[1] Erkan, O., Özkan, M., Karakoç, T.H., Garrett, S.J. and Thomas, P.J., 2020. Investigation of aerodynamic performance characteristics of a wind-turbine-blade profile using the finite-volume method. Renewable Energy, 161, pp. 1359-1367.
[2] Yang, W., Kim, K.H. and Lee, J., 2022. Upcycling of decommissioned wind turbine blades through pyrolysis. Journal of Cleaner Production, 376, 134292.
[3] Yang, B. and Sun, D., 2013. Testing, inspecting and monitoring technologies for wind turbine blades: A survey. Renewable and Sustainable Energy Reviews, 22, pp. 515-526.
[4] Debbache, M., 2018. Amélioration de la performance de pale éolienne par considération des paramètres locaux et prend en compte les phénomènes des pertes. Doctoral dissertation, Université Mohamed Khider Biskra.
[5] Rašuo, B., Dinulović, M., Veg, A., Grbović, A. and Bengin, A., 2014. Harmonization of new wind turbine rotor blades development process: A review. Renewable and Sustainable Energy Reviews, 39, pp. 874-882.
[6] Mirkov, N., Rašuo, B. and Kenjereš, S., 2015. On the improved finite volume procedure for simulation of turbulent flows over real complex terrains. Journal of Computational Physics, 287, pp. 18-45.
[7] Rašuo, B., 2010. Experimental study of structural damping of composite helicopter blades with different cores. Plastics, Rubber and Composites, 39(1), pp. 1-5.
[8] Rašuo, B., 2018. On structural damping of composite aircraft structures.
[9] Cong, C., 2017. Active control of edgewise vibrations in wind turbine blades using stochastic disturbance accommodating control.
[10] Gao, R., Yang, J., Yang, H. and Wang, X., 2023. Wind-tunnel experimental study on aeroelastic response of flexible wind turbine blades under different wind conditions. Renewable Energy, 219, 119539.
[11] Biglari, H. and Fakhari, V., 2020. Edgewise vibration reduction of small size wind turbine blades using shunt damping. Journal of Vibration and Control, 26(3-4), pp. 186-199.
[12] Awada, A., Younes, R. and Ilinca, A., 2021. Review of vibration control methods for wind turbines. Energies, 14(11), 3058.
[13] Chakhchaoui, N., Jaouani, H., Ennamiri, H., Eddiai, A., Hajjaji, A., Meddad, M. et al., 2019. Modeling and analysis of the effect of substrate on the flexible piezoelectric films for kinetic energy harvesting from textiles. Journal of Composite Materials, 53(24), pp. 3349-3361.
[14] Farhan, R., Eddiai, A., Meddad, M., Mazroui, M. and Guyomar, D., 2019. Electromechanical losses evaluation by an energy-efficient method using the electrostrictive composites: experiments and modeling. Smart Materials and Structures, 28(3), 035024.
[15] Meddad, M., Eddiai, A., Hajjaji, A., Boughaleb, Y., Guyomar, D. and Fliyou, M., 2014. Optimization of the energy harvested by the effect of strain and frequency on an electrostrictive polymer composite. Synthetic Metals, 188, pp. 72-76.
[16] Meddad, M., Eddiai, A., Guyomar, D., Belkhiat, S., Hajjaji, A., Cherif, A. and Boughaleb, Y., 2012. Study of the behaviour of electrostrictive polymers for energy harvesting with FFT analysis. Journal of Optoelectronics and Advanced Materials, 14(1-2), pp. 55-60.
[17] Harari, S., Richard, C. and Gaudiller, L., 2009. Semi-active control of a targeted mode of smart structures submitted to multimodal excitation. In: Motion and Vibration Control, Dordrecht: Springer, pp. 113-122.
[18] Bahl, S., Nagar, H., Singh, I. and Sehgal, S., 2020. Smart materials types, properties, and applications: A review. Materials Today: Proceedings, 28, pp. 1302-1306.
[19] Rupitsch, S.J., 2019. Simulation of piezoelectric sensor and actuator devices. In: Piezoelectric Sensors and Actuators. Topics in Mining, Metallurgy and Materials Engineering, pp. 83-126.
[20] Chérif, A., Richard, C., Guyomar, D., Belkhiat, S., Meddad, M., Eddiai, A. and Hajjaji, A., 2013. Modal SSDI-Max technique of a smart beam structure: Broadband excitation. Journal of Optoelectronics and Advanced Materials, 15(May-June), pp. 438-446.
[21] Chérif, A., Attoui, H., Zehar, D. and Behih, K., 2017. Improved vibration control of a smart beam by energy transfer. International Journal of Latest Trends in Engineering and Technology, 8(4), pp. 86-93.
[22] Asanuma, H. and Komatsuzaki, T., 2020. Nonlinear piezoelectricity and damping in partially-covered piezoelectric cantilever with self-sensing synchronized switch damping on inductor circuit. Mechanical Systems and Signal Processing, 144, 106867.
[23] Wu, D., 2013. Piezoelectric semi-active networks for structural vibration damping with energy redistribution. Doctoral dissertation, Lyon, INSA.
[24] Schubel, P.J. and Crossley, R.J., 2012. Wind turbine blade design. Energies, 5(9), pp. 3425-3449.
[25] El Mouhsine, S., Oukassou, K., Ichenial, M.M., Kharbouch, B. and Hajraoui, A., 2018. Aerodynamics and structural analysis of wind turbine blade. Procedia Manufacturing, 22, pp. 747-756.
[26] Wood, D., 2011. Small wind turbines. In: Advances in Wind Energy Conversion Technology. Berlin, Heidelberg: Springer, pp. 195-211.
[27] Wang, Y., Liang, M. and Xiang, J., 2014. Damage detection method for wind turbine blades based on dynamics analysis and mode shape difference curvature information. Mechanical Systems and Signal Processing, 48(1-2), pp. 351-367.
[28] Optimisation et régulation des puissances d’une éolienne à base d’une MADA, 2009. Mémoire de magister, École Nationale Supérieure Polytechnique d’Alger.
[29] Chérif, A., Richard, C., Guyomar, D., Belkhiat, S. and Meddad, M., 2012. Simulation of multimodal vibration damping of a plate structure using a modal SSDI-Max technique. Journal of Intelligent Material Systems and Structures, 23(6), pp. 675-689
[30] Harari, S., Richard, C. and Gaudiller, L., 2009. New semi-active multi-modal vibration control using piezoceramic components. Journal of Intelligent Material Systems and Structures, 20(13), pp. 1603-1613.
[31] Meddad, M., Eddiai, A., Cherif, A., Guyomar, D. and Hajjaji, A., 2016. Enhancement of electrostrictive polymer power harvesting using new technique SSHI-Max. Optical and Quantum Electronics, 48(2), pp. 1-10.
[32] Silva, T., Tan, D., De Marqui, C. and Erturk, A., 2019. Vibration attenuation in a nonlinear flexible structure via nonlinear switching circuits and energy harvesting implications. Journal of Intelligent Material Systems and Structures, 30(7), pp. 965-976.
[33] Li, K., 2011. Amortissement vibratoire avec échange d’énergie synchronisé entre des éléments piézoélectriques. Doctoral dissertation, INSA de Lyon.
[34] Harari, S., 2009. Contrôle modal semi-actif et actif à faible consommation énergétique par composants piézoélectriques. Doctoral dissertation, INSA de Lyon.
[35] Richard, T., 2007. Diminution du coefficient de transmission acoustique d'une paroi à l'aide d'amortisseurs piézoélectriques semi-passifs. Doctoral dissertation, INSA de Lyon.