[1] Tang, C., Liu, J., Yang, Y., Liu, Y., Jiang, S. and Hao, W., 2020. Effect of process parameters on mechanical properties of 3D printed PLA lattice structures. Composites Part C: Open Access, [online] 3, p.100076. doi:https://doi.org/10.1016/j.jcomc.2020.100076.
[2] Md Mazedur Rahman, Sultana, J., Saiaf Bin Rayhan and Ahmed, A., 2023. Optimization of FDM manufacturing parameters for the compressive behavior of cubic lattice cores: an experimental approach by Taguchi method. The International Journal of Advanced Manufacturing Technology. doi:https://doi.org/10.1007/s00170-023-12342-9.
[3] Mani, M., Karthikeyan, A.G., Kalaiselvan, K., Muthusamy, P. and Muruganandhan, P., 2022. Optimization of FDM 3-D printer process parameters for surface roughness and mechanical properties using PLA material. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2022.05.422.
[4] Jing, S., Li, W., Ma, G., Cao, X., Zhang, L., Fang, L., Meng, J., Shao, Y., Shen, B., Zhang, C., Li, H., Wan, Z. and Xiao, D., 2023. Enhancing Mechanical Properties of 3D Printing Metallic Lattice Structure Inspired by Bambusa Emeiensis. Materials, 16(7), pp.2545–2545. doi:https://doi.org/10.3390/ma16072545.
[5] Doodi, R. and Gunji, B.M., 2023. Prediction and experimental validation approach to improve performance of novel hybrid bio-inspired 3D printed lattice structures using artificial neural networks. Scientific Reports, 13(1), p.7763. doi:https://doi.org/10.1038/s41598-023-33935-0.
[6] Namvar, N., Moloukzadeh, I., Zolfagharian, A., Demoly, F. and Bodaghi, M., 2023. Bio-inspired design, modeling, and 3D printing of lattice-based scale model scooter decks. The International Journal of Advanced Manufacturing Technology. doi:https://doi.org/10.1007/s00170-023-11185-8.
[7] Harish, A., Alsaleh, N.A., Mahmoud Ahmadein, Elfar, A.A., Djuansjah, J., Hany Hassanin, Mahmoud Ahmed El-Sayed and Essa, K., 2024. Designing Lightweight 3D-Printable Bioinspired Structures for Enhanced Compression and Energy Absorption Properties. Polymers, 16(6), pp.729–729. doi:https://doi.org/10.3390/polym16060729.
[8] Fongsamootr, T., Thawon, I., Tippayawong, N., Tippayawong, K.Y. and Suttakul, P., 2022. Effect of print parameters on additive manufacturing of metallic parts: performance and sustainability aspects. Scientific Reports, [online] 12(1), p.19292. doi:https://doi.org/10.1038/s41598-022-22613-2.
[9] Barbosa, W.S., Gioia, M.M., Temporão, G.P., Meggiolaro, M.A. and Gouvea, F.C., 2022. Impact of multi-lattice inner structures on FDM PLA 3D printed orthosis using Industry 4.0 concepts. International Journal on Interactive Design and Manufacturing (IJIDeM), 17(1), pp.371–383. doi:https://doi.org/10.1007/s12008-022-00962-6.
[10] Li, B. and Shen, C., 2022. Solid Stress-Distribution-Oriented Design and Topology Optimization of 3D-Printed Heterogeneous Lattice Structures with Light Weight and High Specific Rigidity. Polymers, 14(14), p.2807. doi:https://doi.org/10.3390/polym14142807.
[11] Shevchenko, V., Balabanov, S., Sychov, M. and Karimova, L., 2023. Prediction of Cellular Structure Mechanical Properties with the Geometry of Triply Periodic Minimal Surfaces (TPMS). ACS omega, 8(30), pp.26895-26905. doi:https://doi.org/10.1021/acsomega.3c01631.
[12] Libonati, F., Graziosi, S., Ballo, F., Mognato, M. and Sala, G., 2021. 3D-Printed Architected Materials Inspired by Cubic Bravais Lattices. ACS Biomaterials Science & Engineering. doi:https://doi.org/10.1021/acsbiomaterials.0c01708.
[13] Bogusz, P., Popławski, A., Stankiewicz, M. and Kowalski, B., 2022. Experimental Research of Selected Lattice Structures Developed with 3D Printing Technology. Materials, 15(1), p.378. doi:https://doi.org/10.3390/ma15010378.
[14] Tkac, J., Samborski, S., Monkova, K. and Debski, H., 2020. Analysis of mechanical properties of a lattice structure produced with the additive technology. Composite Structures, 242, p.112138. doi:https://doi.org/10.1016/j.compstruct.2020.112138.
[15] Alarifi, I.M., 2023. Mechanical properties and numerical simulation of FDM 3D printed PETG/carbon composite unit structures. Journal of Materials Research and Technology. doi:https://doi.org/10.1016/j.jmrt.2023.01.043.
[16] Sombatmai, A., Tapracharoen, K., Uthaisangsuk, V., Msolli, S. and Promoppatum, P., 2024. Post-yielding and failure mechanism of additively manufactured triply periodic minimal surface lattice structures. Results in Engineering, 23, p.102364. doi:https://doi.org/10.1016/j.rineng.2024.102364.
[17] Almesmari, A., Sheikh-Ahmad, J., Jarrar, F. and Bojanampati, S., 2023. Optimizing the specific mechanical properties of lattice structures fabricated by material extrusion additive manufacturing. Journal of Materials Research and Technology, [online] 22, pp.1821–1838. doi:https://doi.org/10.1016/j.jmrt.2022.12.024.
[18] Alarifi, I.M., 2023. PETG/carbon fiber composites with different structures produced by 3D printing. Polymer Testing, 120, p.107949. doi:https://doi.org/10.1016/j.polymertesting.2023.107949.
[19] Perween, S., Fahad, M. and Khan, M.A., 2021. Systematic Experimental Evaluation of Function Based Cellular Lattice Structure Manufactured by 3D Printing. Applied Sciences, 11(21), p.10489. doi:https://doi.org/10.3390/app112110489.
[20] Güdür, C., Türkoğlu, T. and Eren, İ., 2023. Effect of Lattice Design and Process Parameters on the Properties of PLA, ABS AND PETG Polymers Produced by Fused Deposition Modelling. Journal of Materials and Mechatronics A, 4(2), pp.561–570. doi:https://doi.org/10.55546/jmm.1357217.
[21] Higuera, S., Miralbes, R. and Ranz, D., 2021. Mechanical properties and energy–absorption capabilities of thermoplastic sheet gyroid structures. Mechanics of Advanced Materials and Structures, pp.1–15. doi:https://doi.org/10.1080/15376494.2021.1919803.
[22] Kumar, A., Verma, S. and Jeng, J.-Y., 2020. Supportless Lattice Structures for Energy Absorption Fabricated by Fused Deposition Modeling. 3D Printing and Additive Manufacturing. doi:https://doi.org/10.1089/3dp.2019.0089.
[23] Alemayehu, D.B. and Todoh, M., 2024. Enhanced Energy Absorption with Bioinspired Composite Triply Periodic Minimal Surface Gyroid Lattices Fabricated via Fused Filament Fabrication (FFF). Journal of Manufacturing and Materials Processing, 8(3), p.86. doi:https://doi.org/10.3390/jmmp8030086.
[24] Liu, T., Zhao, W., Yao, Y., Lin, C., Zhao, H. and Cai, J., 2024. Mechanical and shape-memory properties of TPMS with hybrid configurations and materials. International Journal of Smart and Nano Materials, pp.1–25. doi:https://doi.org/10.1080/19475411.2024.2410289.
[25] Viswanath, A., Khalil, M., Khan, A., Fahad Al Maskari, Cantwell, W.J. and Khan, K.A., 2024. A novel design strategy to enhance buckling resistance of thin-walled single-cell lattice structures via topology optimisation. Virtual and Physical Prototyping, 19(1). doi:https://doi.org/10.1080/17452759.2024.2345390.
[26] Alkhatib, S.E., Xu, S., Lu, G., Karrech, A. and Sercombe, T.B., 2024. Rate-dependent behaviour of additively manufactured topology optimised lattice structures. Thin-Walled Structures, 198, p.111710. doi:https://doi.org/10.1016/j.tws.2024.111710.
[27] Razi, S.S., Pervaiz, S., Susantyoko, R.A. and Alyammahi, M., 2024. Optimization of Environment-Friendly and Sustainable Polylactic Acid (PLA)-Constructed Triply Periodic Minimal Surface (TPMS)-Based Gyroid Structures. Polymers, 16(8), p.1175. doi:https://doi.org/10.3390/polym16081175.
[28] Ursini, C. and Collini, L., 2021. FDM Layering Deposition Effects on Mechanical Response of TPU Lattice Structures. Materials, 14(19), p.5645. doi:https://doi.org/10.3390/ma14195645.
[29] Xue, Y., Gao, P., Zhou, L. and Han, F., 2020. An Enhanced Three-Dimensional Auxetic Lattice Structure with Improved Property. Materials, 13(4), pp.1008–1008. doi:https://doi.org/10.3390/ma13041008.
[30] Qin, D., Sang, L., Zhang, Z., Lai, S. and Zhao, Y., 2022. Compression Performance and Deformation Behavior of 3D-Printed PLA-Based Lattice Structures. Polymers, [online] 14(5), pp.1062–1062. doi:https://doi.org/10.3390/polym14051062.
[31] Antony, S., Cherouat, A. and Montay, G., 2020. Fabrication and Characterization of Hemp Fibre Based 3D Printed Honeycomb Sandwich Structure by FDM Process. Applied Composite Materials, 27(6), pp.935–953. doi:https://doi.org/10.1007/s10443-020-09837-z.
[32] Abusabir, A., Khan, M.A., Asif, M. and Khan, K.A., 2022. Effect of Architected Structural Members on the Viscoelastic Response of 3D Printed Simple Cubic Lattice Structures. Polymers, 14(3), p.618. doi:https://doi.org/10.3390/polym14030618.
[33] Beloshenko, V., Beygelzimer, Y., Chishko, V., Savchenko, B., Sova, N., Verbylo, D., Voznyak, A. and Vozniak, I., 2021. Mechanical Properties of Flexible TPU-Based 3D Printed Lattice Structures: Role of Lattice Cut Direction and Architecture. Polymers, 13(17), p.2986. doi:https://doi.org/10.3390/polym13172986.
[34] Shu-Yu Jhou, Hsu, C.-C. and Yeh, J.-C., 2021. The Dynamic Impact Response of 3D-Printed Polymeric Sandwich Structures with Lattice Cores: Numerical and Experimental Investigation. Polymers, 13(22), pp.4032–4032. doi:https://doi.org/10.3390/polym13224032.
[35] Yan, L., Zhu, K., Zhang, Y., Zhang, C. and Zheng, X., 2020. Effect of Absorbent Foam Filling on Mechanical Behaviors of 3D-Printed Honeycombs. Polymers, 12(9), p.2059. doi:https://doi.org/10.3390/polym12092059.
[36] Choudhry, N.K., Panda, B. and Dixit, U.S., 2023. Energy Absorption Characteristics of Fused Deposition Modeling 3D Printed Auxetic Re-entrant Structures: A Review. Journal of Materials Engineering and Performance, 32(20), pp.8981–8999. doi:https://doi.org/10.1007/s11665-023-08243-3.
[37] Buican, G.R., Zaharia, S.-M., Pop, M.A., Chicos, L.-A., Lancea, C., Stamate, V.-M. and Pascariu, I.S., 2021. Fabrication and Characterization of Fiber-Reinforced Composite Sandwich Structures Obtained by Fused Filament Fabrication Process. Coatings, 11(5), p.601. doi:https://doi.org/10.3390/coatings11050601.
[38] He, Q., Hou, Y., Li, X., Li, S. and Meng, L., 2023. Investigation on the Compressive Behavior of Hybrid Polyurethane (PU)-Foam-Filled Hyperbolic Chiral Lattice Metamaterial. Polymers, 15(9), pp.2030–2030. doi:https://doi.org/10.3390/polym15092030.
[39] Ahmed, A.M.R.M., Mahdi, E., Oosterhuis, K., Dean, A. and Cabibihan, J.J., 2023. Mechanical and energy absorption properties of 3D-printed honeycomb structures with Voronoi tessellations. Frontiers in Mechanical Engineering, 9, p.1204893. doi:https://doi.org/10.3389/fmech.2023.1204893.
[40] Peloquin, J., Kirillova, A., Rudin, C., L. Catherine Brinson and Gall, K., 2023. Prediction of tensile performance for 3D printed photopolymer gyroid lattices using structural porosity, base material properties, and machine learning. Materials & Design, 232, pp.112126–112126. doi:https://doi.org/10.1016/j.matdes.2023.112126.
[41] Poddar, P., Olles, M. and Cormier, D., 2022. Mechanical Response of Carbon Composite Octet Truss Structures Produced via Axial Lattice Extrusion. Polymers, 14(17), p.3553. doi:https://doi.org/10.3390/polym14173553.
[42] Challapalli, A. and Li, G., 2021. Machine learning assisted design of new lattice core for sandwich structures with superior load carrying capacity. Scientific Reports, 11(1), p.18552. doi:https://doi.org/10.1038/s41598-021-98015-7.
[43] Santiago, R., Ramos, H., AlMahri, S., Banabila, O., Haleimah Alabdouli, Lee, D.-W., Aziz, A., Rajput, N., Alves, M. and Guan, Z., 2023. Modelling and optimisation of TPMS-based lattices subjected to high strain-rate impact loadings. International journal of impact engineering, 177, pp.104592–104592. doi:https://doi.org/10.1016/j.ijimpeng.2023.104592.
[44] Sharma, P., Vaid, H., Vajpeyi, R., Shubham, P., Agarwal, K.M. and Bhatia, D., 2022. Predicting the dimensional variation of geometries produced through FDM 3D printing employing supervised machine learning. Sensors International, 3, p.100194. doi:https://doi.org/10.1016/j.sintl.2022.100194.
[45] Jayasudha, M., Elangovan, M., Mahdal, M. and Priyadarshini, J., 2022. Accurate Estimation of Tensile Strength of 3D Printed Parts Using Machine Learning Algorithms. Processes, 10(6), p.1158. doi:https://doi.org/10.3390/pr10061158.