[1] Fu, S.Y., Lauke, B. and Mai, Y.W., 2009. Science and Engineering of Short Fiber-Reinforced Polymer Composites. Woodhead Publishing.
[2] Parveen, S., Rana, S. and Fangueiro, R., 2017. Advanced Composite Materials: Properties and Applications. De Gruyter Brill.
[3] Rafiee, M., Nitzsche, F. and Labrosse, M., 2018. Modeling and mechanical analysis of multiscale fiber-reinforced graphene composites: Nonlinear bending, thermal post-buckling and large amplitude vibration. International Journal of Non-Linear Mechanics, 103(1), pp.104-112. doi.org/10.1016/j.ijnonlinmec.2018.05.004.
[4] Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N., 2009. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 3(12), pp.3884-3890. doi.org/10.1021/nn9010472.
[5] Kim, H., Abdala, A.A. and Macosko, C. W., 2010. Graphene/polymer nanocomposites. Macromolecules, 43(16), pp.6515-6530. doi.org/10.1021/ma100572e.
[6] Safaei, B. and Fattahi, A., 2017. Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different non-local plate models. Mechanics, 23(5), pp.678-687. doi.org/10.5755/j01.mech.23.5.14883.
[7] Su, X., Wang, R., Li, X., Araby, S., Kuan, H.C., Naeem, M. and Ma, J., 2022. A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets. Nano Materials Science, 4(3), pp.185-204. doi.org/10.1016/j.nanoms.2021.08.003.
[8] Shokrieh, M., Ghoreishi, S., Esmkhani, M. and Zhao, Z., 2014. Effects of graphene nanoplatelets and graphene nanosheets on fracture toughness of epoxy nanocomposites. Fatigue & Fracture of Engineering Materials & Structures, 37(10), pp.1116-1123. doi.org/10.1111/ffe.12191.
[9] Ebrahimi, F. and Dabbagh, A., 2021. An analytical solution for static stability of multi-scale hybrid nanocomposite plates. Engineering with Computers, 37(1), pp.545-559. doi.org/10.1007/s00366-019-00840-y.
[10] Song, M., Yang, J., Kitipornchai, S. and Zhu W., 2017. Buckling and post-buckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates. International Journal of Mechanical Sciences, 131(1), pp.345-355. doi.org/10.1016/j.ijmecsci.2017.07.017.
[11] Radebe, I.S., Drosopoulos, G.A. and Adali, S., 2019. Buckling of non-uniformly distributed graphene and fiber-reinforced multiscale angle-ply laminates. Meccanica, 54(14), pp. 2263-2279. doi.org/10.1007/s11012-019-01067-3.
[12] Radebe, I.S., Drosopoulos, G.A. and Adali, S., 2022. Effect of Non-Uniform Fiber Distribution along Thickness and Non-Uniform Ply Thicknesses on Frequencies of Symmetric Angle-Ply Laminates. Fibers and Polymers, 23(8), pp.2250-2260. doi.org/10.1007/s12221-022-4440-5.
[13] Georgantzinos, S.K., Giannopoulos, G. I. and Markolefas, S. I., 2020. Vibration analysis of carbon fiber-graphene-reinforced hybrid polymer composites using finite element techniques. Materials, 13(19), p.4225. doi.org/10.3390/ma13194225.
[14] Jeawon, Y., Drosopoulos, G., Foutsitzi, G., Stavroulakis, G. and Adali, S., 2021. Optimization and analysis of frequencies of multi-scale graphene/fiber reinforced nanocomposite laminates with non-uniform distributions of reinforcements. Engineering Structures, 228(2). p.111525. doi.org/10.1016/j.engstruct.2020.111525.
[15] Chao, C., Koh, S. and Sun, C., 1975. Optimization of buckling and yield strengths of laminated composites. AIAA Journal, 13(9), pp.1131-1132. doi.org/10.2514/3.60515.
[16] Chen, T.L., 1976. Design of composite-material plates for maximum uniaxial compressive buckling load. Proceedings of the Oklahoma Academy of Science, 56 (1976), pp.104-107.
[17] Schmit Jr, L. and Farshi, B., 1977. Optimum design of laminated fiber composite plates. International Journal for Numerical Methods in Engineering, 11(4), pp.623-640, doi.org/10.1002/nme.1620110403.
[18] Hirano, Y., 1979. Optimum design of laminated plates under axial compression. AIAA Journal, 17(9), pp.1017-1019. doi.org/10.2514/3.61269.
[19] Haftka, R.T. and Walsh, J.L., 1992. Stacking-sequence optimization for buckling of laminated plates by integer programming. AIAA Journal, 30(3), pp.814-819. doi.org/10.2514/3.10989.
[20] Chai, G. and Hoon, K., 1992. Buckling of generally laminated composite plates. Composites Science and Technology, 45(2), pp.125-133. doi.org/10.1016/0266-3538(92)90035-2.
[21] Kicher, T. and Mandell, J., 1971. A study of the buckling of laminated composite plates. AIAA Journal, 9(4), pp.605-613. doi.org/10.2514/3.6237.
[22] Chattopadhyay, A. and Gu, H., 1994. New higher-order plate theory in modeling delamination buckling of composite laminates. AIAA Journal, 32(8), pp.1709-1716. doi.org/10.2514/3.12163.
[23] Jane, K., Liao, H. and Hong, W., 2003. Validation of the Rayleigh–Ritz method for the post-buckling analysis of rectangular plates with application to delamination growth. Mechanics Research Communications, 30(6), pp.531-538. doi.org/10.1016/S00936413(03)00060-0.
[24] Darvizeh, M., Darvizeh, A., Ansari, R. and Sharma, C., 2004. Buckling analysis of generally laminated composite plates (generalized differential quadrature rules versus Rayleigh–Ritz method). Composite Structures, 63(1), pp.69-74. doi.org/10.1016/S0263-8223(03)00133-8.
[25] Karakaya, Ş. and Soykasap, Ö., 2009. Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm. Structural and Multidisciplinary Optimization, 39(3), pp.477-486. doi.org/10.1007/s00158-008-0344-2.
[26] Nikbakt, S., Kamarian, S. and Shakeri, M., 2018. A review on optimization of composite structures Part I: Laminated composites. Composite Structures, 195(1), pp.158-185. doi.org/10.1016/j.compstruct.2018.03.063.
[27] Vosoughi, A., Darabi, A., Anjabin, N. and Topal, U., 2017. A mixed finite element and improved genetic algorithm method for maximizing buckling load of stiffened laminated composite plates. Aerospace Science and Technology, 70(4), pp.378-387. doi.org/10.1016/j.ast.2017.08.022.
[28] Keshtegar, B., Nguyen-Thoi, T., Truong, T.T. and Zhu, S.P., 2021. Optimization of buckling load for laminated composite plates using adaptive Kriging-improved PSO: A novel hybrid intelligent method. Defense Technology, 17(1), pp.85-99. doi.org/10.1016/j.dt.2020.02.020.
[29] Kaveh, A., Dadras, A. and Malek, N.G., 2019. Optimum stacking sequence design of composite laminates for maximum buckling load capacity using parameter-less optimization algorithms. Engineering with Computers, 35(1), pp.813-832. doi.org/10.1007/s00366-018-0634-2.
[30] Fakoor, M., Ghoreishi, S.M.N. and Aminjafari, M., 2019. Multi-objective optimization of buckling load for a laminated composite plate by coupling genetic algorithm and FEM. Journal of Aerospace Science and Technology, 12(1), pp.27-37.
[31] Leissa, A.W., 1987. A review of laminated composite plate buckling. Applied Mechanics Reviews, 40(5), pp. 575-591. doi.org/10.1115/1.3149534.
[32] Baba, B.O., 2007. Buckling behavior of laminated composite plates. Journal of Reinforced Plastics and Composites, 26(16), pp.1637-1655. doi.org/10.1177/0731684407079515.
[33] El-Sawy, K.M. and Nazmy, A.S., 2001. Effect of aspect ratio on the elastic buckling of uniaxially loaded plates with eccentric holes. Thin-Walled Structures, 39(12), pp.983-998. doi.org/10.1016/S0263-8231(01)00040-4.
[34] Soden, P.D., Hinton, M.J. and Kaddour, A., 1998. Lamina properties, lay-up configurations, and loading conditions for a range of fiber reinforced composite laminates. Failure Criteria in Fiber-Reinforced-Polymer Composites: Elsevier, 58(17) pp.1011-1022. doi.org/10.1016/S0266-3538(98)00078-5.
[35] Ren, J., 2021. Handbook of Ceramics and Composites. CRC Press.
[36] Aslan, Z. and Şahin, M., 2009. Buckling behavior and compressive failure of composite laminates containing multiple large delaminations. Composite Structures, 89(3), pp.382-390. doi.org/10.1016/j.compstruct.2008.08.011.
[37] Vosoughi, A., Darabi, A. and Forkhorji, H.D., 2017. Optimum stacking sequences of thick laminated composite plates for maximizing buckling load using FE-GAs-PSO. Composite Structures, 159(1), pp.361-367. doi.org/10.1016/j.compstruct.2016.09.085.
[38] Ehsani, A. and Rezaeepazhand, J., 2016. Stacking sequence optimization of laminated composite grid plates for maximum buckling load using genetic algorithm. International Journal of Mechanical Sciences, 119(1), pp.97-106. doi.org/10.1016/j.ijmecsci.2016.09.028.
[39] Chen, Q. and Qiao, P., 2021. Buckling and post-buckling of rotationally restrained laminated composite plates under shear. Thin-Walled Structures, 161(1), p.107435. doi.org/10.1016/j.tws.2021.107435.
[40] Bert, C.W. and Malik, M., 1997. On the buckling characteristics of symmetrically laminated cross-ply plates. Mechanics of Composite Materials and Structures, 4(1), pp. 39-67. doi.org/10.1080/10759419708945874.
[41] Weaver, P.M. and Nemeth, M.P., 2007. Bounds on flexural properties and buckling response for symmetrically laminated composite plates. Journal of Engineering Mechanics, 133(11), pp.1178-1191. doi.org/10.1061/(ASCE)07339399(2007)133:11(1178).