[1] Steane, A., 1998. Quantum computing. Reports on Progress in Physics, 61(2), p.117.
[2] National Academies of Sciences, Engineering and Medicine, 2019. Quantum computing: progress and prospects.
[3] Rawat, B., Mehra, N., Bist, A.S., Yusup, M. and Sanjaya, Y.P.A., 2022. Quantum computing and ai: Impacts & possibilities. ADI Journal on Recent Innovation, 3(2), pp.202-207.
[4] Lubinski, T., Johri, S., Varosy, P., Coleman, J., Zhao, L., Necaise, J., Baldwin, C.H., Mayer, K. and Proctor, T., 2023. Application-oriented performance benchmarks for quantum computing. IEEE Transactions on Quantum Engineering.
[5] Suzuki, Y., Endo, S., Fujii, K. and Tokunaga, Y., 2022. Quantum error mitigation as a universal error reduction technique: applications from the nisq to the fault-tolerant quantum computing eras. PRX Quantum, 3(1), p.010345.
[6] Guijo, D., Onofre, V., Del Bimbo, G., Mugel, S., Estepa, D., De Carlos, X., Adell, A., Lojo, A., Bilbao, J. and Orus, R., 2022. Quantum artificial vision for defect detection in manufacturing. arXiv preprint arXiv:2208.04988.
[7] Yonaga, K., Miyama, M., Ohzeki, M., Hirano, K., Kobayashi, H. and Kurokawa, T., 2022. Quantum optimization with Lagrangian decomposition for multiple-process scheduling in steel manufacturing. Isij International, 62(9), pp.1874-1880.
[8] Permin, E., Borgard, S., Castillo Velasquez, L. and Pyschny, N., 2022. A Simple Approach for Complexity Reduction in Job Shop Scheduling Using Quantum Computers. Available at SSRN 4259131.
[9] Zinner, M., Dahlhausen, F., Boehme, P., Ehlers, J., Bieske, L. and Fehring, L., 2022. Toward the institutionalization of quantum computing in pharmaceutical research. Drug Discovery Today, 27(2), pp.378-383.
[10] Nakano, A., 2023. Exascale Simulations of Quantum Materials Guided by AI and Quantum Computing. Bulletin of the American Physical Society.
[11] Sennane, W., Rancic, M., Greene-Diniz, G., Zsolt Manrique, D., Magnin, Y., Cordier, P., Llewellyn, P., Krompiec, M., Muñoz Ramo, D. and Shishenina, E., 2023. Modelling carbon capture on metal-organic frameworks with quantum computing. Bulletin of the American Physical Society.
[12] Orth, P., Mukherjee, A., Yao, Y.X., Huynh, A. and Trevisan, T., 2023. Quantum computing simulation of nonlinear optical response in Hubbard models. Bulletin of the American Physical Society.
[13] Matsuo, S. and Souma, S., 2023. A proposal of quantum computing algorithm to solve Poisson equation for nanoscale devices under Neumann boundary condition. Solid-State Electronics, 200, p.108547.
[14] Guo, N., and Leu, M. C., 2013. Additive manufacturing: technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), pp. 215-243.
[15] Mahesh, M., and Basavarajappa, S., 2015. Surface roughness prediction in turning of titanium alloy by machine vision system. Procedia Engineering, 97, pp.369-376.
[16] Kumar, P., Singh, R., and Ahuja, I. P. S., 2012. Investigations on surface roughness in fused deposition modeling (FDM) using predictive modeling techniques. Journal of Manufacturing Processes, 14(3), pp.393-402.
[17] Singh, S., and Prakash, C., 2020. Optimization of process parameters to minimize surface roughness in FDM: A review and analysis. Journal of Manufacturing Processes, 49, pp. 92-107.
[18] Panda, B. N., Sahoo, S., Sahu, P. K., and Mahapatra, S. S., 2010. Optimization of fused deposition modelling (FDM) process parameters using Taguchi method. International Journal of Manufacturing Technology and Management, 21(1-2), pp.100-112.
[19] Potnis, M.S., Singh, A., Jatti, V.S. et al. Part quality investigation in fused deposition modelling using machine learning classifiers. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01493-4
[20] Jatti, V. S., et al, 2022. Mechanical Properties of 3D-printed Components Using Fused Deposition Modeling: Optimization Using the Desirability Approach and Machine Learning Regressor. Applied System Innovation, 5(6). https://www.mdpi.com/2571-5577/5/6/112
[21] Mishra, A., Jatti, V. S., 2023, Neurosymbolic artificial intelligence (NSAI) based algorithm for predicting the impact strength of additive manufactured polylactic acid (PLA) specimens. Engineering Research Express, 5(3). https://iopscience.iop.org/article/10.1088/2631-8695/ace610
[22] Mishra, A., Jatti, V.S., 2023. Novel Coupled Genetic Algorithm–Machine Learning Approach for Predicting Surface Roughness in Fused Deposition Modeling of Polylactic Acid Specimens. Jounral of Materials Engineering and Performance. https://doi.org/10.1007/s11665-023-08379-2
[23] Mishra, A. Jatti, V. S., Sefene, E.M., Paliwal, S., 2023. Explainable Artificial Intelligence (XAI) and Supervised Machine Learning-based Algorithms for Prediction of Surface Roughness of Additively Manufactured Polylactic Acid (PLA) Specimens. Applied Mechanics, 4, pp. 668-698. doi: https://doi.org/10.3390/applmech4020034