Effect of Microstructural Features and Al2O3 Doping on Aging Resistance, Mechanical Properties and Crack Propagation in 3Y-TZP Plate Ceramics for Dental Restorations: A Comprehensive Peridynamics Study

Document Type : Research Article

Authors

Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract

This study investigates the effects of microstructural features, nanoporosity, and micro-cracks on macro-crack propagation in 3Y-TZP plate ceramics doped with Al2O3 (0 to 0.5 wt%) for dental restoration applications, utilizing peridynamics (PD) theory for the first time. The research employs ordinary state-based PD to offer new insights into these interactions. Materials are synthesized through high-energy ball milling of ZrO2 powders at 1500 °C for 2 h. Mechanical properties, including density, average porosity diameter, Young’s modulus, Poisson’s ratio, and fracture toughness (KIC), are rigorously assessed. Results indicate that increasing Al2O3 content to 0.5 wt% enhances relative density, hardness, Young's modulus, KIC, and flexural strength to 99.5%, 15.1 GPa, 280 GPa, 9.97 MPa·m1/2, and 355 MPa, respectively, while low-temperature degradation over 800 h shows that Al2O3 doping significantly reduces aging kinetics. PD simulations demonstrate that micro-cracks substantially affect crack propagation, revealing a 15% reduction in macro-crack speeds compared to FEM results. This research enhances the understanding of dental ceramics and establishes a foundation for analyzing fractures in dental restoration ceramics using PD.

Keywords

Main Subjects


  1. Yanga, Y., Hua, C., Liub, Q. and Lia, J., 2024. Research progress and prospects of colored zirconia ceramics: A review. Journal of Advanced Ceramics, 13(10) pp. 1505-1522.
  2. Gulati, S., Kumar, S. and Baul, A., 2024. Nanoceramics: novel and benign materials in prosthodontics. In Industrial Applications of Nanoceramics, (pp. 79-98), Elsevier.
  3. Wang, H., Shen, F., Li, Z., Zhou, B., Zhao, P., Wang, W., Cheng, B., Yang, J., Li, B. and Wang, X., 2023. Preparation of high-performance ZrO2 bio-ceramics by stereolithography for dental restorations. Ceramics International, part A, 49 (17) pp. 28048-28061.
  4. Liang, Z., Liu, X., Zhao, Z., Lu, H., Wang, H., Liu, C., Wang, M. and Song, X., 2023. Enhancing hardness and toughness of WC simultaneously by dispersed ZrO2. Materials Science and Engineering: A870, p. 144905.
  5. Gionea, A., Andronescu, E., Voicu, G., Bleotu, C. and Surdu, V.A., 2016. Influence of hot isostatic pressing on ZrO2–CaO dental ceramics properties. International Journal of Pharmaceutics510(2), pp. 439-448.
  6. Chen, H., Huang, Z.Y. and Chen, W., 2023. The fabrication and in vitro bioactivity of HA/ZrO2/MgO gradient composite coatings. Ceramics International, 50(1), pp. 1814-1825.
  7. Ali, A.A., Shama, S.A., Amin, A.S. and EL-Sayed, S.R., 2021. Synthesis and characterization of ZrO2/CeO2 nanocomposites for efficient removal of Acid Green 1 dye from aqueous solution. Materials Science and Engineering: B269, p. 115167.
  8. Wang, S. and Liu, J., 2021. Microstructure and growth characteristics of Al2O3/Er2O3/ZrO2 solidified ceramics with different compositions. Journal of the European Ceramic Society41(7), pp. 4284-4293.
  9. Zhai, S., Pan, W. and Liu, J., 2023. Regulation of Y2O3 addition on structure and properties of Al2O3/ZrO2 (Y2O3) directionally solidified eutectic ceramic. Ceramics International49(18), pp. 30240-30247.
  10. Pian, X., Fan, B., Chen, H., Zhao, B., Zhang, X. and Zhang, R., 2014. Preparation of m-ZrO2 compacts by microwave sintering. Ceramics International40(7), pp. 10483-10488.
  11. Dimitriadis, K., Moschovas, D., Tulyaganov, D.U. and Agathopoulos, S., 2023. Microstructure, physical and mechanical properties of dental polychromic multilayer zirconia of uniform composition. European Journal of Oral Sciences, p.e12959.
  12. Al-Dwairi, Z.N., Al-Aghbari, L., Husain, N.A.H. and Özcan, M., 2023. Durability of cantilever inlay-retained fixed dental prosthesis fabricated from multilayered zirconia ceramics with different designs. Journal of the mechanical behavior of biomedical materials137, p. 105547.
  13. Zhang, F., Vanmeensel, K., Batuk M., Hadermann J., Inokoshi M., et al., 2015. Highlytranslucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation, Acta Biomaterialia, 16, pp.215–222.
  14. Samodurova A., Kocjan, A., Swain, M.V., Kosmac T., 2015, The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics, Acta Biomaterialia, Biomater, 11, pp. 477–487.
  15. Seesala, V.S., Rajasekaran, R., Vaidya, P.V. and Dhara, S., 2022. Functional gradient coating of alumina on net shaped zirconia implant: Improved strength, aging resistance, and role of residual stress. Journal of the European Ceramic Society, 42(13), pp. 5932-5942.
  16. Salma, U., 2019. Microstructure development for optimum fracture toughness of YSZ added Al2O3
  17. Ross, I.M., Rainforth, W.M., Scott A.J., Brydson R., 2001, The role of trace additions of alumina to yttria–tetragonal zirconia polycrystals (Y-TZP), Scripta Materialia. 45, pp. 653–660.
  18. Piascik, J.R., Zhang, Q., Bower, C.A., Thompson, J.Y., Stoner, B.R., 2007. Evidence of stress-induced tetragonal-to-monoclinic phase transformation during sputter deposition of yttria-stabilized zirconia. Journal of Materials Research, 22(4), pp. 1105-1111.
  19. Devi, S., Chaudhary, S., Hashim, M., Batoo, K.M., Hadi, M. and Shirsath, S.E., 2024. Co-relation between Rietveld analysis, dielectric studies and impedance spectroscopy of the Ba1− xSrxTiO3 Journal of Materials Science: Materials in Electronics35(16), pp. 1-24.
  20. Feng, Y., Wu, D., Stewart, M.G. and Gao, W., 2023. Past, current and future trends and challenges in non-deterministic fracture mechanics: A review. Computer Methods in Applied Mechanics and Engineering, 412, p.116102.
  21. Li, P., Li, W., Li, B., Yang, S., Shen, Y., Wang, Q. and Zhou, K., 2023. A review on phase field models for fracture and fatigue. Engineering Fracture Mechanics, p. 109419.
  22. Almarghani, L.K., Shetawey, R.A. and Alassar, R.M., 2024. Marginal Accuracy and Fracture Resistance of Occlusal Veneers Constructed from Different Pressable Ceramics. Al-Azhar Journal of Dentistry, 11(2), p. 14.
  23. Lien, W., Minju, D.Y., Jones, S.D., Wentworth, C.V., Savett, D.A., Mansell, M.R. and Vandewalle, K.S., 2021. The effect of micro-mechanical signatures of constituent phases in modern dental restorative materials on their macro-mechanical property: A statistical nanoindentation approach. Journal of the Mechanical Behavior of Biomedical Materials, 120, p. 104591.
  24. He, Q., Qin, Y., Zhan, X., Zhang, W. and Ye, J., 2023. Physicochemical and biological properties of Y-TZP ceramics modified by infiltration with different bioactive glasses for dental implant. Ceramics International, 49(17), pp. 29187-291897.
  25. Zhang, R., Zhao, C., Xing, J., Niu, J., Chen, H. and Qian, Y., 2023. Macro and micro investigation of fracture behavior and crack evolution considering inherent microcrack in prefabricated flawed granite. Engineering Fracture Mechanics, 284, p. 109264.
  26. Karpenko, O., Oterkus, S. and Oterkus, E., 2020. Influence of different types of small-size defects on propagation of macro-cracks in brittle materials. Journal of Peridynamics and Nonlocal Modeling, 2, pp. 289-316.
  27. Candaş, A., Oterkus, E. and İmrak, C.E., 2021. Dynamic crack propagation and its interaction with micro-cracks in an impact problem. Journal of Engineering Materials and Technology, 143(1), p. 011003.
  28. Teng, Z.H., Liao, D.M., Wu, S.C., Sun, F., Chen, T. and Zhang, Z.B., 2019. An adaptively refined XFEM for the dynamic fracture problems with micro-defects. Theoretical and Applied Fracture Mechanics103, p.102255.
  29. Chen, R., Li, B. and Xu, K., 2022. Effect of particle morphology on fatigue crack propagation mechanism of TiB2-reinforced steel matrix composites. Engineering Fracture Mechanics274, p.108752.
  30. Moussa, W.A., 2000. Finite element study of the interaction and shielding effects of multiple cracks in three-dimensions (Doctoral dissertation, Carleton University).
  31. Bouiadjra, B.B., Benguediab, M., Elmeguenni, M., Belhouari, M., Serier, B. and Aziz, M.N.A., 2008. Analysis of the effect of micro-crack on the plastic strain ahead of main crack in aluminium alloy 2024 T3. Computational materials science42(1), pp. 100-106.
  32. Chudnovsky, A. and Wu, S., 1991. Elastic interaction of a crack with a random array of microcracks. International Journal of Fracture, 49, pp. 123-140.
  33. Rose, L.R.F., 1986. Microcrack interaction with a main crack. International journal of fracture31, pp.233-242.
  34. Petrova, V., Tamuzs, V. and Romalis, N., 2000. A survey of macro-microcrack interaction problems.
  35. Li, J., Yang, B., Wang, S., James, M.N., Xiao, S., Zhu, T. and Yang, G., 2023. Modified Model of Crack Tip Stress Field Considering Dislocation Slip Accumulation and Crack Tip Blunting. Chinese Journal of Mechanical Engineering36(1), pp. 1-14.
  36. Wang, F. and Wang, M., 2020. Effect of holes on dynamic crack propagation under impact loading. Applied Sciences10(3), p. 1122.
  37. Demirel, M.G., Mohammadi, R. and Keçeci, M., 2023. Crack Propagation and Fatigue Performance of Partial Posterior Indirect Restorations: An Extended Finite Element Method Study. Journal of Functional Biomaterials14(9), p. 484.
  38. Milios, J. and Spathis, G., 1988. Dynamic interaction of a propagating crack with a hole boundary. Acta mechanica72(3-4), pp. 283-295.
  39. Theocaris, P.S. and Milios, J., 1981. Crack arrest modes of a transverse crack going through a longitudinal crack or a hole.
  40. Yi, W., Rao, Q.H., Luo, S., Shen, Q.Q. and Li, Z., 2020. A new integral equation method for calculating interacting stress intensity factor of multiple crack-hole problem. Theoretical and Applied Fracture Mechanics107, p. 102535.
  41. Ganesh, K.V., Islam, M.R.I., Patra, P.K. and Travis, K.P., 2022. A pseudo-spring based SPH framework for studying fatigue crack propagation. International Journal of Fatigue162, p. 106986.
  42. Belytschko, T., Liu, W.K., Moran, B. and Elkhodary, K., 2014. Nonlinear finite elements for continua and structures. John wiley & sons.
  43. Wang, H., Liu, Z., Xu, D., Zeng, Q. and Zhuang, Z., 2016. Extended finite element method analysis for shielding and amplification effect of a main crack interacted with a group of nearby parallel microcracks. International Journal of Damage Mechanics25(1), pp. 4-25.
  44. Dorduncu, M., Ren, H., Zhuang, X., Silling, S., Madenci, E. and Rabczuk, T., 2024. A review of peridynamic theory and nonlocal operators along with their computer implementations. Computers & Structures, 299, p. 107395.
  45. Silling, S.A., Weckner, O., Askari, E. and Bobaru, F., 2010. Crack nucleation in a peridynamic solid. International Journal of Fracture162, pp. 219-227.
  46. Huang, D., Lu, G. and Qiao, P., 2015. An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. International Journal of Mechanical Sciences94, pp. 111-122.
  47. Ha, Y.D. and Bobaru, F., 2011. Characteristics of dynamic brittle fracture captured with peridynamics. Engineering Fracture Mechanics78(6), pp. 1156-1168.
  48. Bobaru, F. and Hu, W., 2012. The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. International journal of fracture176, pp. 215-222.
  49. Basoglu, M.F., Zerin, Z., Kefal, A. and Oterkus, E., 2019. A computational model of peridynamic theory for deflecting behavior of crack propagation with micro-cracks. Computational Materials Science162, pp. 33-46.
  50. Vazic, B., Wang, H., Diyaroglu, C., Oterkus, S. and Oterkus, E., 2017. Dynamic propagation of a macrocrack interacting with parallel small cracks. AIMS Materials Science4(1), pp. 118-136.
  51. Yoffe, E.H., 1951. LXXV. The moving griffith crack. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science42(330), pp. 739-750.
  52. Silling, S.A., Epton, M., Weckner, O., Xu, J. and Askari, E., 2007. Peridynamic states and constitutive modeling. Journal of elasticity88, pp. 151-184.
  53. Silling, S.A. and Askari, E., 2005. A meshfree method based on the peridynamic model of solid mechanics. Computers & structures83(17-18), pp. 1526-1535.
  54. Kilic, B. and Madenci, E., 2010. An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theoretical and Applied Fracture Mechanics53(3), pp. 194-204.
  55. Madenci, E. and Oterkus, E., 2013. Peridynamic theory. In Peridynamic theory and its applications (pp. 19-43). New York, NY: Springer New York.
  56. Silling, S.A. and Bobaru, F., 2005. Peridynamic modeling of membranes and fibers. International Journal of Non-Linear Mechanics40(2-3), pp. 395-409.
  57. ASTM-C373. 1999. Standard Test Method for Water Absorption, Bulk Density, Apparent, Porosity, and Apparent Specific Gravity of Fired Whiteware Products. American Standard and Testing Materials. C373-88 (ASTM).
  58. Moradkhani, A. and Baharvandi, H., 2018. Effects of additive amount, testing method, fabrication process and sintering temperature on the mechanical properties of Al2O3/3Y-TZP composites. Engineering Fracture Mechanics, 191, pp. 446-460.
  59. Zhang, W., Bao, J., Xu, J., Wu, X., Li, D., Song, X. and An, S., 2017. Composition dependence of the adjustable microstructure and mechanical properties of ytterbia-ceria-costabilised TZP. Journal of Alloys and Compounds, 727, pp. 627-632.
  60. Toraya, H., Yoshimura, M. and Somiya, S., 1984. Calibration curve for quantitative analysis of the monoclinic‐tetragonal ZrO2 system by X‐ray diffraction. Journal of the American Ceramic Society, 67(6), pp. C-119.
  61. Garvie, R.C. and Nicholson, P.S., 1972. Phase analysis in zirconia systems. Journal of the American Ceramic Society, 55(6), pp. 303-305.
  62. Chevalier, J., Cales, B. and Drouin, J.M., 1999. Low‐temperature aging of Y‐TZP ceramics. Journal of the American Ceramic Society, 82(8), pp.2150-2154.
  63. Kohorst, P., Borchers, L., Strempel, J., Stiesch, M., Hassel, T., Bach, F.W. and Hübsch, C., 2012. Low-temperature degradation of different zirconia ceramics for dental applications. Acta biomaterialia, 8(3), pp. 1213-1220.
  64. Moradkhani, A., Panahizadeh, V. and Hoseinpour, M., 2023. Indentation fracture resistance of brittle materials using irregular cracks: A review.
  65. Zorzi, J.E. and Perottoni, C.A., 2013. Estimating Young’s modulus and Poisson's ratio by instrumented indentation test. Materials Science and Engineering: A574, pp. 25-30.
  66. Hardness, A.B., 1999. Standard Test Method for Microindentation Hardness of Materials. ASTM Committee: West Conshohocken, PA, USA, 384, p. 399.
  67. ASTM International. ASTM C769-98. Standard test method for sonic velocity in manufactured carbon and graphite materials for use in obtaining an approximate Young’s modulus.
  68. Moradkhani, A., Baharvandi, H. and Naserifar, A., 2019. Fracture toughness of 3Y-TZP dental ceramics by using vickers indentation fracture and SELNB methods. Journal of the Korean Ceramic Society56(1), pp. 37-48.
  69. Guinea, G.V., Pastor, J.Y., Planas, J. and Elices, M., 1998. Stress intensity factor, compliance and CMOD for a general three-point-bend beam. International Journal of Fracture89, pp. 103-116.
  70. ASTM Committee C-1161 on Advanced Ceramics, 2013. Standard test method for flexural strength of advanced ceramics at ambient temperature. ASTM International.
  71. áSakib Khan, M., áSaiful Islam, M. and Bates, D., 1998. Cation doping and oxygen diffusion in zirconia: a combined atomistic simulation and molecular dynamics study. Journal of Materials Chemistry8(10), pp. 2299-2307.
  72. Gaillard, Y., Anglada, M. and Jiménez-Piqué, E., 2009. Nanoindentation of yttria-doped zirconia: Effect of crystallographic structure on deformation mechanisms. Journal of materials research24(3), pp. 719-727.
  73. Moradkhani, A., Baharvandi, H. and Naserifar, A., 2019. Effect of sintering temperature on the grain size and mechanical properties of Al2O3-SiC Nanocomposites. Journal of the Korean Ceramic Society, 56(3), pp. 256-268.
  74. Moradkhani, A.R., Baharvandi, H.R., Vafaeesefat, A. and Tajdari, M., 2012. Microstructure and mechanical properties of Al2O3-SiC nanocomposites with 0.05% MgO and different SiC volume fraction.
  75. Twigg, P.C., Riley, F.L. and Roberts, S.G., 2002. Nanoindentation investigation of micro-fracture wear mechanisms in polycrystalline alumina. Journal of materials science, 37, pp. 845-853.
  76. Krell, A. and Schädlich, S.J.M.S., 2001. Nanoindentation hardness of submicrometer alumina ceramics. Materials Science and Engineering: A, 307(1-2), pp. 172-181.
  77. Stollberg, D.W., Hampikian, J.M., Riester, L. and Carter, W.B., 2003. Nanoindentation measurements of combustion CVD Al2O3 and YSZ films. Materials Science and Engineering: A, 359(1-2), pp. 112-118.
  78. Wang, J. and Stevens, R., 1989. Zirconia-toughened alumina (ZTA) ceramics. Journal of Materials science, 24, pp. 3421-3440.
  79. Jing, Q., Bao, J., Ruan, F., Song, X., An, S., Zhang, Y., Tian, Z., Lv, H., Gao, J. and Xie, M., 2019. High-fracture toughness and aging-resistance of 3Y-TZP ceramics with a low Al2O3 content for dental applications. Ceramics International45(5), pp. 6066-6073.
  80. Zhang, F., Chevalier, J., Olagnon, C., Van Meerbeek, B. and Vleugels, J., 2017. Slow crack growth and hydrothermal aging stability of an alumina-toughened zirconia composite made from La2O3-doped 2Y-TZP. Journal of the European Ceramic Society37(4), pp. 1865-1871.
  81. Mercer, C., Williams, J.R., Clarke, D.R. and Evans, A.G., 2007. On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t′) yttria-stabilized zirconia. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences463(2081), pp. 1393-1408.
  82. Zhao, M., Ren, X. and Pan, W., 2014. Effect of lattice distortion and disordering on the mechanical properties of titania‐doped yttria‐stabilized zirconia. Journal of the American Ceramic Society97(5), pp. 1566-1571.
  83. Zarone, F., Russo, S. and Sorrentino, R., 2011. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dental materials27(1), pp. 83-96.
  84. Vijan, K.V., 2017. An overview of the current survival status and clinical recommendation for porcelain fused to metal vs all-ceramic Zirconia posterior fixed partial dentures. World Journal Dentistry, 8(2), pp. 145-50.
  85. Yang, R.S., Ding, C.X., Yang, L.Y., Xu, P. and Chen, C., 2018. Hole defects affect the dynamic fracture behavior of nearby running cracks. Shock and Vibration2018.
  86. Chen, Z. and Chu, X., 2021. Peridynamic modeling and simulation of fracture process in fiber-reinforced concrete. Computer Modeling in Engineering & Sciences, 127(1), pp. 241-272.
  87. Kachanov, M., 1986. On crack-microcrack interactions. International Journal of Fracture30, pp. R65-R72.
  88. Kachanov, M., 1993. Elastic solids with many cracks and related problems. Advances in applied mechanics30, pp. 259-445.
  89. Gong, S.X. and Horii, H., 1989. General solution to the problem of microcracks near the tip of a main crack. Journal of the Mechanics and Physics of Solids37(1), pp. 27-46.
  90. Romalis, N.B. and Tamuzh, V.P., 1984. Propagation of a main crack in a body with distributed microcracks. Mechanics of Composite Materials20(1), pp. 35-43.
  91. Madenci, E. and Oterkus, S., 2016. Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. Journal of the Mechanics and Physics of Solids86, pp. 192-219.
  92. Chandar, K.R. and Knauss, W.G., 1982. Dynamic crack-tip stresses under stress wave loading—a comparison of theory and experiment. International Journal of Fracture20, pp.209-222.