[1] Kaw, A. K., 2005. Mechanics of Composite Materials, CRC Press.
[2] Jones, R. M., 2018. Mechanics of Composite Materials, CRC Press.
[3] Gururaj, C., Pitchipoo, P., and Rajakarunakaran, S., 2021. A Review of Research Outcomes on Fabrication Methods and Investigations for Evaluating Fracture Behavior of Aluminum Metal Matrix Composites with Its Applications. Mech. Adv. Compos. Struct., 8(2), pp. 347–358.
[4] Al-Furjan, M. S. H., Shan, L., Shen, X., Zarei, M. S., Hajmohammad, M. H., and Kolahchi, R., 2022. A Review on Fabrication Techniques and Tensile Properties of Glass, Carbon, and Kevlar Fiber Reinforced Polymer Composites. J. Mater. Res. Technol., 19, pp. 2930–2959.
[5] Patel, M., Sahu, S. K., Singh, M. K., and Sahu, D. P., 2022. Investigation of Tribological Properties of Stir Cast AA5052/B4C MMC under Different Loads. J. Tribol., 34, pp. 69–86.
[6] Kumar, M., and Kumar, S., 2024. Short Literature Survey on Fiber-Reinforced Hybrid Composites. Mech. Adv. Compos. Struct., 11(23), pp. 425–452.
[7] Abolfazli, M., Bazli, M., Rajabipour, A., Heitzmann, M. T., and Amirzadeh, Z., 2023. Residual Compressive Section Capacity of Filament Wound Carbon, Glass, and Basalt Fibre-Reinforced Polymer Tubes: Influence of Elevated Temperatures. Compos. Struct., 304(P1), p. 116490.
[8] Sun, W., Wu, Z., Huang, C., Wang, Z., Huang, R., Gong, L., Nishimura, A., Zhou, Y., and Li, L., 2023. Investigation on Cryogenic Mechanical Properties of Basalt Fiber-Reinforced Epoxy Composites. Cryogenics (Guildf)., 132(April), p. 103684.
[9] Patel, M., and Patel, S., 2025. Determination of high-strength polymer composite reinforcement effect on the armor-grade aluminum plates' explosion resistance—A computational perspective. Polymer Composites, 46(4), pp. 3770-3790.
[10] Patel, M., and Patel, S., 2024. Dynamic behavior analysis of steel, aluminum, and composite plates under extreme air blast loadings. Mechanics of Advanced Materials and Structures, pp. 1-17.
[11] Askar, M. K., Hassan, A. F., and Al-Kamaki, Y. S. S., 2022. Flexural and Shear Strengthening of Reinforced Concrete Beams Using FRP Composites: A State of the Art. Case Stud. Constr. Mater., 17(May), p. e01189.
[12] Spagnuolo, S., Giorgi, C., Rinaldi, Z., and Pedrocco, L., 2023. Precast High-Performance Concrete (HPC) Sheet Piles Prestressed with Glass Fiber Reinforced Polymer (GFRP) Bars. Compos. Struct., 304(P1), p. 116324.
[13] Patel, S., and Patel, M., 2022. The efficient design of hybrid and metallic sandwich structures under air blast loading. Journal of Sandwich Structures & Materials., 24(3), pp. 1706-1725.
[14] Chernin, L., Guobys, R., and Vilnay, M., 2024. Ultrasonic Cavitation Erosion of CFRP Composites. Wear, 544–545(August 2023), p. 205300.
[15] Wei, Y., and Hadigheh, S. A., 2022. Cost-Benefit and Life Cycle Analysis of CFRP and GFRP Waste Treatment Methods. Constr. Build. Mater., 348(March), p. 128654.
[16] Jafarzadeh, H., and Nematzadeh, M., 2022. Flexural Strengthening of Fire-Damaged GFRP-Reinforced Concrete Beams Using CFRP Sheet: Experimental and Analytical Study. Compos. Struct., 288 (January), p. 115378.
[17] Zhou, Y., Pervin, F., Jeelani, S., and Mallick, P. K., 2008. Improvement in Mechanical Properties of Carbon Fabric-Epoxy Composite Using Carbon Nanofibers. J. Mater. Process. Technol., 198(1–3), pp. 445–453.
[18] Su, F.-H., Zhang, Z.-Z., Wang, K., Jiang, W., Men, X.-H., and Liu, W.-M., 2006. Friction and Wear Properties of Carbon Fabric Composites Filled with Nano-Al2O3 and Nano-Si3N4. Compos. Part A Appl. Sci. Manuf., 37(9), pp. 1351–1357.
[19] Maurya, M., Maurya, N. K., and Bajpai, V., 2019. Effect of SiC Reinforced Particle Parameters in the Development of Aluminium Based Metal Matrix Composite. Evergreen, 6(3), pp. 200–206.
[20] Maurya, M., Kumar, S., and Maurya, A., 2024. Microstructural and Fractographic Investigation of Three-Layer Laminated AA 6061/TiC/GS Composite Produced by Friction Stir Additive Manufacturing Process. J. Inst. Eng. Ser. D.
[21] Maurya, M., Kumar, S., and Maurya, A., 2024. Friction Stir Additive Manufactured AA 6061/TiC/GS Composite: Assessment of Microstructural and Mechanical Properties. Phys. Scr., 99(7), p. 75939.
[22] Dwivedi, S. P., Maurya, M., and Sharma, S., 2023. Synthesis and Characterisation of Chromium, Eggshell and Grinding Sludge-Reinforced Aluminium Metal Matrix Composite: An Experimental Approach. Green Mater., 11(1), pp. 37–46.
[23] Patel, M., Sahu, S. K., and Singh, M. K., 2022. Macro-Hardness and Corrosion Behavior of Silicon Carbide or Boron Carbide Reinforced AA5052 MMC. i-manager’s J. Mater. Sci., 9(4), pp. 1–8.
[24] Patel, M., Sahu, S. K., Singh, M. K., and Dalai, N., 2022. Micro-Structural and Mechanical Characterization of Stir Cast AA5052/B4C Metal Matrix Composite. Mater. Today Proc., 56(3), pp. 1129–1136.
[25] Patel, M., Sahu, S. K., and Singh, M. K., 2020. Abrasive Wear Behavior of SiC Particulate Reinforced AA5052 Metal Matrix Composite. Mater. Today Proc., 33, pp. 5586–5591.
[26] Patel, M., Singh, M. K., and Sahu, S. K., 2020. Abrasive Wear Behaviour of Sand Cast B4C Particulate Reinforced AA5052 Metal Matrix Composite. Innovative Product Design and Intelligent Manufacturing Systems: Select Proceedings of ICIPDIMS 2019, B. Deepak, D.R.K. Parhi, and P.C. Jena, eds., Springer Singapore, Rourkela, pp. 359–369.
[27] Patel, M., and Sahu, S. K., 2023. Effect of SiC Particulate Content on the Abrasive Wear Parameters of AA5052 Matrix. Recent Advances in Mechanical Engineering: Select Proceedings of STAAAR 2022, B. Sethuraman, P. Jain, and M. Gupta, eds., Springer Nature Singapore, Singapore, pp. 577–587.
[28] Chauhan, S., and Bhushan, R. K., 2017. Study of Polymer Matrix Composite with Natural Particulate/Fiber in PMC: A Review. Int. J. Adv. Res. Ideas Innov. Technol., 3(3), pp. 1168–1179.
[29] AL-Qrimli, H. F., Mahdi, F. A., and Ismail, F. B., 2015. Carbon/Epoxy Woven Composite Experimental and Numerical Simulation to Predict Tensile Performance. Adv. Mater. Sci. Appl., 4(2), pp. 33–41.
[30] Huang, J., She, Y., and He, J., 2024. Effect of CFRP Winding Modes on Axial Compressive Damage Performance of Wood Components. Constr. Build. Mater., 426(April), p. 136148.
[31] Lee, M. G., Huang, Y., Kan, Y. C., Wang, Y. C., Chen, Y. S., and Kao, S. C., 2023. Experimental Study on Durability of CFRP-Strengthened Wood Members. J. Mater. Res. Technol., 24, pp. 3704–3716.
[32] Pardhi, B., and Patel, M., 2021. Experimental and Numerical Research on the Effect of Winding Angles on the Torsional Strength of Glass Fiber Winding Hybrid Aluminium Shaft. i-manager’s J. Mater. Sci., 9(1), p. 17.
[33] Lu, C. hua, Qi, Z. hao, Ge, H., and Zheng, Y. long, 2023. Predicting the Mechanical Properties of E-Glass Fiber-Reinforced Polymer Bars after Exposure to Elevated Temperature. Constr. Build. Mater., 379(April), p. 131238.
[34] Huang, S., Yan, L., and Kasal, B., 2023. Flexural Behaviour of Wood Beams Strengthened by Flax-Glass Hybrid FRP Subjected to Hygrothermal and Weathering Exposures. Constr. Build. Mater., 365(September 2022), p. 130076.
[35] Li, Z., Xie, X., Hong, Z., Lu, C., and Wang, G., 2012. Evaluation of Impact Damage Tolerance in Carbon Fabric/Epoxy-Matrix Composites by Electrical Resistance Measurement. J. Wuhan Univ. Technol. Sci. Ed., 27(3), pp. 484–488.
[36] Karahan, M., Lomov, S. V., Bogdanovich, A. E., Mungalov, D., and Verpoest, I., 2010. Internal Geometry Evaluation of Non-Crimp 3D Orthogonal Woven Carbon Fabric Composite. Compos. Part A Appl. Sci. Manuf., 41(9), pp. 1301–1311.
[37] Kangishwar, S., Radhika, N., Sheik, A. A., Chavali, A., and Hariharan, S., 2023. A Comprehensive Review on Polymer Matrix Composites: Material Selection, Fabrication, and Application. Springer Berlin Heidelberg.
[38] Rajak, D. K., Pagar, D. D., Menezes, P. L., and Linul, E., 2019. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers (Basel), 11(10).
[39] Chauhan, S., Sahu, S., and Ansari, M. Z., 2020. Effect of Boundary Support Conditions on Impact Behavior of Silicone Pin-Reinforced Polymer Sandwich Composite Structure. Polym. Compos., 41(12), pp. 5104–5115.
[40] Chauhan, S., Ansari, M. Z., Sahu, S., and Husain, A., 2021. Impact Behavior of Deformable Pin-Reinforced PU Foam Sandwich Structure. Lecture Notes in Mechanical Engineering, Springer Singapore, pp. 997–1005.
[41] Patel, M., and Patel, S., 2024. A Comparative Blast Mitigation Performance Evaluation of Metallic Sandwich Panels with Honeycomb, Corrugated, Auxetic, and Foam Cores. Int. J. Struct. Stab. Dyn.
[42] Patel, M., Patel, S., Ahmad, S., and Guedes Soares, C., 2024. A Comparative Assessment of the Dynamic Responses of Solid Plate, Stiffened Plate, and Sandwich Plate of Equal Masses Under Explosive Loadings. Proceedings of the ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering. Volume 2: Structures, Safety, and Reliability, American Society of Mechanical Engineers, p. V002T02A019.
[43] Patel, M., and Patel, S., 2024. Dynamic Response Optimization of the Multistage Sandwich Structures Imperiled to Explosive Loading. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 238(10), pp. 1999-2017.
[44] Patel, M., and Patel, S., 2024. Blast Mitigation Analysis of Novel Designed Sandwich Structures Using Novel Approaches. Mech. Adv. Mater. Struct., 31 (25), pp. 7195–7217.
[45] Patel, M., and Patel, S., 2022. Novel Design of Honeycomb Hybrid Sandwich Structures under Air-Blast. J. Sandw. Struct. Mater., 24(8), pp. 2105–2123.
[46] Patel, M., Patel, S., and Ahmad, S., 2023. Blast Analysis of Efficient Honeycomb Sandwich Structures with CFRP/Steel FML Skins. Int. J. Impact Eng., 178(April), p. 104609.
[47] Zhang, L., Aboagye, A., Kelkar, A., Lai, C., and Fong, H., 2014. A Review: Carbon Nanofibers from Electrospun Polyacrylonitrile and Their Applications. J. Mater. Sci., 49(2), pp. 463–480.
[48] Mridha, S., Keng, S. B., and Ahmad, Z., 2007. The Effect of OPWF Filler on Impact Strength of Glass-Fiber Reinforced Epoxy Composite. J. Mech. Sci. Technol., 21(10), pp. 1663–1670.
[49] Hussain, A., Zia, K. M., Tabasum, S., Noreen, A., Ali, M., Iqbal, R., and Zuber, M., 2017. Blends and Composites of Exopolysaccharides; Properties and Applications: A Review. Int. J. Biol. Macromol., 94, pp. 10–27.
[50] Tekinalp, H. L., Kunc, V., Velez-Garcia, G. M., Duty, C. E., Love, L. J., Naskar, A. K., Blue, C. A., and Ozcan, S., 2014. Highly Oriented Carbon Fiber–Polymer Composites via Additive Manufacturing. Compos. Sci. Technol., 105, pp. 144–150.
[51] Liu, Y., Zou, A., Wang, G. dong, Han, C., and Blackie, E., 2022. Enhancing Interlaminar Fracture Toughness of CFRP Laminates with Hybrid Carbon Nanotube/Graphene Oxide Fillers. Diam. Relat. Mater., 128(March), p. 109285.
[52] Srinivasa Perumal, K. P., Selvarajan, L., Manikandan, K. P., and Velmurugan, C., 2023. Mechanical, Tribological, and Surface Morphological Studies on the Effects of Hybrid Ilmenite and Silicon Dioxide Fillers on Glass Fibre Reinforced Epoxy Composites. J. Mech. Behav. Biomed. Mater., 146(June), p. 106095.
[53] Aljidda, O., El Refai, A., and Alnahhal, W., 2023. Experimental and Analytical Investigation on the Use of NSM–BFRP and NSM–GFRP Bars in Strengthening Corrosion–Damaged RC Slabs. Compos. Struct., 322(July).
[54] Mukhtar, F., and Jawdhari, A., 2024. RC Beams Flexurally Strengthened with CFRP Sheets Combined with FRC Layer for Mitigating Debonding Failures. Constr. Build. Mater., 427(April), p. 136274.
[55] Rocha, J., Sena-Cruz, J., and Pereira, E., 2022. Influence of Adhesive Stiffness on the Post-Cracking Behaviour of CFRP-Reinforced Structural Glass Beams. Compos. Part B Eng., 247(May).
[56] Shao, W., Sun, Q., Xu, X., Yue, W., and Shi, D., 2023. Durability Life Prediction and Horizontal Bearing Characteristics of CFRP Composite Piles in Marine Environments. Constr. Build. Mater., 367(September 2022).
[57] Nugraha, A. D., Alandro, D., Mangunkusumo, K. G. H., Kusni, M., Wu, Y. C., and Muflikhun, M. A., 2024. Failure Configuration and Evaluation of Hybrid CFRP-GFRP Laminates Using Innovative Arcan Fixture: Experimental and Simulation Approach. Compos. Part C Open Access, 14(March), p. 100452.
[58] Torabizadeh, M. A., and Fereidoon, A., 2023. Low-Velocity Impact Behavior of Foam Core Sandwich Panels with Different Face Sheet Layers: Numerical and Experimental Study. Mech. Adv. Compos. Struct., 10(1), pp. 111–122.
[59] Mack, J. P., Mirza, F., Banik, A., Khan, M. H., and Tan, K. T., 2024. Hybridization of Face Sheet in Sandwich Composites to Mitigate Low Temperature and Low Velocity Impact Damage. Compos. Struct., 338(April), p. 118101.
[60] Rocha, J., Pereira, E., Michels, J., and Sena-Cruz, J., 2023. Hybrid Strengthening and Flexural Behaviour of Post-Tensioned Laminated Glass Beams. Constr. Build. Mater., 408(January).
[61] Patel, M., and Patel, S., 2024. Assessment of Dynamic Response of Armor Grade Steel Plates and FMLs under Air-Blast Loads. Mech. Adv. Mater. Struct., pp. 1–22.
[62] Gaur, B., Patel, M., and Patel, S., 2023. Strain Rate Effect on CRALL under High-Velocity Impact by Different Projectiles. J. Brazilian Soc. Mech. Sci. Eng., 45(2), p. 103.
[63] Patel, M., Patel, S., and Ahmad, S., 2023. A Novel Design of Blast Proof Sandwich Structure with Hybrid Skin. Mater. Today Proc., 87(1), pp. 221–227.
[64] Patel, M., Pardhi, B., Chopara, S., and Pal, M., 2018. Lightweight Composite Materials for Automotive - A Review. Int. Res. J. Eng. Technol., 3(11), pp. 41–47.
[65] Chauhan, S., and Bhushan, R. K., 2018. Improvement in Mechanical Performance Due to Hybridization of Carbon Fiber/Epoxy Composite with Carbon Black. Adv. Compos. Hybrid Mater., 1(3), pp. 602–611.
[66] Liu, H., Liu, J., Kaboglu, C., Zhou, J., Kong, X., Li, S., Blackman, B. R. K., Kinloch, A. J., and Dear, J. P., 2022. Modelling the Quasi-Static Flexural Behaviour of Composite Sandwich Structures with Uniform- and Graded-Density Foam Cores. Eng. Fract. Mech., 259(December 2020), p. 108121.
[67] Isaac, C. W., and Ezekwem, C., 2021. A Review of the Crashworthiness Performance of Energy Absorbing Composite Structure within the Context of Materials, Manufacturing and Maintenance for Sustainability. Compos. Struct., 257(September 2020), p. 113081.
[68] Vasanthanathan, A., and Navin Kumar, C., 2022. Fabrication of Aluminum Honeycomb Cored Carbon Fabric/Epoxy Composite Sandwich Structures via Vacuum Assisted Resin Infusion Technique. Polym. Compos., 43(3), pp. 1407–1420.
[69] Vyas, C. J., and Jhala, R. L., 2024. Mechanical Characterization of Glass-Basalt Hybrid Composites with Different Fiber Weight Fraction. Mech. Adv. Compos. Struct., 11(2), pp. 295–308.
[70] Amiri, F., Alaei, M. H., and Jam, J. E., 2024. Experimental and Numerical Investigation of the Effect of Embedding Steel Wires inside the Foam of GFRP/Foam Sandwich Panel under Three-Point Bending Load. Mech. Adv. Compos. Struct., 11(2), pp. 271–280.