[1] Rao, D.K., Sharma, P., Kumar, V., Agarwal P.K. and Kaithwas, C.K., 2024. Introduction to thermoplastic polymer composites: applications, advantages, and drawbacks. Elsevier eBooks, pp. 1–9. Doi: https://doi.org/10.1016/b978-0-443-19009-4.00001-1.
[2] Belgacem, L., Ouinas, D., Olay, J.A.V. and Amado, A.A., 2018. Experimental investigation of notch effect and ply number on mechanical behavior of interply hybrid laminates (glass/carbon/epoxy). Composites Part B: Engineering, 145, pp.189-196. Doi: https://doi.org/10.1016/j.compositesb.2018.03.026.
[3] Suyambulingam, I., Rangappa, S.M. and Siengchin, S., 2023. Advanced Materials and Technologies for Engineering Applications. Applied Science and Engineering Progress, 16(3), p.6760. Doi: https://doi.org/10.14416/j.asep.2023.01.008
[4] Pierron, F., Green, B., Wisnom, M.R. and Hallett, S.R., 2007. Full-field assessment of the damage process of laminated composite open-hole tensile specimens. Part II: Experimental results. Composites Part A: Applied Science and Manufacturing, 38(11), pp.2321-2332. Doi: https://doi.org/10.1016/j.compositesa.2007.01.019.
[5] Wisnom, M.R. and Hallett, S.R., 2009. The role of delamination in strength, failure mechanism and hole size effect in open hole tensile tests on quasi-isotropic laminates. Composites Part A: Applied Science and Manufacturing, 40(4), pp.335–342. Doi: https://doi.org/10.1016/j.compositesa.2008.12.013.
[6] Aoki, R., Higuchi, R., Yokozeki, T., Aoki, K., Uchiyama, S. and Ogasawara, T., 2022. Effects of ply thickness and 0°-layer ratio on failure mechanism of open-hole and filled-hole tensile tests of thin-ply composite laminates. Composite Structures, 280, p.114926. Doi: https://doi.org/10.1016/j.compstruct.2021.114926.
[7] Blais, P., Toubal, L. and Zitoune, R., 2024. The influence of the hole-generation process on fatigue response of open-hole and assembled titanium samples. samples. Journal of manufacturing processes, 110, pp.412–423. Doi: https://doi.org/10.1016/j.jmapro.2024.01.007.
[8] Shaari, N., Abdul Wahab, M.F., Shaari, N.S. and Jumahat, A., 2021. Unhole and open hole tensile properties of hybrid Kevlar/glass fiber polymer composites with different stacking sequence. Materials Today: Proceedings, 46, pp.1595–1599. Doi: https://doi.org/10.1016/j.matpr.2020.07.249.
[9] Azmi, N.N., Radi, M.M., Taufik, M.M., Adnan, N., Minhuaazam, L.N. and Mahmud, J., 2023. The effects of open hole and fiber orientation on Kevlar/Epoxy and Boron/Epoxy composite laminates under tensile loading. Materials Today: Proceedings, 75, pp.169-172. Doi: https://doi.org/10.1016/j.matpr.2022.11.220.
[10] Pothnis, J.R., Kalyanasundaram, D. and Gururaja, S., 2021. Enhancement of open hole tensile strength via alignment of carbon nanotubes infused in glass fiber-epoxy-CNT multi-scale composites. Composites Part A: Applied Science and Manufacturing, 140, p.106155. Doi: https://doi.org/10.1016/j.compositesa.2020.106155.
[11] Prajapati, A.R., Dave, H.K. and Raval, H.K., 2021. Effect of fiber reinforcement on the open hole tensile strength of 3D printed composites. Materials Today: Proceedings, 46, pp.8629–8633. Doi: https://doi.org/10.1016/j.matpr.2021.03.597.
[12] Bhatia, G.S. and Arockiarajan, A., 2023. Effect of interactions of two holes on tensile behavior of patch repaired carbon/epoxy woven laminates. Defence Technology, 21, pp.88–93. Doi: https://doi.org/10.1016/j.dt.2022.07.008.
[13] Khosravani, M.R., Rezaei, S., Faroughi, S. and Reinicke, T., 2022. Experimental and numerical investigations of the fracture in 3D-printed open-hole plates. Theoretical and Applied Fracture Mechanics, 121, p.103543. Doi: https://doi.org/10.1016/j.tafmec.2022.103543.
[14] Romanowicz, P.J., SzybiĆski, B. and Wygoda, M., 2024. Fatigue performance of open-hole structural elements reinforced by CFRP overlays. International Journal of Adhesion and Adhesives, 130, p.103606. Doi: https://doi.org/10.1016/j.ijadhadh.2023.103606.
[15] Pothnis, J.R., Hajagolkar, A.K., Anilchandra, A.R., Das, R. and Gururaja, S., 2023. Open-hole fatigue testing of UD-GFRP composite laminates containing aligned CNTs using infrared thermography. Composite Structures, 324, p.117557. Doi: https://doi.org/10.1016/j.compstruct.2023.117557.
[16] Wisnom, M.R., Hallett, S.R. and Soutis, C., 2009. Scaling Effects in Notched Composites. Journal of Composite Materials, 44(2), pp.195–210. Doi: https://doi.org/10.1177/0021998309339865.
[17] Zhang, Y., Li, M., Guo, Q., Sun, X. and Chen, L., 2022. Tensile failure of multiaxial 3D woven composites with an open-hole: an experimental and numerical study. Composite Structures, 279, p.114746. Doi: https://doi.org/10.1016/j.compstruct.2021.114746.
[18] Zhang, D., Zheng, X. and Wu, T., 2019. Damage characteristics of open-hole laminated composites subjected to longitudinal loads. Composite Structures, 230, p.111474. Doi: https://doi.org/10.1016/j.compstruct.2019.111474.
[19] D5766/D5766M-11, “Standard Test Method for Open-Hole Tensile Strength of Polymer Matrix Composite,” ASTM Int., pp. 1–7, 2011.
[20] Zhou, H.W., Yi, H.Y., Gui, L.L., Dai, G.M., Peng, R.D., Wang, H.W. and Mishnaevsky, L., 2013. Compressive damage mechanism of GFRP composites under off-axis loading: Experimental and numerical investigations. Composites Part B: Engineering, 55, pp.119–127. Doi:https://doi.org/10.1016/j.compositesb.2013.06.007.
[21] Daniel, I.M., Luo, J., Schubel, P.M. and Werner, B.T., 2009. Interfiber/interlaminar failure of composites under multi-axial states of stress. Composites Science and Technology, 69(6), pp.764–771. Doi: https://doi.org/10.1016/j.compscitech.2008.04.016.
[22] Zhou, G., Sun, Q., Li, D., Meng, Z., Peng, Y., Zeng, D. and Su, X., 2020. Effects of fabric architectures on mechanical and damage behaviors in carbon/epoxy woven composites under multiaxial stress states. Polymer Testing, 90, p.106657. Doi: https://doi.org/10.1016/j.polymertesting.2020.106657.
[23] Ganesh, V.K. and Naik, N.K., 1995. Failure behaviour of plain weave fabric laminates under in-plane shear loading: effect of fabric geometry. Composite Structures, 30(2), pp.179–192. Doi: https://doi.org/10.1016/0263-8223(94)00035-2.
[24] Lu, Z., Zhou, Y., Yang, Z. and Liu, Q., 2013. Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension. Computational Materials Science, 79, pp.485–494. Doi:https://doi.org/10.1016/j.commatsci.2013.07.003.
[25] Cichosz, J., Wehrkamp-Richter, T., Koerber, H., Hinterhölzl, R. and Camanho, P.P., 2016. Failure and damage characterization of (±30°) biaxial braided composites under multiaxial stress states. Composites Part A: Applied Science and Manufacturing, 90, pp.748–759. Doi:https://doi.org/10.1016/j.compositesa.2016.08.002.
[26] Yang, J., Yang, X., Zhu, H., Chen, X. and Qi, H., 2018. The effect of off-axis angles on the mesoscale deformation response and failure behavior of an orthotropic textile carbon-epoxy composite. Composite structures, 206, pp.952–959. Doi: https://doi.org/10.1016/j.compstruct.2018.08.010.
[27] Liu, G., Huang, K., Zhong, Y., Li, Z., Yu, H., Guo, L. and Li, S., 2023. Investigation on the off-axis tensile failure behaviors of 3D woven composites through a coupled numerical-experimental approach. Thin-walled structures, 192, pp.111176–111176. Doi:https://doi.org/10.1016/j.tws.2023.111176.
[28] O’Higgins, R.M., McCarthy, M.A. and McCarthy, C.T., 2008. Comparison of open hole tension characteristics of high strength glass and carbon fibre-reinforced composite materials. Composites Science and Technology, 68(13), pp.2770–2778. Doi: https://doi.org/10.1016/j.compscitech.2008.06.003.
[29] Babu, L.S., Kumar, K.A., Christiyan, K.J., Byary, M.A., Puranic, V.M., Jawad, A.M. and Poojary, N., 2023. Effect of laminate thickness on low-velocity impact of GFRP/epoxy composites. Materials Today: Proceedings, ISSN:2214-7853. Doi: https://doi.org/10.1016/j.matpr.2023.08.229.
[30] Babu, N. S. M. and Mathivanan N, R., 2021. Statistical analysis of drilled hole parameters during machining of carbon/glass FRP laminates. Advances in Materials and Processing Technologies, 8(2), 1408–1431. Doi: https://doi.org/10.1080/2374068X.2020.1860497