interpolation methods for predicting the 
compressive strength of R/S FRP-confined 
concrete, which, to the best of our knowledge, has 
not been explored in previous studies. 
Additionally, while meta-heuristic algorithms 
have been extensively employed for parameter 
optimization in various engineering and 
computational fields, this study is the first to 
utilize the Marine Predators Algorithm (MPA) to 
optimize the parameters of the ANFIS model. This 
novel ANFIS-MPA approach, along with other ML 
models, is used for the first time to estimate the 
compressive strength of R/S concrete confined 
by various FRP types.  The results indicate that 
Kriging interpolation achieves the highest 
accuracy, with a correlation coefficient of 0.98, 
outperforming other methods. Furthermore, 
replacing the Mamdani system with MPA in the 
ANFIS method reduces the total error by 12% 
across all specimens, demonstrating the 
effectiveness of this optimization strategy. 
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Table 1. Approaches for predicting the compressive strength of FRP-confined columns 

Study Year Section(s) Method(s) Types of concrete Number of specimens 

Jin et al. [42] 2010 Rectangular, Circular RBFNN Plain 154, 362 

Pham and Hadi [43] 2014 Rectangular ANN Plain 209 

Doran et al. [44] 2015 Rectangular MFIS Plain 140 

Lim et al. [45] 2016 Circular GP Plain 832 

Moodi et al. [11] 2018 Rectangular RSM Plain 416 

Sharifi et al. [46] 2019 Rectangular ANN Plain 190 

Mohana [47] 2019 Rectangular ANN, SVR RC 163 

Moodi et al. [48] 2021 Rectangular ANN, SVR Plain 463 

 

2. Some Existing Models of Previous 
Studies 

In previous studies, different methods have 
been proposed to estimate the compressive 
strength of R/S FRP-confined concrete. To 
compare the methods of this study with previous 
studies, some of which are summarized in Table 
2 of Moodi et al. [48] study was used.  

3. Experimental Data 

Many tests have been done on concrete 
confined by FRP. Among these tests, the share of 
circular specimens is higher than rectangular 
specimens. However, due to stress concentration 
in rectangular specimens, these specimens have 
more complexity than circular specimens. 
Therefore, providing a model using a 
comprehensive database can be of great help in 
providing a community model to estimate the 
compressive strength of these specimens. In this 
study, a comprehensive statistical population 
including 485 S/R specimens confined by FRP 
types, extracted from various types of research, 
was used. In this statistical comprehensive, it has 
been made to collect all kinds of specimens 
available in past studies. Therefore, the range of 
variable changes is large. In this statistical 
population, there are concretes with different 
types of strength (normal-strength concrete and 
high-strength concrete). The types of FRP used in 
this data—CFRP, AFRP, and GFRP—are 
summarized under the headings C, A, and G in 
Table 2, respectively. All the FRP wraps used in 
this data are unidirectional or unidirectional 
(with ring direction). The details of the 
specimens are given in Table 2. In this table, b and 
h, the length and width of the specimens (cm), fc 
is the compressive strength of unconfined 
concrete (MPa), and r is the corner radius of the 
concrete section (cm). 

It is worth mentioning that in this dataset, 44 
concrete specimens had a confined compressive 
strength lower than that of unconfined concrete. 

Therefore, these specimens were identified as 
outliers and removed from the dataset. 
Information on the outlier data is not included in 
Table 2. Seventy percent (309 samples) of the 
data were used for training, while the remaining 
132 samples were used for testing. 

By correctly knowing the data and knowing 
their statistical details, a better understanding of 
them can be obtained. For this purpose, the 
histogram diagram to show the distribution of 
each of the mentioned parameters can be seen in 
Fig. 1. Also, the normal fitting diagram of the data 
is drawn on the histogram of the data. Fig. 2 
shows the correlation matrix of the considered 
data for determining compressive strength. The 
variables included are b, h, r, fco, tf, Ff, Ef, and Fcc. 
The heatmap highlights the degree of linear 
relationship between these variables, with values 
close to 1 or -1 indicating strong positive or 
negative correlations, respectively.  Also, the 
range of variables of this database is presented in 
Table 3. 

4. Extreme Learning Machine (ELM) 

Huang et al. [87] introduced the Extreme 
Learning Machine, which has gained significant 
attention due to its remarkably fast training 
process and strong generalization capabilities. 
ELM is a modern algorithm designed for single-
hidden-layer feedforward neural networks, with 
applications in statistical classification, 
regression tasks, and clustering. ELM is based on 
the empirical theory that minimizes risk and 
avoids multiple repetitions and local 
minimization because the learning process 
requires only one repetition [88]. Due to better 
generalizability, controllability, and fast learning 
speed, it has been used in various fields and 
applications. 

The ELM model employs a straightforward 
three-step construction process [89]: (i) weights 
and biases are randomly initialized, avoiding the 
iterative approach typical of ANN methods; (ii) 
the input data is processed through hidden layer 
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parameters to generate the hidden layer output 
matrix; and (iii) the Moore-Penrose generalized 
inverse is applied to the hidden layer output 

matrix, allowing for the inversion needed to 
calculate output weights and solve a system of 
linear equations. 

Table 2. Details of the database 

Reference n n' Type of FRP b(cm) h (cm) r (cm) fc’ 

[49] 8 8 C 15 15 0.5-5 26.7-31.8 

[50] 6 6 G 10 10 0-1.6 54.8 

[51] 2 2 C 15 15 0.3 13 

[52] 1 1 C 15.2 15.2 0.3 20.1 

[53] 4 4 C 15 15 1-3 33.5-36.5 

[54] 24 24 C 9.525-13.335 13.335-19.05 2.54 21.4-55.4 

[55] 5 4 C, G 15.2 15.2 0.5 32.3-42.2 

[56] 1 1 C 15 15 2.5 10 

[5] 9 9 C 7.9-13.2 13.2-21.4 1.5 18.9-21.5 

[57] 4 4 G 15.2 15.2 1.1-2.5 31.2-32.4 

[58] 1 1 C 20 20 3 38.1 

[59] 3 3 C 10-10.5 10-20 1 32.3 

[6] 12 10 C 15-25 25-30 4 32.8-34 

[7] 12 12 C 15 15-22.5 1.5-2.5 24-41.5 

[60] 15 15 C 10-15 10-15 2.5 21.3-25.7 

[61] 9 8 C 15.25 15.25 0.635 40.6 

[62] 6 6 C, G 15 15-20 1-2.5 17.6-25 

[63] 2 2 C 10.8 10.8 0.826 22.6 

[64] 26 24 C, A 15.2 15.2-20.3 0.5-3.8 35.8-43.9 

[65] 15 15 C, G 20 20 3 33-39.9 

[66] 4 4 C, G 20 20 3 25.5 

[67] 8 8 C 9.4-15 15-18.8 1 23.7-29.5 

[68] 14 13 C, G, A 15 15 0.5-2.5 33.9-36.7 

[69] 24 24 C 15 15-30 2-5 19.5-49.5 

[70] 60 59 C 15 15 0-6 29.3-55.2 

[71] 9 9 A 10 10 1 46.4-101.2 

[72] 15 15 A 7-15 7-15 0.7-1.5 34.6-52.1 

[73] 10 10 C 10-40 10-40 1-4.5 24.4 

[74] 8 8 C 20.4-30.5 20.4-30.5 2-3 25.5 

[75] 30 22 C 15 15-30 3 32.3-42.4 

[76] 2 2 C, G 27.9 27.9 1.9 15.2 

[77] 28 26 C 15-45 15-60 3 20.6 

[78] 37 31 C, G 25.4-38.1 38.1 3.8 29.2-38.7 

[79] 2 2 A 15 15 1.5 45-50 

[80] 15 6 C 15-20 20-30 1-4 24-26.7 

[81] 24 11 C 11.25-15 15-22.5 1.5-3 107.3-110.8 

[82] 24 19 C 11.25-15 15-22.5 1.5-3 76.6-79.6 

[83] 4 4 A 15 15 3 98.2 

[84] 2 2 C 15 15 3 104.8 

[85] 4 3 C 15 15-22.5 2.5 93.8-106 

[86] 4 4 C 11.25-15 15-22.5 1.5-3 107.8 
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Fig. 1. Histogram diagram of the data 
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Fig. 2. Correlation matrix of variables affecting confined-FRP compressive strength 

Table 3. The range of variables 

Variable Range 

Width (b) 70-450 mm 

Length (h) 70-600 mm 

Corner radius (r) 0-60 mm 

Compressive strength (fco) 10-110.8 MPa 

Different types of FRPs CFRP, AFRP, and GFRP 

Modulus of elasticity of FRP (Ef) 10.3—257 GPa 

FRP thickness (tf) 0.072-9.6 mm 

Tensile strength of FRP (Ff) 154—4830 GPa 

For a set of training examples (N number), (xi, 
ti), where (xi, ti) ∈ Rn×Rm (i=1,2,…, N), the output 
of a single hidden layer feedforward neural 
networks (SLFN) with L hidden neurons and an 
activation function f(x) can be represented as 
follows [87]: 

(1) 
( ) ( )

L L

i i j i j j i j
i=1 i=1

β f x = β f a .x +b = t ,

j = 1,… ,N

   

where ai=[ai1,ai2,…, ain]T is the vector of weights 
that connect the ith hidden neuron to the input 
neurons, bi is the bias weight of the ith hidden 
neuron, i=[i1, i2, …, im] is a weight vector that 
connects ith hidden node to the output nodes, aj.xj 
is the inner product of aj and xj. The activator 
function can be selected from one of the 
"Sigmoid", "Sine", and "RBF" functions.  

Then, Eq. (1) can be written as follows. [87]: 
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where H is the hidden layer output matrix of ELM, 
T is the training data target matrix, and the ith 
column of H is the ith hidden node output to inputs 
x1, x2, …, xN.  

The output weights  can be calculated using 
the following equation:  

(6) jH T = 

where Hj is the Moore–Penrose generalized 
inverse of H [90]. 
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Fig. 3. Architecture of the ELM model used to predict the compressive strength of confined concrete 

5. Group Method of Data Handling 
(GMDH) 

The Group Method of Data Handling (GMDH) 
is a prediction model presented by Ivakhnenko 
[91]. It employs regression-based algorithms, 
heuristic self-organizing principles, and 
automatic model optimization. GMDH is mainly 
used for multivariate analysis to model complex 
functions with multiple variables. In the GMDH 
neural network, input variables are linked to 
output variables through a nonlinear function 
known as the Kolmogorov-Gabor polynomial [92, 
93]. This polynomial function is used to describe 
the relationships between the input and output 
variables in the model: 

(7) 
= = =

= = =

= + + +

+

 



0
1 1 1

1 1 1

m m m

i i ij i j
i j i

m m m

ijk i j k
k j i

y a a x a x x

a x x x

 

where m is the number of input variables, x is the 
input variable, y is the model output, and a is the 
coefficients in the Kolmogorov–Gabor 
polynomial that is solved by the regression 
method. Considering this, a quadratic polynomial 
applied in the GMDH network can be written as: 

(8) 
= = + + +

1 2 0 1 1 2 2
ˆ( , )G x x y a a x a x  

+ +2 2

11 1 22 2 12 1 2
a x a x a x x   

The objective function of the GMDH-NN is to 
minimize the squared error between the 
predicted outputs and the actual outputs. 
Mathematically, the objective function can be 
represented as: 

(9) 
2

1

ˆ[( )] min
m

i i
i

y y
=

− →
 

The weighting coefficients of a quadratic 
function (Gi) are obtained through optimization 
to achieve the best fit between the input-output 
datasets used for training. Mathematically, Gi can 
be written as [25]:   

(10) 
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By placing Eq. 10 in partial derivative, a 
matrix equation (Aa = Y) is obtained, wherein 
[94]:  
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The Matrix equation (Aa = Y) is solved by 
using the singular value decomposition method. 
In this method, a is calculated based on [95]: 

(14) 1( )T Ta A A A Y−=  

In this study, an advanced version of the 
GMDH neural network was utilized, where more 
than two variables are initially selected, enabling 
the formation of higher-order polynomial 
relationships. 

6. Fuzzy System Theory (FIS) 

The theory of fuzzy sets was first proposed by 
Zadeh [96]. Over time, this theory has been well-
received in various fields, so now fuzzy sets are 
used in all fields of industry and various sciences. 
Applications of fuzzy inference systems include 
designing a decision support system, dynamic 
system identification, interpolation, 
approximation, estimation, and so on. Indeed, 
one of the most significant advantages of fuzzy 
logic is its capability to handle and represent 
uncertainty in a parametric or structural context. 
Additionally, it serves as a novel tool for 
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addressing problems where probability theory 
lacks applicability. The fuzzy inference system 
establishes a nonlinear mapping between input 
and output, effectively processing the input using 
a set of rules and converting it to the output. 
These rules are obtained through human 
knowledge, consciously and empirically, or 
unconsciously and empirically. A membership 
function can be defined for each input or output 
in a fuzzy logic system. These functions are 
responsible for mapping the membership value, 
which lies between 0 and 1, of each point in the 
input or output space [97]. Trimf, Trapmf, 
Dsigmf, Gussmf, etc., are among the membership 
functions in fuzzy systems [98]. Fig. 4 illustrates 
the steps of a fuzzy system along with the 
membership functions employed in this research. 

The Mamdani fuzzy system and the Takagi-
Sugeno-Kang fuzzy system (TSK), better known 
as Sugeno, are among the most widely used fuzzy 
inference systems. The fuzzy system utilized in 
this research is the Mamdani system. This system 
is particularly well-suited for decision support 
systems due to its intuitive and interpretive 
nature of the rules. It allows for a clear 
representation and understanding of the fuzzy 
rules and their implications. Moreover, the 
Mamdani system can be implemented in different 
configurations, including multi-input and multi-
output, as well as multi-input and single-output 
setups, providing flexibility in modeling complex 
relationships and decision-making processes. 
The Mamdani inference system employs fuzzy 
sets as outputs for its rules, producing results 
that are both nonlinear and fuzzy [99]. 

7. ANFIS 

In 1993, Jang introduced the fuzzy neural 
model, which was a pioneering approach that 
combined the principles of artificial neural 
networks and fuzzy systems. [100]. The most 
important feature of this system is the 

simultaneous use of neural network learning 
capabilities and the transfer of human knowledge 
using fuzzy logic to the desired system. ANFIS is 
trained using an input and output database and 
then creates a fuzzy system (FIS) that allows for 
the prediction and estimation of various 
phenomena in different scientific fields. Fig. 5 
illustrates the flowchart of a fuzzy neural system. 
[101]. 

8. Combining Fuzzy System with MPA 
(ANFIS-MPA) 

The optimization method, developed by 
Faramarzi et al. [41], is inspired by nature and 
based on various foraging strategies (Lévy and 
Brownian) observed in marine predators. The 
MPA optimization process simulates predator-
prey interactions and is divided into three main 
stages: (1) the prey moves faster than the 
predator, (2) both the predator and prey move at 
the same speed, and (3) the predator moves 
faster than the prey. In each stage, the predator's 
optimal movement is used to determine the step 
size towards the prey. During the first stage, the 
predator remains stationary; in the second, it 
follows Brownian motion; and in the third, it 
adopts the Lévy strategy. Each stage corresponds 
to one-third of the total iterations. 

The mathematical modeling of these three 
phases is given in Eqns. 15 to 18. 

▪ The 1st. phase: (𝑉predator < 𝑉prey) 

( )
1, ,

.

ii iB B

i i i

stepsize R Elite R Prey
i n
Prey Prey P R stepsize

=  − 
= 

= + 



  (15) 

where 𝑅⃗ 𝐵 = random-numbers vector (based on 
Normal distribution); ⊗= entry-wise 

multiplications; 𝑃= 0.5; 𝑅⃗  = a random numbers 
vector in [0,1] . 

 
Fig. 4. Fuzzy System Structure [102] 
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Fig. 5. Flowchart of the ANFIS process [103] 

▪ The 2nd. phase: (𝑉predator = 𝑉prey) 

For the primary half of the populace 

( )
1, , / 2

.

ii iL L

i i i

stepsize R Elite R Prey
i n
Prey Prey P R stepsize

=  − 
= 

= + 




 (16) 

where 𝑅⃗ 𝐿 = random-numbers vector (based on 
Lévy distribution); For the second half of the 
populace 

( )
/ 2, ,

.

i iB B

ii i

stepsize R R Prey
i n n
Prey Elite P CF stepsize

=  
= 

= + 



  (17) 

where 𝐶𝐹 = (1 −
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡
)
(2

𝐼𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡
)

 

▪ The 3rd. phase: (𝑉predator > 𝑉prey) 

( )
1, ,

.

ii iL L

ii i

stepsize R R Elite Prey
i n
Prey Elite P CF stepsize

=   −
= 

= + 



  (18) 

Impact of FADs: Fish Aggregating Devices 
(FADs) are environmental concerns that affect 
the behavior of marine predators [104]. 
Incorporating FADs into the algorithm helps 
prevent the algorithm from getting stuck in local 
optima. The mathematical modeling of this effect 
is represented by Equation 19: 

Prey

Prey

Prey CF[ if FADs
min

( )]
max min

Prey [FADs(1 )

](Prey Prey ) if FADs1 2
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ri
r Rr r

=

=

+ + 
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+ −

+ − 

  



 



 

(19) 

where 𝐹𝐴𝐷𝑠 = 0.2; 𝑈⃗⃗  = a binary vector (It is a 
random vector, values greater than 0.2 become 
one, and values less than 0.2 become zero.); 𝑟 = a 
random number between 0 and 1. 

The overall process of the marine predator’s 
algorithm is given in Fig. 6. 
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Fig. 6. The overall trend of the MPA  

9. Kriging Interpolation Method 

The foundation of this method was initially 
proposed by Danie G. Krige and quickly gained 
popularity as an efficient and cost-effective 
simulation technique. [105]. The Kriging 
estimation method focuses on interpolating data 
based on spatial variance, which depends on the 
distance between points. This model is also 
sufficiently flexible to capture nonlinear 
functions. Kriging is widely applied in reliability 
assessments and failure probability analyses  

[106, 107]. When considering the response 
function G(x), the basic Kriging model is 
formulated as Equation 20. G(x) is composed of 
two components: the first part, F(x, β), represents 
regression models, while the second part, Z(x), 
corresponds to random processes [108, 109]: 

T( ) ( ,β) ( ) ( ) β ( )G x F x Z x f x Z x= + + +  (20) 

where:[𝑓1(𝑥). 𝑓1(𝑥)… . 𝑓𝑚(𝑥)]𝑇 and 𝛽𝑇 =
[𝛽1. 𝛽1 … . 𝛽𝑚]𝑇 are the basis functions and the 
corresponding regression coefficient. 𝐹(𝑥. 𝛽) =
𝐹(𝑥. 𝛽) + 𝑍(𝑥)  is a Gaussian function with a 
mean value of zero Covariance is presented as 
follows: 

( ) ( )2, . .Cov p r R p r = (21) 

where σ2 and R (θ.p.r) are selected respectively, 
as the variance and Gaussian correlation function 
between the points p and r using the parameter 
θ [109]. 

10. How to Set the Parameters of ML 
Methods 

Machine learning methods contain several 
regulatory parameters; if they are set optimally, 
they will improve the accuracy of the method. In 
the GMDH method, in each layer, a limited 
number of neurons (Neurons with less error) are 
selected to form the next generation. The 
criterion error for selecting neurons is 
determined from the following equation:  

(22) 
min max

(1 )
c

e e e = + −  

where emin and emax are the minimum and 
maximum error in each layer, and α is the factor 
of selection pressure. 

In the fuzzy network, the fuzzy clustering 
algorithm (FCM) is utilized, and its function is 
introduced in MATLAB software as "genfis3". The 
regulatory parameters of the fuzzy method 
include the following: 
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1. Number of clusters: This parameter 
determines the number of clusters the 
algorithm will attempt to identify in the data. 

2. Type of input and output membership 
functions: Fuzzy logic systems use 
membership functions to represent the 
degree of membership of elements in a set. 
The type of these membership functions (e.g., 

Gaussian, triangular, etc.) can significantly 
influence the performance of the FCM. 

3. Iterations number: This parameter specifies 
the maximum number of iterations allowed 
for the algorithm to converge and achieve a 
solution. 

Details of the setting parameters can be found 
in Table 4. 

Table 4. Details of the parameters of the methods used 

ELM parameters 

N.Iteration N. Hidden neurons Activation function 

20 17 Hyperbolic tangent sigmoid (𝑓(𝑥)=
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥)) 

GMDH parameters 

N.Iteration α N. Layer Neurons 

100 0.7 Minimum (75 and number of neurons that e<ec with α=0.7) 

MPA parameters 

N.O. population N.O.Iteration 𝐹𝐴𝐷𝑠 Constant number 

50 100 0.2 0.5 

ANFIS parameters 

train_ 

StepSizeIncrease 

train_ 

StepSizeDecrease 

N.O.Epoch N.O.Iteration Membership Function Type  

N.O.Cluster Output Input 

1.15 0.95 250 150 linear gussmf 20 

Kriging 

Correlation Functions Regression Polynomial Threshold for equal 

Exponential 1 degree 1e-14 

 

11. Results and Discussion 

The performance of the machine learning 
methods used in this study was compared to 
previous study models to estimate the 
compressive strength of R/S columns confined by 
FRP. For this purpose, two models that were 
selected as the best methods of previous studies 
by Moodi et al. [48] study are compared with the 
methods of this study. To evaluate the 
performance of methods of this study, widely-
used indicators have been used in Moodi et al. 
[48] study are used in this study. These 
indicators  include Standard Deviation (SD), Mean 
Squared Error (MSE), Absolute Integral Error 
(IAE), and total Error (eTotal). 

12. Comparison of Accuracy of the 
Proposed ML Methods 

To compare the accuracy of ML methods, 
statistical indices were computed separately for 
training and test specimens, as shown in Table 5. 
The statistical indices of test specimens were 
used for comparison since these specimens were 
not involved in training. If the indices of the test 
specimens are equal, the indices of the training 
specimens can be considered. As shown in Table 

5, statistical indices of the Kriging method are 
less than those of the other models, in both 
training and testing specimens. Also, the total 
error of the ANFIS-MPA and GMDH methods is 
almost equal for test specimens. Among other 
statistical indicators for the test specimens, the 
ANFIS-MPA method performed better than the 
GMDH method with a slight difference. Therefore, 
it is better to use training specimens to specify 
the method with better performance between the 
ANFIS-MPA and GMDH methods. The statistical 
indicators of the training specimens for the 
ANFIS-MPA method are smaller than those of the 
GMDH method. Thus, the total error of the ANFIS-
MPA method is approximately 9% less than the 
total error of the GMDH method. This difference 
can also be seen in the statistical indices of all 
specimens. Therefore, in this study, the Kriging 
method can be selected as the best method, and 
the ANFIS-MPA method as the next best method. 
It is noteworthy that when the difference 
between training statistical indicators and test 
ones is large, it indicates that this method does 
not work well. For this purpose, the average ratio 
of statistical indicators of training specimens to 
test ones was calculated, which is equal to 0.98, 
0.99, 0.87, 0.93, and 0.08 for ELM, GMDH, ANFIS, 
ANFIS-MPA, and Kriging methods, respectively. 
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This indicates that the difference between the 
statistical indices of the training and test 
specimens in the Kriging method is greater than 
in the others and that there is the least difference 
in the GMDH method. Thus, the GMDH method 
can be selected as one of the best methods for 
estimating the compressive strength of FRP-

confined concrete. It is noteworthy that the large 
difference between the statistical indicators of 
training and test specimens in the Kriging 
method is due to its very small statistical 
indicators for training specimens. Otherwise, the 
statistical indicators of test specimens in this 
method are lower than those of other models. 

Table 5. Statistical indicators related to LM methods 

 Method MSE AAE SD etot 

Train 

ELM 2.53 12.54 15.96 11.50 
GMDH 1.80 9.83 13.36 9.27 
ANFIS 1.94 10.70 14.38 9.78 
ANFIS-MPA 1.47 9.22 12.57 8.52 

Kriging 0.019 0.45 1.40 0.55 

Test 

ELM 2.57 12.42 16.14 12.26 

GMDH 1.80 9.87 13.47 9.29 

ANFIS 2.66 11.08 16.37 10.45 
ANFIS-MPA 1.61 9.65 12.79 9.39 

Kriging 1.02 7.028 10.17 6.72 

Total 

ELM 2.54 12.51 16.00 11.73 

GMDH 1.80 9.84 13.38 9.28 

ANFIS 2.16 10.82 14.76 9.98 

ANFIS-MPA 1.51 9.35 12.34 8.78 

Kriging 0.321 2.42 5.68 2.36 

  
ELM-Train ELM-Test 

  
GMDH-Train GMDH-Test 
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ANFIS-Train ANFIS-Test 

  
ANFIS-MPA-Train ANFIS-MPA-Test 

  
Kriging-Train Kriging-Test 

Fig. 7. Estimated and actual values of compressive strength through ML methods 

To illustrate the efficiency of ML methods, Fig. 
7 presents the experimental compressive 
strength versus the compressive strength 
predicted by ML models, separately for test and 
training specimens. To enhance the visualization 
and facilitate interpretation, additional reference 
lines at ±15% and ±30% error margins have been 
included in the plot. These lines help the reader 
assess the deviation of predicted values from 
experimental data. Points located within the 15% 
band indicate highly accurate predictions, 

whereas those within the 30% band still suggest 
reasonable estimations but with higher 
variability. As shown in Fig. 7, data points in the 
Kriging method are more closely distributed 
around the midline, indicating higher prediction 
accuracy.  The Kriging method has the majority of 
its data points within the 15% margin, 
reinforcing its superior performance. The 
correlation coefficient (R2) for the Kriging 
method is 0.95 for test specimens, which is the 
highest among all models. Following the Kriging 
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method, the hybrid ANFIS-MPA model 
demonstrates better alignment with the midline, 
with an R2 value of 0.91 for test specimens. This 
suggests that ANFIS-MPA also provides reliable 
predictions but with slightly lower accuracy 
compared to Kriging. 

The results show that when the classic 
training algorithm of the Mamdani system was 
replaced by the MPA, in the ANFIS method, 
statistical indicators were reduced. For example, 
the total error of the ANFIS-MPA method is 
reduced by 13, 10, and 12% for the training, 
testing, and total specimens, respectively, 
compared to the ANFIS method with the 
Mamdani algorithm. 

13. Comparison of ML Methods and the 
Models of Previous Studies 

To compare the performance of the two best 
models of previous studies (Moodi et al. [13] and 
Wei and Wu [9]) with ML methods should be used 
with statistical indices of total specimens because 
models of previous studies have not been trained 
with the database. Those statistical indices are 
presented in Table 6. 

According to Table 6, the two best methods of 
ML perform much better than the two best 
models of previous studies. On average, the error 
of the two best methods of ML is 62% less than 
the two best models of previous studies. 
Specifically, the total error (𝑒𝑡𝑜𝑡) of the Kriging 
method is 81.7% lower than that of Moodi et al. 

[13] and 85.7% lower than that of Wei and Wu 
[9]. Similarly, the ANFIS-MPA model reduces the 
total error by 32.0% compared to Moodi et al. 
[13] and by 46.8% compared to Wei and Wu [9]. 
It should be noted that among the ML methods, 
the ELM method has the highest error, so this 
method performs poorer than Moodi et al. [13] 
(Best models of previous studies). 

To show the performance of ML and the 
models of past studies, experimental 
compressive strength against compressive 
strength computed from GMDH, ELM, ANFIS, 
ANFIS-MPA, and Kriging methods, and Moodi et 
al. [13] and Wei and Wu [9] Models are drawn in 
Fig. 8. Amongst ML methods and the models of 
past studies, ML methods are closer to the 
midline and have had a higher correlation 
coefficient (R2), according to Table 6. Among the 
ML methods, the correlation coefficient of the 
Kriging and ANFIS-MPA methods has been the 
highest. 

Contrary to statistical indices, the correlation 
coefficient (R2) of the ELM method is higher than 
the models of past studies, and this shows that 
the worst ML method works better than the 
models of previous studies. It should be noted 
that the speed of the ELM method is very high. 

The results of this study and Moodi et al. [48] 
study show that the Kriging method has better 
performance than the MLP method in Moodi et al. 
[48] study so the correlation coefficient of the 
Kriging method is 2% higher than the MLP 
method. 

Table 6. Statistical parameters for confined-FRP concrete specimens  

Method MSE AAE SD etot R2 

Moodi et al. [13] 2.43 12.15 15.59 12.91 0.87 

Wei and Wu [9] 3.73 14.90 18.74 16.51 0.86 

ELM 2.50 12.10 15.80 11.29 0.89 

GMDH 1.80 9.84 13.38 9.28 0.92 

ANFIS 2.16 10.82 14.76 9.98 0.92 

ANFIS-MPA 1.51 9.35 12.34 8.78 0.93 

Kriging 0.321 2.42 5.68 2.36 0.98 
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Fig. 8. Performance of total models

Fig. 9 shows box plots of the ratio of the 
compressive strength of confined-FRP concrete 
predicted by different models to that found from 
experiments. In this plot, if the mean of the data 
is lying next to one, it means the models have had 
precise estimations of the compressive strength. 
The short length of the box plot in the models 
means greater certainty and a high level of 
agreement in their predicted results. The length 
of the box plot in Moodi et al. [13], Wei and Wu 
[9], and ELM models is higher than other 
methods, showing greatly dispersed and 
scattered data in them. According to the length of 
the box plot, the Kriging model had the highest 
certainty. The box plot length of the ANFIS-MPA 
model is the second shortest box length, so the 
data scatter in the Kriging method is less than the 
ANFIS-MPA method. In all methods, the median 
of the data is greater than one, indicating that 
none of these methods is conservative and that 
the estimated value is slightly higher than the 
experimental value. But in the Kriging and ANFIS-
MPA methods, the median of the data is very close 
to one, which indicates that the performance of 
these two methods is better than the other 
methods. In the ANFIS-MPA method, data scatter 
is high and this method cannot be selected as a 
suitable method. 

 
Fig. 9. Box plots of the “predicted-to-experimental” FRP-

confined concrete strength ratios for different models, 
highlighting accuracy and dispersion 

Fig. 10 illustrates the cumulative frequency 
plots obtained for seven models investigated in 
this study. This figure shows that the Kriging 
method had the higher portions of data points 
estimated at low absolute relative error and Wei 
and Wu [9] had the lowest of those. For example, 
for an absolute relative error of 0.2, the 
cumulative frequency is around 59%, 43%, 56%, 
59%, 63%, 70%, and 76% for Moodi et al. [13], 
Wei and Wu [9], ELM, GMDH, ANIS, ANFIS-MPA, 
and Kriging methods, respectively.  
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Fig. 10. Cumulative frequency versus the absolute average relative deviation 

14. Sensitivity Analysis 

In this section, the importance of each input 
parameter, including b, h, r, tf, Ff, fco, and Ef, on the 
output parameter (fcc) is investigated. Equation 
23 is employed to show the contribution of each 
parameter. The provided equation suggests that 
as the value of "S" increases for each parameter, 
the corresponding parameter has a greater 
impact on the model output. This implies that 
variations or changes in the input parameters, 
particularly those with higher "S" values, have a 
more pronounced effect on the overall output of 
the model. 
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(23) 

In the above equation, 𝑋𝑖  and 𝑌𝑖  represent the 
input parameter and the output for the given 
input parameter 𝑋𝑖 , respectively. 𝑋̅ and 𝑌̅ denote 
the mean of the input parameters and the output 
values, respectively. n represents the number of 
data. The sensitivity analysis results, according to 
Equation 23, are presented in Table 7. 

Table 7. Results of sensitivity analysis 

 b h r tf tf/b tf/h Ff/fco Ef/fco 

S 0.22 0.43 0.32 0.11 -0.14 -0.10 0.46 0.43 

A positive or negative "S" value in the input 
variables indicates a direct or inverse effect of the 
input variable on the output variable, 
respectively. Among the eight investigated 
parameters, tf/b and tf/h parameters have an 
inverse effect on the output parameter. Also, 
Ef/fco, Ff/fco, and r/h parameters having the 

highest S value, have the highest effect on the 
compressive strength of confined concrete 
pressure resistance, and r/tf, and tf/h variables 
have the least effect on the output variable. 

15. Conclusions 

In this study, a database of FRP-confined 
concrete with rectangular/square (R/S) cross-
sections has been collected and used to find the 
method for determining the compressive 
strength. For this purpose, several methods of 
machine learning (ML) methods were compared 
with each other. These methods included ELM, 
GMDH, ANFIS, ANFIS-MPA, and Kriging. The 
novelty of this study is finding a suitable method 
for estimating the compressive strength of those 
specimens with all types of concrete and FRP 
sheets. The database of this study consisted of 
485 samples, 30% and 70% of which were used 
for training and testing, respectively. By 
comparing the results of ML methods with each 
other and with the models of past studies, the 

following results are obtained: 

• The obtained findings from this study show 
that the ML methods are more accurate than 
the previous study relationship for 
estimating the compressive strength of 
confined-FRP concrete with R/S cross-
section. 

• The use of ML methods reduces the error by 
an average of 43% compared to the two best 
relationships of previous studies. Also, the 
correlation coefficient (R2) of the ML 
methods is 7% higher than that of past 
studies. 

• Amongst the ML methods in this study, the 
Kriging and ANFIS-MPA methods have 
better accuracy than the other methods, 
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with the correlation coefficient of Kriging 
and ANFIS-MPA being 0.98 and 0.93, 
respectively. 

• In all comparisons of methods (statistical 
indicators, box plots, cumulative frequency), 
the Kriging method is better than the ANFIS-
MPA method. Also, the Kriging method has 
better accuracy than the MLP method in 
Moodi et al. [48] study. 

• Using the MPA instead of the Mamdani 
system in the ANFIS method reduces the 
total error by 12% for total specimens. 
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