This study examines the free vibration behavior of composite laminated plates featuring various delaminated regions and stacking sequences. Utilizing the first-order shear deformation theory (FSDT) in combination with the finite element method, the natural frequencies of these plates are analyzed. Specifically, the investigation considers laminated plates with different numbers, sizes, and geometric arrangements of delaminated regions across several stacking sequences. The numerical results reveal notable trends in how natural frequencies vary and how delamination size affects them, highlighting a strong dependence on the stacking sequence of the layers. Furthermore, the findings demonstrate that the impact of multiple delaminated regions on the natural frequencies is less significant than the cumulative effect of these delaminations concentrated in a single location, with this discrepancy influenced by the frequency order and stacking configurations.
Senthil, K., Arockiarajan, A., Palaninathan, R., Santhosh, B., & Usha, K. M., 2013. Defects in composite structures: Its effects and prediction methods – A comprehensive review. Composite Structures, 106, pp. 139–149.
Krueger, R., & O’Brien, T. K., 2001. A shell/3D modeling technique for the analysis of delaminated composite laminates. Composites Part A: Applied Science and Manufacturing, 32(1), pp. 25–44. https://doi.org/10.1016/S1359-835X(00)00133-0
Caron, J.F., Diaz, A.D., Carreira, R. P., Chabot, A., & Ehrlacher, A., 2006. Multi-particle modeling for the prediction of delamination in multi-layered materials. Composites Science and Technology, 66(6) pp. 755-765.
Saeedi, N., Sab, K., & Caron, J. F., 2012. Delaminated multilayered plates under uniaxial extension. Part II: Efficient layerwise mesh strategy for the prediction of delamination onset. International Journal of Solids and Structures, 49(26), pp. 3727–3740. https://doi.org/10.1016/J.IJSOLSTR.2012.08.003
Mallikarjuna, & Kant, T., 1988. Dynamics of laminated composite plates with a higher order theory and finite element discretization. Journal of Sound and Vibration, 126(3), 463–475.
Zou, Y., Tong, L., & Steven, G. P., 2000. Vibration-Based Model-Dependent Damage (Delamination) Identification and Health Monitoring for Composite Structures — A Review. Journal of Sound and Vibration, 230(2), pp. 357–378.
Ye, N., Su, C., & Yang, Y., 2021. Free and Forced Vibration Analysis in Abaqus Based on the Polygonal Scaled Boundary Finite Element Method. Advances in Civil Engineering, 2021(1), p.7664870.
Della, C. N., & Shu, D., 2007. Vibration of Delaminated Composite Laminates: A Review. Applied Mechanics Reviews, 60(1), pp. 1–20.
Barbero, E. J., & Reddy, J. N., 1991. Modeling of delamination in composite laminates using a layer-wise plate theory. International Journal of Solids and Structures, 28(3), pp. 373-388.
Moorthy CMD, Reddy JN., 1998. Modelling of laminates using a layerwise element with enhanced strains. J. Numer. Meth. Eng., 43(4), pp. 755–779.
Ju, F., Lee, H.P., & Lee, K.H., 1995. Finite element analysis of free vibration of delaminated composite plates. Composites Engineering, 5(2), pp. 195-209.
Kim, H.S., Chattopadhyay, A., and Ghoshal, A., 2003. Characterization of delamination effect on composite laminates using a new generalized layerwise approach. Computers and Structures, 81(15), pp. 1555-1566.
Hu, N., Fukunaga, H., Kameyama, M., Aramaki, Y., and Chang, F. K., 2002. Vibration analysis of delaminated composite beams and plates using a higher-order finite element. International Journal of Mechanical Sciences, 44(7), pp. 1479-1503.
Yam, L.H., Wei, Z., Cheng, L., and Wong, W.O., 2004. Numerical analysis of multi-layer composite plates with internal delamination. Computers and Structures, 82(7–8), pp. 627-637. https://doi.org/10.1016/j.compstruc.2003.12.003
Kuo, S.Y., 2011. Effect of delamination on natural frequencies of rectangular laminates. Journal of Aeronautics, Astronautics and Aviation, 43(3), pp. 209-218.
Hammami, M., El Mahi, A., Karra, C., & Haddar, M., 2016. Experimental analysis of the linear and nonlinear behaviour of composites with delaminations. Applied Acoustics, 108, 31-39. https://doi.org/10.1016/j.apacoust.2015.10.026
Khazaee, M., Nobari, A.S., & Aliabadi, M. H. F., 2018. Experimental investigation of delamination effects on modal damping of a CFRP laminate, using a statistical rationalization approach. In Vibration-Based Techniques for Damage Detection and Localization in Engineering Structures, (pp. 75-103). https://doi.org/10.1142/9781786344977_0003
He, Y., Xiao, Y., & Su, Z., 2019. Effects of surface contact on the dynamic responses of delaminated composite plates. Composite Structures, 229, 111378.
Yang, C., Huang, B., Guo, Y., & Wang, J., 2021. Characterization of delamination effects on free vibration and impact response of composite plates resting on visco-Pasternak foundations. International Journal of Mechanical Sciences, 212, 106833.
Kumar, S.K., Harursampath, D., Carrera, E., Cinefra, M., & Valvano, S., 2018. Modal analysis of delaminated plates and shells using Carrera Unified Formulation–MITC9 shell element. Mechanics of Advanced Materials and Structures, 25(8), pp. 681-697.
Dey, S., & Karmakar, A., 2012. Effect of location of delamination on free vibration of cross-ply conical shells. Shock and Vibration, 19(4), pp. 679-692.
De Menezes, V. G. S., Souza, G. S. C., Vandepitte, D., Tita, V., & de Medeiros, R., 2021. Defect and damage detection in filament wound carbon composite cylinders: A new numerical-experimental methodology based on vibrational analyses. Composite Structures, 276, 114548.
He, M., Ramakrishnan, K. R., Wang, Y., Zhang, Z., & Fu, J., 2022. A combined global-local approach for delamination assessment of composites using vibrational frequencies and FBGs. Mechanical Systems and Signal Processing, 167, 108577.
Joy, E. J., Biju, N., & Menon, A. S., 2019. Delamination detection in composite laminates using ensemble of surrogates. Materials Today: Proceedings, 46,9597-9603.
Lim, D. K., Mustapha, K. B., & Pagwiwoko, C. P., 2021. Delamination detection in composite plates using random forests. Composite Structures, 278, 114676.
Tong, H., Pan, J., Singh, H. K., Luo, W., Zhang, Z., & Hui, D., 2021. Delamination detection in composite laminates using improved surrogate-assisted optimization. Composite Structures, 277,114622.
Maurya, M., Sadarang, J., Panigrahi, I., & Dash, D., 2022. Detection of delamination in carbon fibre reinforced composite using vibration analysis and artificial neural network. Materials Today: Proceedings, 49, 517-522.
Zhang, Z., He, M., Liu, A., Singh, H.K., Ramakrishnan, K.R., Hui, D., Shankar, K., & Morozov, E.v., 2018. Vibration-based assessment of delaminations in FRP composite plates. Composites Part B: Engineering, 144, 254-266.
Sha, G., Cao, M., Radzieński, M., & Ostachowicz, W., 2019. Delamination-induced relative natural frequency change curve and its use for delamination localization in laminated composite beams. Composite Structures, 230, 111501.
Gomes GF, Mend´ez YAD, da Silva Lopes Alexandrino P, da Cunha SS, Ancelotti AC., 2018. The use of intelligent computational tools for damage detection and identification with an emphasis on composites–a review. Compos Struct, 196, pp. 44–54.
Alkayem NF, Cao M, Zhang Y, Bayat M, Su Z., 2018. Structural damage detection using finite element model updating with evolutionary algorithms: a survey. Neural Comput Appl, 30(2), 389–411.
Gordan M, Razak HA, Ismail Z, Ghaedi K.,2017. Recent developments in damage identification of structures using data mining. Latin American Journal of Solids and Structures, 14(13), pp. 2373–2401.
Nag A, Mahapatra DR, Gopalakrishnan S.,2002. Identification of delamination in composite beams using spectral estimation and a genetic algorithm. Smart Mater Struct, 11(6), 899–908.
Krawczuk M, Ostachowicz W., 2002. Identification of delamination in composite beams by genetic algorithm. Science and Engineering of Composite Materials; 10, pp. 147–56.
Xia, S., Wang, Z., Lin, C., & Xu, H., 2024. Vibration Analysis of Laminated Composite Plates with Delamination Damage. In Fu (Ed.), Asia-Pacific International Symposium on Aerospace Technology (APISAT 2023) Proceedings (pp. 833–842). Springer. 3998-1_69
Krawczuk, M., Ostachowicz, W., & Żak, A., 2023. Natural vibration frequencies of delaminated composite beams. Computer Assisted Methods in Engineering and Science, 3(3), 233–243.
Taghavian, H. and Ghasemi, A. R. (2026). Statistical Analysis of Delamination Effect on Natural Frequency of Composite Laminated Plate. Mechanics of Advanced Composite Structures, 13(1), 129-142. doi: 10.22075/macs.2025.36174.1776
MLA
Taghavian, H. , and Ghasemi, A. R. . "Statistical Analysis of Delamination Effect on Natural Frequency of Composite Laminated Plate", Mechanics of Advanced Composite Structures, 13, 1, 2026, 129-142. doi: 10.22075/macs.2025.36174.1776
HARVARD
Taghavian, H., Ghasemi, A. R. (2026). 'Statistical Analysis of Delamination Effect on Natural Frequency of Composite Laminated Plate', Mechanics of Advanced Composite Structures, 13(1), pp. 129-142. doi: 10.22075/macs.2025.36174.1776
CHICAGO
H. Taghavian and A. R. Ghasemi, "Statistical Analysis of Delamination Effect on Natural Frequency of Composite Laminated Plate," Mechanics of Advanced Composite Structures, 13 1 (2026): 129-142, doi: 10.22075/macs.2025.36174.1776
VANCOUVER
Taghavian, H., Ghasemi, A. R. Statistical Analysis of Delamination Effect on Natural Frequency of Composite Laminated Plate. Mechanics of Advanced Composite Structures, 2026; 13(1): 129-142. doi: 10.22075/macs.2025.36174.1776