Patch Antennas with PDMS Substrate to Detect Tumors and their Data Transmission through ERPO-OFDM Modulation Technique in VLC

Document Type : Special Issue: Mechanics of Advanced Fiber Reinforced Composite Structures

Authors

1 Department of ECE, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India

2 Department of ECE, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India

Abstract

A Patch antenna is a kind of antenna with a low profile, which can be fixed on a surface.  It communicates and gets electromagnetic waves inferred way. The boundaries of the antenna incorporate radiation design, gain, impedance, and frequency. Polydimethylsiloxane (PDMS) is utilized as a substrate in patch antennas. The existence of a tumor can be effectively recognized by the current density of the phantom. The difference in the current density value of phantom without tumor and with tumor shows the presence of the tumor. The first four antenna designs show a huge contrast in current density, the leftover two designs have little distinction of current density worth of phantoms. Six unique constructions of microstrip antenna are intended for skin tumor detection. In these six designs, the model for skin cancer recognition utilizing truncated corner, the working frequency is 2.492 GHz and S11 is –38 dB. The current density of the design relies on phantom characteristics. The acquired current density value of phantom without the growth of the tumor, with tumor, and with dangerous growth of the malignant tumor is (171.562, 193.381, and 204.199) A/m^2 and the Specific Absorption Rate (SAR) value is (1.14049, 1.27013 and 1.26088) W/Kg respectively. Visible Light Communication (VLC) system using Orthogonal Frequency Division Multiplexing (OFDM) supports high-speed transmission. The effectively-identified tumor can be communicated through gadgets using Enhanced Reverse Polarity Optical OFDM (ERPO-OFDM) technique. It’s a multicarrier modulation that supports information transmission through Light Emitting Diodes (LEDs).

Keywords


[1]    Vijayalakshmi, B.A., Nesasudha, M., 2021. ERPO‑OFDM for data transmission and brightness control in visible light communication system. Optical and Quantum Electronics., 53(9), p.489. doi:10.1007/s11082-021-02977-x.
[2]    Park, J.S., Choi, Y.S. and Lee, W.S., 2022. Design of Miniaturized Incident Angle-Insensitive 2.45 GHz RF-Based Energy Harvesting System for IoT Applications. IEEE Transactions on Antennas and Propagation, 70(5), pp. 3781–3788. doi:10.1109/TAP.2021.3137481.
[3]    Saadat, W., Member, S., Raurale, S.A., Conway, G.A., Mcallister, J. and Member, S., 2022. Wearable Antennas for Human Identification at. IEEE Transactions on Antennas and Propagation, 70(1), pp. 17–26.
[4]    Prakasam, V., Meghana, R., Sravani, A., Karishma, S.K., Divya, B. and Chandu, N., 2021. Tumor Detection in Skin Using Electromagnetic Band Gap Stucture Antenna. International Research Journal of Engineering and Technology, 08(08), pp. 1552–1556.
[5]    Suyambulingam, I., Rangappa, S. M., & Siengchin, S., 2023. Advanced Materials and Technologies for Engineering Applications. Applied Science and Engineering Progress, 16(3). doi:10.14416/j.asep.2023.01.008.
[6]    Phiri, R., Rangappa, S.M., Siengchin, S. and Marinkovic, D., 2023. Agro-Waste Natural Fiber Sample Preparation Techniques for Bio-Composites Development: Methodological Insights. Facta Universitatis, Series: Mechanical Engineering, 21(4), pp. 631–656. doi:10.22190/FUME230905046P.
[7]    Palaniappan, S.K., Singh, M.K., Rangappa, S.M. and Siengchin, S., 2024. Eco-friendly Biocomposites: A Step Towards Achieving Sustainable Development Goals. Applied Science and Engineering Progress, 17(4). doi:10.14416/j.asep.2024.02.003.
[8]    Chaurasia, A.S., Shankhwar, A.K., and Singh, A., 2024. Design and analysis of the Flexible Antenna behavior for Microwave Imaging of breast cancer. Journal of Integrated Science and Technology, 12(2), pp. 1–6.
[9]    Oritsetimeyin, P., Obiadi, I.F. and Nwadike, P. U., 2024. Design Of 2.4 GHZ Single Band Inset-Fed Rectangular Microstrip Patch Antenna. Science and Technology Publishing (SCI & TECH), 8(1).
[10]    Miranda, I., Souza, A., Sousa, P., Ribeiro, J., Castanheira, E.M.S., Lima, R. and Minas, G., 2022. Properties and applications of PDMS for biomedical engineering: A review. Journal of Functional Biomaterials, 13(1). doi:10.3390/jfb13010002.
[11]    Abi T Zerith M, and Nesasudha M., 2020. A Compact Wearable 2.45 GHz Antenna for WBAN Applications. International Conference on Devices, Circuits and Systems (ICDCS), pp. 184–187. doi:10.1109/ICDCS48716.2020.243577.
[12]    Nivetha, S., Preethi, G.A. and Chandrasekar, C., 2019. Performance Evaluation of Modulation Techniques in Li-Fi. International Journal of Recent Technology and Engineering (IJRTE), 8(3).
[13]    Stefan, I., Elgala, H. and Haas, H., 2012. Study of Dimming and LED Nonlinearity for ACO-OFDM Based VLC Systems. IEEE Wireless Communications and Networking Conference.
[14]    Mohammed S. A. and Mossaad, S.H. (n.d.), 2014. Practical OFDM Signalling for Visible Light Communications Using Spatial Summation. In 2014 27th Biennial Symposium on Communications (QBSC) Kingston, Canada.
[15]    Armstrong, J. and Lowery, A.J., 2006. Power efficient optical OFDM. Electronics Letters, 42, pp. 370–372.
[16]    Farahneh, H., Hussain, F. and Fernando, X., 2018. Performance analysis of adaptive OFDM modulation scheme in VLC vehicular communication network in realistic noise environment. EURASIP Journal on Wireless Communications and Networking, 2018, pp.1-15.
[17]    PrateekGawande, Aditya Sharma, P.K. (n.d.). Various Modulation Techniques for Li-Fi. International Journal of Advanced Research in Computer and Communication Engineering, 5(3).
[18]    Panda, S., Gupta, A. and Acharya, B., 2020. Wearable microstrip patch antennas with different flexible substrates for health monitoring system. Materials Today: Proceedings, 45. doi:10.1016/j.matpr.2020.09.127.
[19]    Bayero, G.M., Kah Wye, H. and Sree, S., 2021. Design of Antenna Array for Breast Tumor Detection. International Journal of Infrastructure Research and Management, 9(2), pp. 94–103. Retrieved from https://iukl.edu.my/rmc/publications/ijirm/
[20]    Mussa Elsaadi, R.H., 2023. Breast Cancer Detection Based on Multi-Slotted Patch Antenna at ISM Band. Circuits and Systems, 14(5). doi:10.4236/cs.2023.145001.
[21]    Yadav, M. B., Singh, B. and Melkeri, V.S., 2017. Design of Rectangular Microstrip Patch Antenna with DGS at 2.45 GHz. In 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA) (Vol. 1, pp. 367-370). IEEE.
[22]    Dixit, A., Pinto, M.S. and Engineering, C., 2019. Simulation of microstrip patch antenna for detection of abnormal tissues in thyroid gland. International Journal of Innovations in Engineering and Technology, 13(3), pp. 50–55.
[23]    Sugumaran, B., Balasubramanian, R. and Palaniswamy, S.K., 2021. Reduced specific absorption rate compact flexible monopole antenna system for smart wearable wireless communications. Engineering Science and Technology, an International Journal, 24(3), pp. 682–693. doi:10.1016/j.jestch.2020.12.012.
[24]    Sinha, S., Hasan, R.R., Niloy, T.R., and Rahman, A., 2021. Antenna design and fabrication for biotelemetry applications. International Journal of Electrical and Computer Engineering, 11(4), pp. 3639–3646. doi:10.11591/ijece.v11i4.pp3639-3646.
[25]    Doondi Kumar Janapala and Moses Nesasudha., 2019. Specific absorption rate reduction using metasurface unit cell for flexible polydimethylsiloxane antenna for 2 . 4 GHz wearable applications, (December 2018), pp. 1–12. doi:10.1002/mmce.21835.
[26]    Sreemathy, R., Hake, S., Sulakhe, S. and Behera, S., 2020. Slit Loaded Textile Microstrip Antennas. IETE Journal of Research, pp. 1–9. doi:10.1080/03772063.2019.1709572.
[27]    Çalışkan, R., Gültekin, S.S., Uzer, D. and Dündar, Ö., 2015. A Microstrip Patch Antenna Design for Breast Cancer Detection. Procedia - Social and Behavioral Sciences, 195, pp. 2905–2911. doi:10.1016/j.sbspro.2015.06.418.
[28]    Morris, S., Chandran, A.R., Timmons, N. and Morrison, J., 2016. Design and performance of a flexible and conformal PDMS Dipole antenna for WBAN applications. European Microwave Week 2016: “Microwaves Everywhere”, EuMW 2016 - Conference Proceedings; 46th European Microwave Conference, EuMC 2016, pp. 84–87. doi:10.1109/EuMC.2016.7824283.
[29]    Fu, Y., Lei, J., Zou, X. and Guo, J., 2019. Flexible antenna design on PDMS substrate for implantable bioelectronics applications. Electrophoresis, 40(8), pp. 1186–1194. doi:10.1002/elps.201800497.
[30]    Samal, P.B., Chen, S.J. and Fumeaux, C.,2023. Wearable Textile Multiband Antenna for WBAN Applications. IEEE Transactions on Antennas and Propagation, 71(2), pp. 1391–1402. doi:10.1109/TAP.2022.3230550.
[31]    Alsharif, F. and Kurnaz, C., 2018. Wearable Microstrip Patch Ultra Wide Band Antenna for Breast Cancer Detection. 2018 41st International Conference on Telecommunications and Signal Processing, TSP 2018, pp. 456–459. doi:10.1109/TSP.2018.8441335.
[32]    Hu, B., Gao, G.P., He, L. Le, Cong, X.D. and Zhao, J.N., 2016. Bending and On-Arm Effects on a Wearable Antenna for 2.45 GHz Body Area Network. IEEE Antennas and Wireless Propagation Letters, 15, pp. 378–381. doi:10.1109/LAWP.2015.2446512.
[33]    Sanusi, O.M., Ghaffar, F.A., Shamim, A., Vaseem, M., Wang, Y. and Roy, L., 2019. Development of a 2.45 GHz antenna for flexible compact radiation dosimeter tags. IEEE Transactions on Antennas and Propagation, 67(8), pp. 5063–5072. doi:10.1109/TAP.2019.2911647.
[34]    Lim, S. and Yoon, Y.J., 2021. Wideband-narrowband switchable tapered slot antenna for breast cancer diagnosis and treatment. Applied Sciences (Switzerland), 11(8). doi:10.3390/app11083606.