[1] BEAUGNON, E., 1993. Material Processing in High Static Magnetic Field. A Review of an Experimental Study on Levitation. Phase Separation and Texturation, 399.
[2] Jayawant, B.V., 1988. Review lecture-electromagnetic suspension and levitation techniques. Proceedings of the Royal Society of London. A Mathematical and Physical Sciences, 416(1851), pp.245-320.
[3] Ghodsi, M., Ueno, T. and Higuchi, T., 2005. Improvement of the magnetic circuit in levitation system using HTS and soft magnetic material. IEEE Transactions on Magnetics, 41(10), pp.4003-4005.
[4] Ashkin, A. and Dziedzic, J.M., 1975. Optical levitation of liquid drops by radiation pressure. Science, 187(4181), pp.1073-1075.
[5] Schiffter, H. and Lee, G., 2007. Single‐droplet evaporation kinetics and particle formation in an acoustic levitator. Part 1: Evaporation of water microdroplets assessed using boundary‐layer and acoustic levitation theories. Journal of pharmaceutical sciences, 96(9), pp.2274-2283.
[6] Bowen, L., 2014. Floating on sound waves with acoustic levitation. COMSOL News, pp.44-45.
[7] Santesson, S. and Nilsson, S., 2004. Airborne chemistry: acoustic levitation in chemical analysis. Analytical and bioanalytical chemistry, 378, pp.1704-1709.
[8] Kremer, J., Bürk, V., Pollak, S., Kilzer, A. and Petermann, M., 2018. Viscosity of squalane under carbon dioxide pressure—Comparison of acoustic levitation with conventional methods. The Journal of Supercritical Fluids, 141, pp.252-259.
[9] Davis, S., Gabai, R. and Bucher, I., 2018. Realization of an automatic, contactless, acoustic levitation motor via degenerate mode excitation and autoresonance. Sensors and Actuators A: Physical, 276, pp.34-42.
[10] Hrka, S., 2015. Acoustic levitation. University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana.
[11] Gor'kov, L.P., 2014. On the forces acting on a small particle in an acoustical field in an ideal fluid. In Selected Papers of Lev P. Gor'kov pp. 315-317.
[12] Clift, R., Grace, J.R. and Weber, M.E., 2005. Bubbles, drops, and particles.
[13] Sheykholeslami, M.R., Hojjat, Y., Ghodsi, M. and Cinquemani, S., 2015, March. Comparative discussion between first and second modes of Terfenol-D transducer. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015 (Vol. 9435, pp. 988-997). SPIE.
[14] Sheykholeslami, M., Hojjat, Y., Ghodsi, M., Kakavand, K. and Cinquemani, S., 2015. Investigation of ΔE effect on vibrational behavior of giant magnetostrictive transducers. Shock and vibration, 2015(1), p.478045.
[15] Sheykholeslami, M., Hojjat, Y., Ansari, S., Cinquemani, S. and Ghodsi, M., 2016. May. Analytical model of a giant magnetostrictive resonance transducer. In Industrial and Commercial Applications of Smart Structures Technologies 2016 (Vol. 9801, pp. 200-206). SPIE.
[16] Sheykholeslami, M., Hojjat, Y., Cinquemani, S., Tarabini, M. and Ghodsi, M., 2016, April. Experimental investigation on dependency of Terfenol-D transducers performance on working conditions. In Behavior and Mechanics of Multifunctional Materials and Composites 2016 (Vol. 9800, pp. 286-293). SPIE.
[17] Sheykholeslami, M.R., Hojjat, Y., Cinquemani, S., Ghodsi, M. and Karafi, M., 2016. An approach to design and fabrication of resonant giant magnetostrictive transducer. Smart Structures and Systems, 17(2), pp.313-325.
[18] Abdullah, A., Shahini, M. and Pak, A., 2009. An approach to design a high power piezoelectric ultrasonic transducer. Journal of Electroceramics, 22, pp.369-382.
[20] Hasegawa, K. and Murata, M., 2022. Oscillation dynamics of multiple water droplets levitated in an acoustic field. Micromachines, 13(9), p.1373.
[21] Argyri, S.M., Evenäs, L. and Bordes, R., 2023. Contact-free measurement of surface tension on single droplet using machine learning and acoustic levitation. Journal of Colloid and Interface Science, 640, pp.637-646.
[22] Cancino-Jaque, E., Meneses-Diaz, J., Vargas-Hernández, Y. and Gaete-Garretón, L., 2023. On the dynamics of a big drop in acoustic levitation. Ultrasonics Sonochemistry, 101, p.106705.