Complementary Split Ring Resonator-Inspired Antenna for Wearable Multiband Applications Using Biodegradable Polylactic Acid

Document Type : Special Issue: Mechanics of Advanced Fiber Reinforced Composite Structures

Authors

1 Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, Coimbatore, 641202, India

2 Department of Electronics and Communication Engineering, Sri Ramakrishna Engineering College, Coimbatore, 641022, India

Abstract

In this manuscript, replacing traditional antennas with biodegradable PLA substrates aims to reduce e-waste in today's technologically advanced age. This work achieves its objectives by designing the miniaturized (56 x 56 x 1.6) mm3 hexagonal patch antenna with partial ground (18.2 x 52) mm2 and incorporating complementary split ring resonators (CSRRs) in the HFSS (High-Frequency Structure Simulator). This innovative approach combines unconventional antenna design with metamaterial technology to enhance antenna performance, making it flexible, lightweight, and suitable for multi-band applications. An evaluation of PLA compared to other substrates revealed that PLA is more suitable for its eco-friendliness, and the simulation result is also satisfactory for bandwidth, return loss, VSWR, directivity, efficiency, and other parameters. Additionally, the integration of taffeta fabric as a conductive patch material provided elasticity and enhanced wearability. Using this unique method, the proposed antenna resonates at multiband frequencies of 2.6 GHz, 8.6 GHz, 10.5 GHz, 12.4 GHz, and 15.3 GHz, which gives return losses of -26.84 dB, -22.16 dB, -29.87 dB, -39.43 dB, and -26.35 dB, respectively. In addition to its biocompatibility and achievement of the SAR threshold, the antenna serves as a long-term solution for multi-band wireless applications. This further advances the realm of environmentally friendly wearable technology.

Keywords

Main Subjects


[1]    Afyf, A. et al., 2020. Flexible Wearable Antenna for Body Centric Wireless Communication in S-Band. In 2020 International Conference on Electrical and Information Technologies (ICEIT). IEEE, pp. 1–4. Available at: https://doi.org/10.1109/ICEIT48248.2020.9113217 
[2]    Ata, O.W., Salamin, M. and Abusabha, K., 2020. Double U-slot rectangular patch antenna for multiband applications. Comput. Electr. Eng., 84, p. 106608. Available at: https://doi.org/10.1016/j.compeleceng.2020.106608 
[3]    Avinc, O. and Khoddami, A., 2009. Overview of poly lactic acid (PLA) fibre: Part I: production, properties, performance, environmental impact, and end-use applications of poly lactic acid fibres. Fibre Chemistry, 41(6), pp.391-401.
[4]    Babu, R.G. et al., 2022 Design of metamaterial loaded monopole antenna for multiband operation. In AIP Conference Proceedings. American Institute of Physics Inc. Available at: https://doi.org/10.1063/5.0072867 
[5]    Bashir, S., 2009. Design and Synthesis of Non-Uniform High Impedance Surface based Wearable Antennas. Available at: https://dspace.lboro.ac.uk/ 
[6]    Geetharamani, G. and Aathmanesan, T., 2020. A Metamaterial Inspired Tapered Patch Antenna for WLAN/WiMAX Applications. Wirel. Pers. Commun., 113(2), pp. 1331–1343. Available at: https://doi.org/10.1007/s11277-020-07283-5 
[7]    Godaymi Al-Tumah, W.A., Shaaban, R.M. and Tahir, A., 2020 Design, simulation and measurement of triple band annular ring microstrip antenna based on shape of crescent moon, Int. J. Electron. Commun., 2020, p. 153133. Available at: https://doi.org/10.1016/j.aeue.2020.153133 
[8]    Haroon, Ullah, S. and Flint, J.A., 2014. Electro-textile based wearable patch antenna on biodegradable poly lactic acid (PLA) plastic substrate for 2.45 GHz, ISM band applications. In Proceedings - 2014 International Conference on Emerging Technologies, ICET 2014. Institute of Electrical and Electronics Engineers Inc., pp. 158–163. Available at: https://doi.org/10.1109/ICET.2014.7021036 
[9]    Janapala, D.K. et al., 2019. Flexible PDMS Antenna Backed with Metasurface for 2.4GHz Wearable Applications. In 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP). IEEE, pp. 1–3. Available at: https://doi.org/10.1109/ICESIP46348.2019.8938235 
[10]    Karthikeyan, T.A., Nesasudha, M., Saranya, S., and Sharmila, B., 2024. A review on fabrication and simulation methods of flexible wearable antenna for industrial tumor detection systems. Journal of Industrial Information Integration, 41, p. 100673. Available at: https://doi.org/10.1016/j.jii.2024.100673 
[11]    Kingsuwannaphong, T. and Sittakul, V., 2018. Compact circularly polarized inset-fed circular microstrip antenna for 5 GHz band. Comput. Electr. Eng., 65, p. 554. Available at: https://doi.org/10.1016/j.compeleceng.2017.02.027 
[12]    Kumar, N.S. et al., 2023. Design of High Gain 5G Millimeter wave Micro Strip Patch Antenna for Wireless Applications. In 2023 Third International Conference on Smart Technologies, Communication and Robotics (STCR). IEEE, pp. 1–5. Available at: https://doi.org/10.1109/STCR59085.2023.10396865 
[13]    Liu, G. et al., 2017. Compact CPW-fed multiband antenna for TD-LTE/WLAN/WiMAX applications. Prog. Electromagn. Res. Lett., 65, p. 9. Available at: https://doi.org/10.2528/pierl16102203 
[14]    Manley, P. et al., 2021. Double-layer metasurface for enhanced photon up-conversion. AIP Advances, 6(3). Available at: https://doi.org/10.1063/5.0040839 
[15]    Peng, T., 2017. Energy Modelling for FDM 3D Printing from a Life Cycle Perspective. International Journal of Manufacturing Research, 11(1), p. 1. Available at: https://doi.org/10.1504/IJMR.2017.10003722 
[16]    Raja, L. et al., 2021. Design of Cubic Dielectric Resonator Antenna for Biomedical Application. In Proceedings of the 2021 IEEE International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems, ICSES 2021. Institute of Electrical and Electronics Engineers Inc. Available at: https://doi.org/10.1109/ICSES52305.2021.9633792 
[17]    Rajak, N., Chattoraj, N. and Mark, R., 2019. Metamaterial cell inspired high gain multiband antenna for wireless applications. AEUE Int. J. Electron. Commun., 109, p. 23. Available at: https://doi.org/10.1016/j.aeue.2019.07.003 
[18]    Sam, P.J.C. and Gunavathi, N., 2020. A tri-band monopole antenna loaded with circular electric–inductive–capacitive metamaterial resonator for wireless application. Applied Physics A: Materials Science and Processing, 126(10), pp. 1–11. Available at: https://doi.org/10.1007/S00339-020-03952-1/METRICS 
[19]    Saranya S, Sharmila B, Jeyakumar P, Muthuchidambaranathan P., 2023. Design and Analysis of Metaresonator-Based Tri-Band Antenna for Biosensing Applications. Plasmonics, 18(5), pp. 1799–1811. Available at: https://doi.org/10.1007/s11468-023-01873-2 
[20]    Jeyakumar, P., Pandeeswari, R., Saranya, S., Aadithiya, B.N., Jagadeeshan, V., Kamalesh, S. and Pradeep, V., 2024. Broadband complementary ring-resonator based terahertz antenna for 6G application. Appl. Phys. A 130(8), p.604. https://doi.org/10.1007/s00339-024-07763-6 
[21]    Saranya, S. and Sharmila, B., 2023. Design Optimization of Kapton Polyimide Based Wearable Antenna for Biosensing Application. In Springer Proceedings in Materials. Springer Nature, pp. 363–375. Available at: https://doi.org/10.1007/978-981-99-5567-1_27 
[22]    Shobana, M., 2023. CSRR inspired antenna using artificial neural network for sub 6 GHz 5G applications. Alexandria Engineering Journal, 77, pp. 351–367. Available at: https://doi.org/10.1016/j.aej.2023.06.085 
[23]    Tadesse, A.D., Acharya, O.P. and Sahu, S., 2020. Application of metamaterials for performance enhancement of planar antennas: A review. International Journal of RF and Microwave Computer-Aided Engineering, 30(5). Available at: https://doi.org/10.1002/mmce.22154 
[24]    Thamil Selvi, N. et al., 2020. Multiband metamaterial-inspired antenna using split ring resonator. Computers & Electrical Engineering, 84, p. 106613. Available at: https://doi.org/10.1016/j.compeleceng.2020.106613 
[25]    Tong, X. et al., 2021. Low-Profile, Broadband, Dual-Linearly Polarized, and Wide-Angle Millimeter-Wave Antenna Arrays for Ka-Band 5G Applications. IEEE Antennas and Wireless Propagation Letters, 20(10), pp. 2038–2042. Available at: https://doi.org/10.1109/LAWP.2021.3102375 
[26]    Wang, Y. et al., 2022. Multilayer flexible electronics: Manufacturing approaches and applications. Materials Today Physics, 23, p. 100647. Available at: https://doi.org/10.1016/j.mtphys.2022.100647 
[27]    Saranya, S, Sharmila, B, Chockalingam, A and Mohanraj, K., 2022. A Review on Substrate Requirements and Characteristics of Wearable Antenna. Design Engineering (Toronto), pp. 861-868.
Volume 12, Issue 2 - Serial Number 25
Special Issue on Mechanics of Advanced Fiber-Reinforced Composite Structures: Celebrating the 50th Anniversary of Semnan University, Handled by the Esteemed Journal Editor, Prof. Dr. Mavinkere Rangappa Sanjay - In Progress
August 2025
Pages 339-352