Design and Analysis of Complementary Split Ring Resonator Based Low Profile Antenna Using Lightweight Polymers for Wireless, Radar and Satellite Communication

Document Type : Research Article

Authors

1 Department of Electronics and Communication Engineering, Shri Eshwar College of Engineering, Vadasithur, Coimbatore, 641202, India

2 Department of Electronics and Communication Engineering, Sri Ramakrishna Engineering College,Vattamalaipalayam, Coimbatore - 641022, India

Abstract

The article introduces a novel antenna design aimed at addressing the demands of communication technologies. The antenna configuration involves a circular patch coupled with a coplanar waveguide (CPW) and incorporates circular split-ring resonators (SRR) on a Polydimethylsiloxane (PDMS) substrate. The use of PDMS, a flexible and durable material, enhances the antenna's mechanical properties and allows for versatility in various environments. The designed antenna has an overall area of 50x40mm2. The innovative design exhibits resonances at distinct frequencies, specifically 3.3 GHz, 9.7 GHz, and 10.5 GHz, with a return loss of -61.86dB, -31.72dB, -51.81dB, and VSWR of 0.01, 0.5, 0.2 catering to the requirements of wireless communications, radar systems, and satellite applications, respectively. The requirement of the high-end communication module is satisfied by the array configuration resulting in improved directivity and gain. The array module of 2x2 and 4x4 is simulated and analyzed. The choice of the array is selected based on the end application. The requirement of the high-end communication module is satisfied by the array configuration resulting in improved directivity and gain. The array module of 2x2 and 4x4 is simulated and analyzed. The choice of the array is selected based on the end application.

Keywords

Main Subjects


[1]   Azim, R., Islam, M. T., Arshad, H., Alam, M. M., Sobahi, N. and Khan, A. I., 2021. CPW-Fed Super-Wideband Antenna with Modified Vertical Bow-Tie-Shaped Patch for Wireless Sensor Networks. IEEE Access, 9, pp. 5343–5353. DOI: 10.1109/ACCESS.2020.3048052.
[2]   Chen, C., 2022. A wideband coplanar L-probe-fed slot-loaded rectangular filtering microstrip patch antenna with high selectivity. IEEE Antennas and Wireless Propagation Letters, 21(6), pp. 1134-1138. DOI: 10.1109/LAWP.2022.3159230.
[3]   Mathur, P., Augustine, R., Gopikrishna, M. and Raman, S., 2021. Dual MIMO antenna system for 5G mobile phones, 5.2 GHz WLAN, 5.5 GHz WiMAX, and 5.8/6 GHz WiFi applications. IEEE Access, 9, pp. 106734-106742. DOI: 10.1109/ACCESS.2021.3100995.
[4]   Kazim, J.U.R., et al., 2021. A Miniaturized Series Fed Tri-Slot Coplanar Vivaldi Antenna for RADAR Application with Reduced Ground Plane Effect. IEEE Open Journal of Antennas and Propagation, 2, pp.949-953. DOI: 10.1109/OJAP.2021.3112786.
[5]   Turkmen, C. and Secmen, M., 2021. Dual-band omnidirectional and Circularly Polarized Slotted Waveguide Array Antenna for Satellite Telemetry and Telecommand. IEEE Antennas Wirel Propag Lett, 20(11), pp.2100-2104.
[6]   Ahmad, S., et al., 2022. A Compact CPW-Fed Ultra-Wideband Multi-Input-Multi-Output (MIMO)Antenna for Wireless Communication Networks. IEEE Access, 10, pp.25278-25289.
[7]   Raj, S., Tripathi, S., Upadhyay, G., Tripathi, S.S. and Tripathi, V.S., 2021. An Electromagnetic Band Gap-Based Complementary Split Ring Resonator Loaded Patch Antenna for Glucose Level Measurement. IEEE Sens J, 21(20), pp. 22679-22687.
[8]   Sharma, P.K., Gupta, N. and Dankov, P.I., 2021. Analysis of Dielectric Properties of Polydimethylsiloxane (PDMS) as a Flexible Substrate for Sensors and Antenna Applications. IEEE Sens J, 21(17), pp. 19492-19504. DOI: 10.1109/JSEN.2021.3089827.
[9]   Wagih, M., Hillier, N., Yong, S., Weddell, A.S. and Beeby, S., 2021. RF-Powered Wearable Energy Harvesting and Storage Module Based on E-Textile Coplanar Waveguide Rectenna and Supercapacitor. IEEE Open Journal of Antennas and Propagation, 2, pp. 302-314. DOI: 10.1109/OJAP.2021.3059501
[10] Siddiqui, J.Y., Saha, C. and Antar, Y.M.M., 2015. Compact dual-SRR-loaded UWB monopole antenna with dual frequency and wideband notch characteristics. IEEE Antennas Wirel Propag Lett, 14, pp. 100-103. DOI: 10.1109/LAWP.2014.2356135.
[11] Birwal, A., Kaushal, V. and Patel, K., 2022. Investigation of Circularly Polarized CPW fed Antenna as a 2.45 GHz RFID Reader. IEEE Journal of Radio Frequency Identification. DOI: 10.1109/JRFID.2022.3172691.
[12] Shi, Y. and Nan, Y.H., 2022. Hybrid Power Harvesting from Ambient Radiofrequency and Solar Energy. IEEE Antennas Wirel Propag Lett, 21(12), pp. 2382-2386. DOI: 10.1109/LAWP.2022.3193952
[13] Jha, K.R., Jibran, Z.A.P., Singh, C. and Sharma, S.K., 2021. 4-Port MIMO Antenna Using Common Radiator on a Flexible Substrate for Sub-1GHz, Sub-6GHz 5G NR, and Wi-Fi 6 Applications. IEEE Open Journal of Antennas and Propagation, 2, pp. 689-701. DOI: 10.1109/ojap.2021.3083932.
[14] Siddiqui, J.Y., Saha, C. and Antar, Y.M.M., 2015. Compact dual-SRR-loaded UWB monopole antenna with dual frequency and wideband notch characteristics. IEEE Antennas Wirel Propag Lett, 14, pp. 100-103. DOI: 10.1109/LAWP.2014.2356135.
[15] Liu, S., Wang, Z. and Dong, Y., 2021. Compact Wideband SRR-Inspired Antennas for 5G Microcell Applications. IEEE Trans Antennas Propag, 69(9), pp. 5998-6003. DOI: 10.1109/TAP.2021.3070001.
[16] Gao, G.P., Zhang, B.K., Dong, J.H., Dou, Z.H., Yu, Z.Q. and Hu, B., 2023. A Compact Dual-Mode Pattern-Reconfigurable Wearable Antenna for the 2.4-GHz WBAN Application. IEEE Trans Antennas Propag, 71(2), pp. 1901-1906. DOI: 10.1109/TAP.2022.3225529.
[17] Huang, D., et al., 2022. A Microstrip Dual-Split-Ring Antenna Array for 5G Millimeter-Wave Dual-Band Applications. IEEE Antennas Wirel Propag Lett, 21(10), pp. 2025-2029. DOI: 10.1109/LAWP.2022.3189209.
[18] Wu, X., Wen, X., Yang, J., Yang, S. and Xu, J., 2022. Metamaterial Structure Based Dual-Band Antenna for WLAN. IEEE Photonics J, 14(2). DOI: 10.1109/JPHOT.2022.3163170.
[19] Grzesiak, M., Chrzanowska, A. and Prus, P., 2015. Analysis of Kapton Polyimide Films Used as a Substrate for Flexible Electronics. IEEE Transactions on Dielectrics and Electrical Insulation, 22(6), pp. 3117-3125.
[20] Raad, H.K., Al-Rizzo, H.M., Abbosh, A.I. and Hammoodi, A.I., 2016. A compact dual-band polyimide-based antenna for wearable and flexible telemedicine devices. Prog. Electromagnet. Res. C, 63, pp. 153-161. DOI: 10.2528/PIERC16010707.
[21] Abbasi, Q.H., Rehman, M.U., Yang, X., Alomainy, A., Qaraqe, K. and Serpedin, E., 2013. Ultrawideband band-notched flexible antenna for wearable applications. IEEE Antennas Wireless Propag. Lett., 12, pp. 1606-1609.
[22] Elmobarak, H.A., Rahim, S.K.A., Castel, X. and Himdi, M., 2019. Flexible conductive fabric/E-glass fiber composite ultra-wideband antenna for future wireless networks. IET Microw., Antennas Propag., 13(4), pp. 455-459. DOI: 10.1049/IET-map.2018.5195.
[23] Chang, X.L., Chee, P.S., Lim, E.H. and Nguyen, N.-T., 2022. Frequency reconfigurable smart antenna with integrated electroactive polymer for far-field communication. IEEE Trans. Antennas Propag., 70(2), pp. 856-867. DOI: 10.1109/TAP.2021.3111161.
[24] Gao, H., Zhang, Y., Yan, X. and Hu, W., 2016. Characterization of the Dielectric Properties of FR-4 Epoxy Resin at Microwave Frequencies. IEEE Transactions on Microwave Theory and Techniques, 64(4), pp. 1209-1216.
[25] Simorangkir, R.B.V.B., Yang, Y., Hashmi, R.M., Björninen, T., Esselle, K.P. and Ukkonen, L., 2018. Polydimethylsiloxane-embedded conductive fabric: Characterization and application for realization of robust passive and active flexible wearable antennas. IEEE Access, 6, pp. 48102-48112. DOI: 10.1109/ACCESS.2018.2867696.
[26] Al-Sehemi, A., Al-Ghamdi, N., Dishovsky, N., Atanasova, G. and Atanasov, N., 2021. Flexible polymer/fabric fractal monopole antenna for wideband applications. IET Microw., Antennas Propag., 15(1), pp. 80-92. DOI: 10.1049/mia2.12016.
[27] Zhou, Z., Pattnaik, S.S., Huang, J., Li, G., Li, J. and Liu, Y., 2019. Flexible PDMS-based patch antennas for body-centric wireless communications. IEEE Trans. Antennas Propag., 67(8), pp. 5006-5012. DOI: 10.1109/.2019.2915478.
[28] Nafe, N., Islam, M.R. and Islam, M.T., 2020. A Survey of Coplanar waveguide (CPW)-Fed Planar Antennas for Wireless Communication Applications. Journal of Electromagnetic Waves and Applications, 34(7), pp. 839-854. DOI: 10.1080/09205071.2020.1719396.
[29] Jafri, S.I. and Bouazizi, M.A., 2022. A Novel Ultra-Wideband Antenna for Modern Wireless Communication Systems. Progress in Electromagnetics Research Letters, 104, pp. 59-68. DOI: 10.2528/PIERL22031603.
[30] Zhang, F., Li, J., and Liu, Y., 2019. Design of a CPW-fed antenna with a modified SRR structure for ultra-wideband applications. Microwave and Optical Technology Letters, 61(4), pp. 1092-1096. DOI: 10.1002/mop.31758.
[31] Mishra, R. K., Das, S. R., and Saurav, K., 2021. Recent Progress in Antenna with Split-Ring Resonators for Wireless Communication Applications: A Comprehensive Review. IEEE Access, 9, pp. 21731-21752.
[32] Sharma, S., Gupta, S., and Bedi, S. S., 2021. A Comprehensive Survey of CPW-Fed Antennas with Split-Ring Resonator for WiMAX and Radar Applications. IEEE Transactions on Antennas and Propagation, 69(2), pp. 686-702. DOI: 10.1109/TAP.2020.302390.
[33] Mohamed, M. A., Yousif, N. A., and Ismail, A. A., 2020. Compact dual-band CPW-fed antenna with split ring resonator for wireless applications. Microwave and Optical Technology Letters, 62(4), pp. 1326-1332.
[34] Karna, S. K., Mohanty, S. P., and Kshetrimayum, R. S., 2021. Dual-band metamaterial-inspired monopole antenna with split ring resonator for wireless applications. AEU - International Journal of Electronics and Communications, 131, p. 153651.
[35] Kumari, S., Vishwakarma, D. K., and Singh, S. K., 2021. A compact microstrip patch antenna with metamaterial for WLAN and WiMAX applications. Journal of Microwaves, Optoelectronics, and Electromagnetic Applications, 20(3), pp. 567-579.
[36] Almutairi, T. M., and Rahman, M. A., 2020. Design of a compact multi-frequency microstrip patch antenna for satellite communication. IEEE Access, 8, pp. 189364-189373.
[37] Wei, Y., Zhou, Y., and Zhang, G., 2020. A broadband circularly polarized patch antenna for satellite communication. Journal of Electromagnetic Waves and Applications, 34(4), pp. 491-500.
[38] Saranya, S., and Sharmila, B., 2023. Design Optimization of Kapton Polyimide Based Wearable Antenna for Biosensing Application. Springer Proceedings in Materials 32. DOI: 10.1007/978-981-99-5567-1_27.
[39] Ganesh Babu, R., Yuvaraj, S., Raja, L., et al., 2022. Design of metamaterial loaded monopole antenna for multiband operation. AIP Conference Proceedings, 2405(040012). DOI: 10.1063/5.0072867.
[40] Raja, L., Farithkhan, A., Vijayalakshmi, K., et al., 2021. Design of Cubic Dielectric Resonator Antenna for Biomedical Application. ICSES-2021. DOI: 10.1109/ICSES52305.2021.9633792.
[41] Saranya, S., Sharmila, P., Jeyakumar, P., Muthuchidambaranathan, P., 2023. Design and Analysis of Metaresonator Based Tri Band Antenna for Biosensing Applications. Plasmonics, 18, pp. 1799-1811. DOI: 10.1007/s11468-023-01873-2.
[42] Kumar, N. S., Vimal, S. P., Kiruthika, V., Thrinethra, M. S., 2023. Design of High Gain 5G Millimeter wave Micro Strip Patch Antenna for Wireless Applications. Third International Conference on Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India. DOI:10.1109/STCR59085.2023.10396865.
[43] Freeman, R. H., 2022. Next Generation Space Operations: Accelerate, Change, Expand Platforms. Conference paper publication at Research Gate, Jul. 2022.
[44] Karthikeyan, T.A., Nesasudha, M., Saranya, S. and Sharmila, B., 2024. A review on fabrication and simulation methods of flexible wearable antenna for industrial tumor detection systems. Journal of Industrial Information Integration, 41, p.100673. Available at: https://doi.org/10.1016/j.jii.2024.100673
[45] Jeyakumar, P., Pandeeswari, R., Saranya, S., Aadithiya, B.N., Jagadeeshan, V., Kamalesh, S. and Pradeep, V., 2024. Broadband complementary ring-resonator based terahertz antenna for 6G application. Applied Physics A, 130(8), p.604. https://doi.org/10.1007/s00339-024-07763-6