Study on Thermal, Mechanical and Dynamic Properties of Epoxy Matrix with Hybrid of ‎Nanoclay/Carbon Nanotube

Document Type : Research Article

Authors

Mechanical Engineering Department, Razi University, Kermanshah, 6714414971, Iran

Abstract

Hybrid polymer nanocomposites (HPNCs) represent a promising class of materials for various engineering applications. This study investigates the impact of combining nano clay (NC) and carbon nanotubes (CNTs) on the thermal and mechanical properties of epoxy matrices. Mechanical and thermal properties of HPNCs were characterized using TGA, DMTA, TMA, and SEM, and tested for flexural, tensile, shear, hot plate, and modal analyses. The obtained results were compared with similar theoretical ones from the Halpin-Tsai method. Results indicate that incorporating up to 5 wt % of NC alongside epoxy/CNT nanocomposites enhances CNT dispersion, leading to improvements in degradation temperature (+1%), glass transition temperature (+10%), thermal stability (50% increase in residual ash), storage modulus in the plastic range (+39%), transverse bond density (+41%), thermal expansion coefficient (-17%), flexural strength (+17%), elastic modulus (+85%), shear modulus (+11%), and natural frequency of the beam (+42%).

Keywords

Main Subjects


[1]   Liu, L. and Grunlan, J.C., 2007. Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites. Advanced Functional Materials, 17, pp. 2343–2348
[2]   Liu, L. and Grunlan, J.C., 2008. Carbon nanotube dispersion in epoxy nanocomposites with clay. Materials Research Society Symposium Proceedings, pp. 203–208.
[3]   Choi, W.S. and Ryu, S.H., 2014. Synergic effect of clay on the mechanical and electrical properties of SWCNT/epoxy composites. Elastomers and Composites, 49(3), pp. 204–209.
[4]   Ayatollahi, M.R., Shokrieh, M.M., Shadlou, S., Kefayati, A.R. and Chitsazzadeh, M., 2011. Mechanical and electrical properties of epoxy/multi-walled carbon nanotube/nanoclay nanocomposites. Iranian Polymer Journal, 20(10), pp. 835–843.
[5]   Wang Z., Hu H.,Cheng Y., 2008. Fabrication and mechanical properties of exfolided clay-CNT/epoxy nanocomposites. Materials Science and Engineering A, pp. 481-487. 
[6]   Nazem Salimi, M., Torabi Merajin, M. and Besharati Givi, M.K., 2017. Enhanced mechanical properties of multifunctional multiscale glass/carbon/epoxy composite reinforced with carbon nanotubes and simultaneous carbon nanotubes/nanoclays. Journal of Composite Materials, pp. 745–758.
[7]   Hosur, M., Mahdi, T.H. and Islam, M.E., 2017. Mechanical and viscoelastic properties of epoxy nanocomposites reinforced with carbon nanotubes, nanoclay, and binary nanoparticles. Journal of Reinforced Plastics and Composites, 36(9), pp. 1–18.
[8]   Nguyen, T.A., 2020. Mechanical and flame-retardant properties of epoxy Epikote 240/epoxidized linseed oil composites using fiber-glass. Mehran University Research Journal of Engineering and Technology, 39(1), pp. 9-20.
[9]   Nguyen, T.A., Nguyen, Q.T. and Pham, T.M.H., 2021. Development of epoxy-based nanocomposites with improved mechanical properties through a combination of carbon nanotubes and nanoclay. Mechanics of Advanced Composite Structures, 4, pp. 15-28.
[10] Sausi M., Benelfellah A., Hocine N., 2020, Clays and carbon nanotubes as hybrid nanofillers in thermoplastic based nanocomposite- A review. Applied Clay Science, 185, 105408.
[11] Maurya, M., et al., 2023. Effect of carbon Nanotube agglomeration on the mechanical Properties of hybrid composites.  Mechanics of Advancec composite structures, 2, pp. 45-56.
[12] Rezaei Qazviniha, H. and Piri, M., 2023. The influence of nanoparticle concentration on the mechanical properties of alumina/novolac nanocomposites. Mechanics of Advanced Composite Structures, 11, pp. 29-40.
[13] Afshin, S. and Yas, M.H., 2020. Dynamic and buckling analysis of polymer hybrid composite beam with variable thickness. Applied Mathematics and Mechanics, 41, pp. 785–804.
[14] Yas, M.H. and Afshin, S., 2021. Effect of general thermal boundary conditions on the dynamic and buckling of polymeric hybrid nanocomposite beam with variable thickness. Journal of the Institution of Engineers (India), 102(2), pp. 1-8.
[15] Geng, Y., Liu, M. Y., Li, J., Shi, X. M. & Kim, J. K., 2008. Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 39(12), pp. 1876–1883.
[16] Dittrich, B., Wartig K., Mulhaupt, R., Schartel B., 2014, Flame retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymer, 6(11), pp.2875-2895.
[17] Nguyen, T.A., Nguyen, Q.T. and Bach, T.P., 2019. Mechanical Properties and Flame Retardancy of Epoxy Resin/Nanoclay/Multiwalled Carbon Nanotube Nanocomposites. Journal of Chemistry, 2019(1), p.3105205. 
[18] Nguyen, T.A., Pham, T.M.H., Dang, T.H., Do, T.H. and Nguyen, Q.T., 2020. Study on mechanical properties and fire resistance of epoxy nanocomposite reinforced with environmentally friendly additive: Nanoclay I.30E. Journal of Chemistry, 2020(1), p.3460645.
[19] Zi-rui, J., et al., 2018. Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chinese Physics B, 27(11), pp. 1–7.
[20] Gojny, F.H., et al., 2006.  Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer, 47(6), pp. 2036–2045.
[21] Ali, A., Koloor, S.S.R., Alshehri, A.H. and Arockiarajan, A., 2023. Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures–A review. Journal of Materials Research and Technology, 24, pp.6495-6521.
[22] Dehrooyeh, S., Vaseghi, M., Sohrabian, M., Sameezadeh, M., 2021. Glass fiber/Carbon nanotube/Epoxy hybrid composites: Achieving superior mechanical properties, Mechanics of Materials, 161, p. 104025.
[23] Zhang, B.W., Phang, I.Y. and Liu, T., 2011. Growth of carbon nanotubes on clay: Unique nanostructured filler for high-performance polymer nanocomposites. The Journal of Physical Chemistry B,  18(1), pp. 3392–3399.
[24] Salimi, M., Torabi, M., Givi, M., 2016. Enhanced mechanical properties of multifunctional multiscale glass/carbon/ epoxy composite reinforced with carbon nanotubes and simultaneous carbon nanotubes/nanoclays. Journal Composite Materials, 51(6), pp. 745-758.
[25] Zhang,  L.,  wu, D.,  Hanyun, Z.,  Zhu, D., 2023. Fast and synergetic fatigue life prediction of short fiber reinforced polymer composites from monotonic and cyclic loading behavior. Composites science and technology, 241, 110121.
[26] Shan, L., Tan, C.Y., Shen, X., Ramesh S., Zarei, M.S., Kolachi, R., 2023. The effect of nano-additives on the mechanical impact, vibration and buckling/ post buckling properties of composites-A review. Journal of Materials Research and Technology, 24, pp.7570-7598.
[27] Ezmizadeh, E., Naderi, G., Yousefi, A., Milone, C., 2016. Thermal and Morphological Study of Epoxy Matrix with Chemical and Physical Hybrid of Nanoclay/Carbon Nanotube. JOM, 68, pp. 362-373.
[28] Romano V., Naddeo C., Guadagno, L. and Vertuccio, L., 2014. Thermal conductivity of epoxy nanocomposites filled with MWCNT and hydrotalcite clay: A preliminary study. AIP Conference Proceedings, 1599, pp. 410–413.
[29] Ray, S. S., 2013. Environmentally Friendly Polymer Nanocomposites: Types, Processing and Properties. Elsevier. DOI:10.1533/9780857097828
[30] Boroujeni, A.,  Tehrani, M.,  Nelson, A.,  AL-Haik, M., 2014. Hybrid carbon nanotube–carbon fiber composites with improved in-plane mechanical properties. Composites Part B: Engineering, 66, pp. 475-483.
[31] Pinto, D., Bernardo, L., Amaro, A. and Lopes, S., 2015. Mechanical properties of epoxy nanocomposites using titanium dioxide as reinforcement - A review. Construction and Building Materials, 95, pp. 506–524.