Pandanus Tectorius Fiber/ Rice Husk Powder as Green Reinforcement for Lightweight Composites: Evaluation of Impact Strength Properties and Thermal Stability

Document Type : Research Article

Authors

1 Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, West Nusa Tenggara, 83115, Indonesia

2 Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand

3 Department of Mechanical Engineering, Faculty of Engineering, University of Brawijaya, Indonesia

Abstract

Agricultural wastes such as Pandanus tectorius fiber (DPs) and rice husk powder (RHs) are cost-effective, low-density, biodegradable, and environmentally friendly materials. This study investigates the impact strength and thermal properties of polyester composites with varying DPs/RHs ratios. DPs treated with 20% NaOH were combined in 10%, 15%, 20%, and 30% (vol.), while RHs were varied from 5% to 10% (vol.). The results showed that increasing fiber content improved the composite's impact strength and thermal stability. The highest impact strength was achieved by sample G30/10 (30% DPs: 10% RHs) at 55.8 ± 1.89 KJ/mm², while the lowest was X10/5 (10% DPs: 5% RHs) at 22.23 ± 3.4 KJ/mm². Sample X30/5 (30% DPs: 5% RHs) exhibited the best thermal stability with only 4.47% weight loss, whereas sample G15/10 (15% DPs: 10% RHs) experienced 67% weight loss. SEM analysis revealed fiber-matrix interactions influencing impact properties. These findings suggest that DPs/RHs composites could be applied in lightweight, green thermal insulation solutions, and automotive components, promoting sustainable waste utilization.

Keywords

Main Subjects


  1. Diyana, Z. N., Jumaidin, R., Selamat, M. Z., Alamjuri, R. H., Md Yusof, F. A., 2021. Extraction and Characterization of Natural Cellulosic Fiber from Pandanus amaryllifolius Leaves. Polymers, 13(23), 4171. https://doi.org/10.3390/polym13234171.
  2. Sathish, S., Aneesh, S., Vigneshwaran, S. N., Kumar, E. K. N., Ravichandran, M., Khan, M. A., 2023. Role of areca fibres on the mechanical behavior of natural fibre reinforced polymer composite. Materials Today: Proceedings, 2023. https://doi.org/10.1016/j.matpr.2023.03.606.
  3. Abedi, M. M., Hassanshahi, O., Rashiddel, A., Ashtari, H., Meddah, M. S., Dias, D., Arjomand, M. A., Choong, K. K., 2023. A sustainable cementitious composite reinforced with natural fibers: An experimental and numerical study. Construction and Building Materials, 378, 131093. https://doi.org/10.1016/j.conbuildmat.2023.131093.
  4. Sahu, M., Patnaik, A., Sharma, Y. K., Dalai, A., 2023. Physico-mechanical and tribological behaviour of natural fiber reinforced polymer composites: A short review, Materials Today: Proceedings, 2023. https://doi.org/10.1016/j.matpr.2023.03.822.
  5. Saba, N., Paridah, M. T., Jawaid, M., 2015. Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials, 76, pp. 87-96. https://doi.org/10.1016/j.conbuildmat.2014.11.043.
  6. Syafri, E., Jamaluddin, J., Harmailis, H., Umar, S., Mahardika, M., Amelia, D., Mayerni, R., Rangappa, S. M., Siengchin, S., Sobahi, T. R., Khan, A., Asiri, A. M., 2022. Isolation and Characterization of New Cellulosic Microfibers from Pandan Duri (Pandanus Tectorius) for Sustainable Environment. Journal of Natural Fibers, 19(16), pp. 12924-12934. https://doi.org/10.1080/15440478.2022.2079582.
  7. Afolabi, L. O., Megat-Yusoff, P. S. M., Ariff, Z. M., Hamizol, M. S., 2019. Fabrication of tectorius (screw-pine) natural fiber using vacuum resin infusion for polymer composite application. Journal of Materials Research and Technology, 8(3), pp. 3102-3113. https://doi.org/10.1016/j.jmrt.2017.05.021.
  8. Sheltami, R. M., Abdullah, I., Ahmad, I., Dufresne, A., Kargarzadeh, H., 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 88, pp. 772-779. https://doi:10.1016/j.carbpol.2012.01.062.
  9. Sari, N. H., Sanjay, M. R., Arpitha, G. R., Pruncu, C. I., Siengchin, S., 2019. Synthesis and properties of pandanwangi fiber reinforced polyethylene composites: Evaluation of dicumyl peroxide (DCP) effect. Composites Communications, 15, pp. 53–57. https://doi:10.1016/j.coco.2019.06.007.
  10. Weerappuliarachchi, J. W. M. E. S., Perera, I. C., Gunathilake, S. S., S. K. S., Thennakoon, S. K. S., Dassanayake, B. S., 2020. Synthesis of cellulose microcrystals (CMC)/nylon 6,10 composite by incorporating CMC isolated from Pandanus ceylanicus. Carbohydrate Polymers, 241, 116227. https://doi.org/10.1016/j.carbpol.2020.116227.
  11. Sari, N.H., Fajrin, J., Suteja., S., Fudholi, A., 2020. Characterisation of swellability and compressive and impact strength properties of corn husk fibre composites. Composites Communications, 18, pp. 49-54. https://doi.org/10.1016/j.coco.2020.01.009.
  12. Rangasamy, G., Mani, S., Goundar Kolandavelu, S. K. S., Alsoufi, M. S., Mohamed, A., Ibrahim, M., Muthusamy, S., Panchal, H., Sadasivuni, K. K., Elsheikh, A. H., 2021. An extensive analysis of mechanical, thermal and physical properties of jute fiber composites with different fiber orientations. Case Studies in Thermal Engineering, 28, 101612. https://doi.org/10.1016/j.csite.2021.101612
  13. Chakkour, M., Moussa, M. O., Khay, I., Balli, M., Zineb, T, B., 2023. Effects of humidity conditions on the physical, morphological and mechanical properties of bamboo fibers composites. Industrial Crops and Products, 192, 116085, https://doi.org/10.1016/j.indcrop.2022.116085.
  14. Bodie, A. R., Micciche, A. C., Atungulu, G. G., Rothrock, M. J. Jr., Ricke, S. C., 2019. Current trends of rice milling byproducts for agricultural applications and alternative food production systems. Front Sustain Food Syst, 3, p. 47. https://doi.org/10.3389/fsufs.2019.00047.
  15. Prabhakaran, P., Ranganathan, R., Kumar, V. M., Rajasekar, R., Devakumar, L., Pal, S. K., 2017. Review on parameters influencing the rice breakage and rubber roll wear in sheller. Arch Metall Mater, 62 (3), pp. 1875-1880.
  16. Kordi, M., Farrokhi, N., Pech-Canul, M. I., Ahmadikhah, A., 2024. Rice Husk at a Glance: From Agro-Industrial to Modern Applications. Rice Science, 31(1), pp. 14-32. https://doi.org/10.1016/j.rsci.2023.08.005.
  17. Harini, H., Susilowati, S. E., 2017, Pengaruh Kekuatan Bending Dan Tarik Bahan Komposit Berpenguat Sekam Padi Dengan Matrik Urea Formaldehide. Jurnal Ilmiah WIDYA Eksakta, 1(1), pp. 56-61.
  18. Rout, A. K., Satapathy, A., 2012. Study on mechanical and tribo-performance of rice-husk filled glass–epoxy hybrid composites. Materials and Design, 41, pp. 131–141. http://dx.doi.org/10.1016/j.matdes.2012.05.002.
  19. Hemnath, A., Anbuchezhiyan, G., NanthaKumar, P., Senthilkumar, N., 2021. Tensile and flexural behaviour of rice husk and sugarcane bagasse reinforced polyester composites. Materials Today: Proceedings, 46, pp. 3451–3454. https://doi.org/10.1016/j.matpr.2020.11.786.
  20. Siregar, M. Z., Maulina, J., 2017. Characterization of Rice Husks Active Carbon Using Catalyst and Ultrasonic. International Journal of Applied Engineering Research, ISSN 0973-4562, 12(24), pp. 14970-14973.
  21. Kurschner, K., and Hoffer A., 1933. Cellulose and cellulose derivative. Fresenius Journal of Analytical Chemistry, 92(3), pp. 145–54. doi:10.1007/BF01354736.
  22. Vijay, R., Manoharan, S., Arjun, S., Vinod, A., Singaravelu, D.L., 2020. Characterization of silane-treated and untreated natural fibers from stem of leucas aspera characterization of silane-treated and untreated natural fibers. Journal of Natural Fibers, pp. 1-17, 10.1080/15440478.2019.171065100.
  23. Jofrishal, J., Adlim, M., Rahmayani, R. F. A., Yusibani, E., Fajri, R., 2023. Preparation and characterization of indoor heat blockage panel composites made of polyurethane-hybrid-foam-concrete and rice-husk-ash. Heliyon, 9, e18925. https://doi.org/10.1016/j.heliyon.2023.e18925.
  24. Sekhar, V. C., Dasore, A., Yalamasetti, B., Sudha Madhuri, K., Narendar G., 2023. Flexural behavior of natural fiber epoxy composites. Materials Today: Proceedings, 2023. https://doi.org/10.1016/j.matpr.2023.03.429.
  25. Halim, A. Z. A., Yajid, M. A. M., Nurhadi, F. A., Ahmad, N., Hamdan, H., 2020. Effect of Silica Aerogel – Aluminium Trihydroxide Hybrid Filler on the Physio-mechanical and Thermal Decomposition Behaviour of Unsaturated Polyester Resin Composite. Polymer Degradation and Stability, 182, 109337. https://doi.org/10.1016/j.polymdegradstab.2020.109377.
  26. Kumar, R. S., Vandhana Devi, V., Nivedhitha, D.M., Srish Satya, S., Visakan, S., Bharath Sharma, S., Sathish Kumar, S. B., 2023. Effect of nanoparticles in natural fiber reinforced polymer composites. Materials Today: Proceedings, 2023. https://doi.org/10.1016/j.matpr.2023.04.130.
  27. Manikandan, N., Morshed, M., Karthik, R., Azad, S., Deb, H., Rumi, T. M., Ahmed, Md. R. 2017. Improvement of mechanical properties of natural fiber reinforced jute/polyester epoxy composite through meticulous alkali treatment. Materials Science & Engineering, 3, pp. 9-18.
  28. Wazery, M. S. E., El-Elamy, M. I., dan Zoalfakar, S. H., 2017, Mechanical Properties of Glass Fiber Reinforced Polyester Composites, International Journal of Applied Science and Engineering, 14(3), p.121-131.
  29. Singh, M. K., Singh, A., 2022. Chapter 9 - Thermal characterization of materials using differential scanning calorimeter, Characterization of Polymers and Fibres, Woodhead Publishing, 2022, pp. 201-222, https://doi.org/10.1016/B978-0-12-823986-5.00006-3.
  30. Alaa, A. A., Aljabali, A., Pal, K., Murtaza, M., 2022. Chapter 6 - Liquid crystalline polymer-based bio-nanocomposites for spectroscopic applications, In Woodhead Publishing in Materials, Liquid Crystal Polymer Nanocomposites, Woodhead Publishing, 2022, pp. 141-162, https://doi.org/10.1016/B978-0-12-822128-0.00009-1.
  31. Azman, M. N., Taib, M., Julkapli, M. N., 2019.
    4 - Dimensional stability of natural fiber-based and hybrid composites, In Woodhead Publishing Series in Composites Science and Engineering, Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing, 2019, pp. 61-79. https://doi.org/10.1016/B978-0-08-102292-4.00004-7.
  32. Matilda, R. H., James, H. J., Dougherty, T., De Silva. K., 2019. Interfacial adhesion: improving the mechanical properties of silicon nitride fibre - epoxy polymer composites. Composite Interfaces, 26(3). https://doi.org/10.1080/09276440.2018.1499328