[1] Azim, R., Islam, M. T., Arshad, H., Alam, M. M., Sobahi, N. and Khan, A. I., 2021. CPW-Fed Super-Wideband Antenna with Modified Vertical Bow-Tie-Shaped Patch for Wireless Sensor Networks. IEEE Access, 9, pp. 5343–5353. DOI: 10.1109/ACCESS.2020.3048052.
[2] Chen, C., 2022. A wideband coplanar L-probe-fed slot-loaded rectangular filtering microstrip patch antenna with high selectivity. IEEE Antennas and Wireless Propagation Letters, 21(6), pp. 1134-1138. DOI: 10.1109/LAWP.2022.3159230.
[3] Mathur, P., Augustine, R., Gopikrishna, M. and Raman, S., 2021. Dual MIMO antenna system for 5G mobile phones, 5.2 GHz WLAN, 5.5 GHz WiMAX, and 5.8/6 GHz WiFi applications. IEEE Access, 9, pp. 106734-106742. DOI: 10.1109/ACCESS.2021.3100995.
[4] Kazim, J.U.R., et al., 2021. A Miniaturized Series Fed Tri-Slot Coplanar Vivaldi Antenna for RADAR Application with Reduced Ground Plane Effect. IEEE Open Journal of Antennas and Propagation, 2, pp.949-953. DOI: 10.1109/OJAP.2021.3112786.
[5] Turkmen, C. and Secmen, M., 2021. Dual-band omnidirectional and Circularly Polarized Slotted Waveguide Array Antenna for Satellite Telemetry and Telecommand. IEEE Antennas Wirel Propag Lett, 20(11), pp.2100-2104.
[6] Ahmad, S., et al., 2022. A Compact CPW-Fed Ultra-Wideband Multi-Input-Multi-Output (MIMO)Antenna for Wireless Communication Networks. IEEE Access, 10, pp.25278-25289.
[7] Raj, S., Tripathi, S., Upadhyay, G., Tripathi, S.S. and Tripathi, V.S., 2021. An Electromagnetic Band Gap-Based Complementary Split Ring Resonator Loaded Patch Antenna for Glucose Level Measurement. IEEE Sens J, 21(20), pp. 22679-22687.
[8] Sharma, P.K., Gupta, N. and Dankov, P.I., 2021. Analysis of Dielectric Properties of Polydimethylsiloxane (PDMS) as a Flexible Substrate for Sensors and Antenna Applications. IEEE Sens J, 21(17), pp. 19492-19504. DOI: 10.1109/JSEN.2021.3089827.
[9] Wagih, M., Hillier, N., Yong, S., Weddell, A.S. and Beeby, S., 2021. RF-Powered Wearable Energy Harvesting and Storage Module Based on E-Textile Coplanar Waveguide Rectenna and Supercapacitor. IEEE Open Journal of Antennas and Propagation, 2, pp. 302-314. DOI: 10.1109/OJAP.2021.3059501
[10] Siddiqui, J.Y., Saha, C. and Antar, Y.M.M., 2015. Compact dual-SRR-loaded UWB monopole antenna with dual frequency and wideband notch characteristics. IEEE Antennas Wirel Propag Lett, 14, pp. 100-103. DOI: 10.1109/LAWP.2014.2356135.
[11] Birwal, A., Kaushal, V. and Patel, K., 2022. Investigation of Circularly Polarized CPW fed Antenna as a 2.45 GHz RFID Reader. IEEE Journal of Radio Frequency Identification. DOI: 10.1109/JRFID.2022.3172691.
[12] Shi, Y. and Nan, Y.H., 2022. Hybrid Power Harvesting from Ambient Radiofrequency and Solar Energy. IEEE Antennas Wirel Propag Lett, 21(12), pp. 2382-2386. DOI: 10.1109/LAWP.2022.3193952
[13] Jha, K.R., Jibran, Z.A.P., Singh, C. and Sharma, S.K., 2021. 4-Port MIMO Antenna Using Common Radiator on a Flexible Substrate for Sub-1GHz, Sub-6GHz 5G NR, and Wi-Fi 6 Applications. IEEE Open Journal of Antennas and Propagation, 2, pp. 689-701. DOI: 10.1109/ojap.2021.3083932.
[14] Siddiqui, J.Y., Saha, C. and Antar, Y.M.M., 2015. Compact dual-SRR-loaded UWB monopole antenna with dual frequency and wideband notch characteristics. IEEE Antennas Wirel Propag Lett, 14, pp. 100-103. DOI: 10.1109/LAWP.2014.2356135.
[15] Liu, S., Wang, Z. and Dong, Y., 2021. Compact Wideband SRR-Inspired Antennas for 5G Microcell Applications. IEEE Trans Antennas Propag, 69(9), pp. 5998-6003. DOI: 10.1109/TAP.2021.3070001.
[16] Gao, G.P., Zhang, B.K., Dong, J.H., Dou, Z.H., Yu, Z.Q. and Hu, B., 2023. A Compact Dual-Mode Pattern-Reconfigurable Wearable Antenna for the 2.4-GHz WBAN Application. IEEE Trans Antennas Propag, 71(2), pp. 1901-1906. DOI: 10.1109/TAP.2022.3225529.
[17] Huang, D., et al., 2022. A Microstrip Dual-Split-Ring Antenna Array for 5G Millimeter-Wave Dual-Band Applications. IEEE Antennas Wirel Propag Lett, 21(10), pp. 2025-2029. DOI: 10.1109/LAWP.2022.3189209.
[18] Wu, X., Wen, X., Yang, J., Yang, S. and Xu, J., 2022. Metamaterial Structure Based Dual-Band Antenna for WLAN. IEEE Photonics J, 14(2). DOI: 10.1109/JPHOT.2022.3163170.
[19] Grzesiak, M., Chrzanowska, A. and Prus, P., 2015. Analysis of Kapton Polyimide Films Used as a Substrate for Flexible Electronics. IEEE Transactions on Dielectrics and Electrical Insulation, 22(6), pp. 3117-3125.
[20] Raad, H.K., Al-Rizzo, H.M., Abbosh, A.I. and Hammoodi, A.I., 2016. A compact dual-band polyimide-based antenna for wearable and flexible telemedicine devices. Prog. Electromagnet. Res. C, 63, pp. 153-161. DOI: 10.2528/PIERC16010707.
[21] Abbasi, Q.H., Rehman, M.U., Yang, X., Alomainy, A., Qaraqe, K. and Serpedin, E., 2013. Ultrawideband band-notched flexible antenna for wearable applications. IEEE Antennas Wireless Propag. Lett., 12, pp. 1606-1609.
[22] Elmobarak, H.A., Rahim, S.K.A., Castel, X. and Himdi, M., 2019. Flexible conductive fabric/E-glass fiber composite ultra-wideband antenna for future wireless networks. IET Microw., Antennas Propag., 13(4), pp. 455-459. DOI: 10.1049/IET-map.2018.5195.
[23] Chang, X.L., Chee, P.S., Lim, E.H. and Nguyen, N.-T., 2022. Frequency reconfigurable smart antenna with integrated electroactive polymer for far-field communication. IEEE Trans. Antennas Propag., 70(2), pp. 856-867. DOI: 10.1109/TAP.2021.3111161.
[24] Gao, H., Zhang, Y., Yan, X. and Hu, W., 2016. Characterization of the Dielectric Properties of FR-4 Epoxy Resin at Microwave Frequencies. IEEE Transactions on Microwave Theory and Techniques, 64(4), pp. 1209-1216.
[25] Simorangkir, R.B.V.B., Yang, Y., Hashmi, R.M., Björninen, T., Esselle, K.P. and Ukkonen, L., 2018. Polydimethylsiloxane-embedded conductive fabric: Characterization and application for realization of robust passive and active flexible wearable antennas. IEEE Access, 6, pp. 48102-48112. DOI: 10.1109/ACCESS.2018.2867696.
[26] Al-Sehemi, A., Al-Ghamdi, N., Dishovsky, N., Atanasova, G. and Atanasov, N., 2021. Flexible polymer/fabric fractal monopole antenna for wideband applications. IET Microw., Antennas Propag., 15(1), pp. 80-92. DOI: 10.1049/mia2.12016.
[27] Zhou, Z., Pattnaik, S.S., Huang, J., Li, G., Li, J. and Liu, Y., 2019. Flexible PDMS-based patch antennas for body-centric wireless communications. IEEE Trans. Antennas Propag., 67(8), pp. 5006-5012. DOI: 10.1109/.2019.2915478.
[28] Nafe, N., Islam, M.R. and Islam, M.T., 2020. A Survey of Coplanar waveguide (CPW)-Fed Planar Antennas for Wireless Communication Applications. Journal of Electromagnetic Waves and Applications, 34(7), pp. 839-854. DOI: 10.1080/09205071.2020.1719396.
[29] Jafri, S.I. and Bouazizi, M.A., 2022. A Novel Ultra-Wideband Antenna for Modern Wireless Communication Systems. Progress in Electromagnetics Research Letters, 104, pp. 59-68. DOI: 10.2528/PIERL22031603.
[30] Zhang, F., Li, J., and Liu, Y., 2019. Design of a CPW-fed antenna with a modified SRR structure for ultra-wideband applications. Microwave and Optical Technology Letters, 61(4), pp. 1092-1096. DOI: 10.1002/mop.31758.
[31] Mishra, R. K., Das, S. R., and Saurav, K., 2021. Recent Progress in Antenna with Split-Ring Resonators for Wireless Communication Applications: A Comprehensive Review. IEEE Access, 9, pp. 21731-21752.
[32] Sharma, S., Gupta, S., and Bedi, S. S., 2021. A Comprehensive Survey of CPW-Fed Antennas with Split-Ring Resonator for WiMAX and Radar Applications. IEEE Transactions on Antennas and Propagation, 69(2), pp. 686-702. DOI: 10.1109/TAP.2020.302390.
[33] Mohamed, M. A., Yousif, N. A., and Ismail, A. A., 2020. Compact dual-band CPW-fed antenna with split ring resonator for wireless applications. Microwave and Optical Technology Letters, 62(4), pp. 1326-1332.
[34] Karna, S. K., Mohanty, S. P., and Kshetrimayum, R. S., 2021. Dual-band metamaterial-inspired monopole antenna with split ring resonator for wireless applications. AEU - International Journal of Electronics and Communications, 131, p. 153651.
[35] Kumari, S., Vishwakarma, D. K., and Singh, S. K., 2021. A compact microstrip patch antenna with metamaterial for WLAN and WiMAX applications. Journal of Microwaves, Optoelectronics, and Electromagnetic Applications, 20(3), pp. 567-579.
[36] Almutairi, T. M., and Rahman, M. A., 2020. Design of a compact multi-frequency microstrip patch antenna for satellite communication. IEEE Access, 8, pp. 189364-189373.
[37] Wei, Y., Zhou, Y., and Zhang, G., 2020. A broadband circularly polarized patch antenna for satellite communication. Journal of Electromagnetic Waves and Applications, 34(4), pp. 491-500.
[38] Saranya, S., and Sharmila, B., 2023. Design Optimization of Kapton Polyimide Based Wearable Antenna for Biosensing Application. Springer Proceedings in Materials 32. DOI: 10.1007/978-981-99-5567-1_27.
[39] Ganesh Babu, R., Yuvaraj, S., Raja, L., et al., 2022. Design of metamaterial loaded monopole antenna for multiband operation. AIP Conference Proceedings, 2405(040012). DOI: 10.1063/5.0072867.
[40] Raja, L., Farithkhan, A., Vijayalakshmi, K., et al., 2021. Design of Cubic Dielectric Resonator Antenna for Biomedical Application. ICSES-2021. DOI: 10.1109/ICSES52305.2021.9633792.
[41] Saranya, S., Sharmila, P., Jeyakumar, P., Muthuchidambaranathan, P., 2023. Design and Analysis of Metaresonator Based Tri Band Antenna for Biosensing Applications. Plasmonics, 18, pp. 1799-1811. DOI: 10.1007/s11468-023-01873-2.
[42] Kumar, N. S., Vimal, S. P., Kiruthika, V., Thrinethra, M. S., 2023. Design of High Gain 5G Millimeter wave Micro Strip Patch Antenna for Wireless Applications. Third International Conference on Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India. DOI:10.1109/STCR59085.2023.10396865.
[43] Freeman, R. H., 2022. Next Generation Space Operations: Accelerate, Change, Expand Platforms. Conference paper publication at Research Gate, Jul. 2022.
[44] Karthikeyan, T.A., Nesasudha, M., Saranya, S. and Sharmila, B., 2024. A review on fabrication and simulation methods of flexible wearable antenna for industrial tumor detection systems. Journal of Industrial Information Integration, 41, p.100673. Available at: https://doi.org/10.1016/j.jii.2024.100673
[45] Jeyakumar, P., Pandeeswari, R., Saranya, S., Aadithiya, B.N., Jagadeeshan, V., Kamalesh, S. and Pradeep, V., 2024. Broadband complementary ring-resonator based terahertz antenna for 6G application. Applied Physics A, 130(8), p.604. https://doi.org/10.1007/s00339-024-07763-6