[1] He, Y., Xu, H., Liu, Y., Chen, Y. & Ji, Z., 2022. Strengthening mechanism of b4c@ apc/al matrix composites reinforced with bimodal-sized particles prepared by hydrothermal carbonized deposition on chips. Journal of Materials Science & Technology, 123, pp.60-69.
[2] Guo, B., Song, M., Zhang, X., Cen, X., Li, W., Chen, B. & Wang, Q., 2020. Achieving high combination of strength and ductility of al matrix composite via in-situ formed ti-al3ti core-shell particle. Materials Characterization, 170, pp.110666.
[3] Han, Y., Liu, J., Wang, Q., Lin, C., Wang, E., Wu, W. & Zhang, M., 2022. Effect of volume fraction ratio of ti to al3ti on mechanical and tribological performances of the in situ ti–al3ti core–shell structured particle reinforced al matrix composite. Journal of Materials Research, 37(21), pp.3695-3707.
[4] Ghods, H., Manafi, S. & Borhani, E., 2015. Effect of particle size on the structural and mechanical properties of al–aln nanocomposites fabricated by mechanical alloying. Mechanics Of Advanced Composite Structures, 2(2), pp.73-78.
[5] Liu, W., Ke, Y., Sugio, K., Liu, X., Guo, Y. & Sasaki, G., 2022. Microstructure and mechanical properties of al2o3-particle-reinforced al-matrix composite sheets produced by accumulative roll bonding (arb). Materials Science and Engineering: A, 850, pp.143574.
[6] Hu, J., Zhang, J., Luo, G., Sun, Y., Shen, Q. & Zhang, L., 2021. Effectively enhanced strength by interfacial reactions in in-situ carbon reinforced al matrix composites. Vacuum, 188, pp.110148.
[7] Han, T., Wang, F., Li, J., Zhao, N. & He, C., 2021. Simultaneously enhanced strength and ductility of al matrix composites through the introduction of intragranular nano-sized graphene nanoplates. Composites Part B: Engineering, 212, pp.108700.
[8] Zhang, X. & Chen, T., 2021. Simultaneously enhancing the strength and ductility of particulate-reinforced aluminum matrix composite by aging treatment. Journal of Materials Research, 36(17), pp.3445-3459.
[9] Altunpak, Y. & Akbulut, H., 2017. Mechanical properties of a squeeze-cast 2124 al composite reinforced with alumina short fibre. Metallurgical Research & Technology, 114(5), pp.509.
[10] Azadi, M. & Kamali, F., 2020. A comparative study on the microstructure and mechanical properties of al-si-cu/1wt% ncp composites after t6 heat treatment. Mechanics Of Advanced Composite Structures, 7(1), pp.129-136.
[11] Hsieh, C.-T., Ho, Y.-C., Wang, H., Sugiyama, S. & Yanagimoto, J., 2020. Mechanical and tribological characterization of nanostructured graphene sheets/a6061 composites fabricated by induction sintering and hot extrusion. Materials Science and Engineering: A, 786, pp.138998.
[12] Şenel, M.C. & Mahmutoğlu, Ü., 2022. Effect of induction heat treatment on the mechanical properties of si3n4–graphene-reinforced al2024 hybrid composites. Bulletin of Materials Science, 45(1), pp.48.
[13] Guan, H.D., Li, C.J., Peng, Y.Z., Gao, P., Feng, Z.X., Liu, Y.C., Li, J.N., Tao, J.M. & Yi, J.H., 2022. Fe-based metallic glass particles carry carbon nanotubes to reinforce al matrix composites. Materials Characterization, 189, pp.112006.
[14] Rezaei, M., Albooyeh, A., Chachei, R. & Malahi, P., 2022. Effect of the spark plasma sintering temperature on the microstructure and mechanical properties of a ceramic/metallic glass reinforced hybrid composite. Journal of Composite Materials, 56(17), pp.2779-2788.
[15] Jayalakshmi, S. & Gupta, M., 2015. Metallic amorphous alloy reinforcements in light metal matrices. Springer.
[16] Wang, Z., Xie, M.S., Zhang, W.W., Yang, C., Xie, G.Q. & Louzguine-Luzgin, D.V., 2020. Achieving super-high strength in an aluminum based composite by reinforcing metallic glassy flakes. Materials Letters, 262, pp.127059.
[17] Khan, A., Reddy, M.M., Reddy Matli, P., Shakoor, R.A. & Gupta, M., 2021. Development and properties of amorphous particles reinforced al matrix nanocomposites. In: BRABAZON, D. (ed.) Encyclopedia of materials: Composites. Oxford: Elsevier, pp.96-108.
[18] Rezaei, M., Shabestari, S. & Razavi, S., 2019. Investigation on equal-channel angular pressing-induced grain refinement in an aluminum matrix composite reinforced with al-cu-ti metallic glass particles. Journal of Materials Engineering and Performance, 28(5), pp.3031-3040.
[19] Gupta, P., Majumdar, B., Katakareddi, G. & Yedla, N., 2021. Cu50zr50 metallic glass flakes reinforced al composites: Experimental and molecular dynamics nanoindentation response of matrix, interface, and reinforcement. Journal of Non-Crystalline Solids, 564, pp.120837.
[20] He, T., Lu, T., Ciftci, N., Uhlenwinkel, V., Chen, W., Nielsch, K. & Scudino, S., 2020. Interfacial characteristics and mechanical asymmetry in al2024 matrix composites containing fe-based metallic glass particles. Materials Science and Engineering: A, 793, pp.139971.
[21] Xie, X., Yin, S., Raoelison, R.-N., Chen, C., Verdy, C., Li, W., Ji, G., Ren, Z. & Liao, H., 2021. Al matrix composites fabricated by solid-state cold spray deposition: A critical review. Journal of Materials Science & Technology, 86, pp.20-55.
[22] Yadav, M., Kumaraswamidhas, L.A. & Singh, S.K., 2022. Investigation of solid particle erosion behavior of al-al2o3 and al-zro2 metal matrix composites fabricated through powder metallurgy technique. Tribology International, 172, pp.107636.
[23] Zheng, R., Yang, H., Liu, T., Ameyama, K. & Ma, C., 2014. Microstructure and mechanical properties of aluminum alloy matrix composites reinforced with fe-based metallic glass particles. Materials & Design, 53, pp.512-518.
[24] Wang, Z., Tan, J., Scudino, S., Sun, B., Qu, R., He, J., Prashanth, K., Zhang, W., Li, Y. & Eckert, J., 2014. Mechanical behavior of al-based matrix composites reinforced with mg58cu28. 5gd11ag2. 5 metallic glasses. Advanced Powder Technology, 25(2), pp.635-639.
[25] Guan, H.D., Li, C.J., Gao, P., Yi, J.H., Bao, R., Tao, J.M., Fang, D. & Feng, Z.X., 2020. Fe-based metallic glass particles reinforced al-7075 matrix composites prepared by spark plasma sintering. Advanced Powder Technology, 31(8), pp.3500-3506.
[26] Yu, P., Kim, K.B., Das, J., Baier, F., Xu, W. & Eckert, J., 2006. Fabrication and mechanical properties of ni–nb metallic glass particle-reinforced al-based metal matrix composite. Scripta Materialia, 54(8), pp.1445-1450.
[27] Rezaei, M.R., Shabestari, S.G. & Razavi, S.H., 2018. Effect of ecap consolidation process on the interfacial characteristics of al-cu-ti metallic glass reinforced aluminum matrix composite. Composite Interfaces, 25(8), pp.669-679.
[28] Chen, Y., Hu, Z., Xu, Y., Wang, J., Schützendübe, P., Huang, Y., Liu, Y. & Wang, Z., 2019. Microstructure evolution and interface structure of al-40 wt% si composites produced by high-energy ball milling. Journal of Materials Science & Technology, 35(4), pp.512-519.
[29] Doğan, K., Özgün, M.İ., Sübütay, H., Salur, E., Eker, Y., Kuntoğlu, M., Aslan, A., Gupta, M.K. & Acarer, M., 2022. Dispersion mechanism-induced variations in microstructural and mechanical behavior of cnt-reinforced aluminum nanocomposites. Archives of Civil and Mechanical Engineering, 22(1), pp.55.
[30] Hong, J., Zou, J., Chen, W., Jiang, C., Yuan, H., Huang, F., Liu, W. & Zhang, X., 2023. Effect of ball milling time on the microstructure and properties of cu(al)-tic0.5 composites. Journal of Materials Engineering and Performance, 32(13), pp.5956-5966.
[31] Sankaranarayanan, S., Jayalakshmi, S. & Gupta, M., 2011. Effect of ball milling the hybrid reinforcements on the microstructure and mechanical properties of mg–(ti+ n-al2o3) composites. Journal of alloys and compounds, 509(26), pp.7229-7237.
[32] Salur, E., Aslan, A., Kuntoğlu, M. & Acarer, M., 2021. Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized y2o3 particle reinforced aluminum matrix composites produced by powder metallurgy route. Advanced Powder Technology, 32(10), pp.3826-3844.
[33] Zhu, W., Liu, W., Ma, Y., Cai, Q., Wang, J. & Duan, Y., 2021. Microstructural characteristics, mechanical properties and interfacial formation mechanism of tungsten alloy/steel composite structure fabricated by hip co-sintering. Materials & Design, 211, pp.110127.
[34] Chen, H., Mi, G., Li, P. & Cao, C., 2022. Excellent high-temperature strength and ductility of graphene oxide reinforced high-temperature titanium alloy matrix composite fabricated by hot isostatic pressing and heat treatment. Composites Communications, 30, pp.101077.
[35] Edalati, K., Ashida, M., Horita, Z., Matsui, T. & Kato, H., 2014. Wear resistance and tribological features of pure aluminum and al–al2o3 composites consolidated by high-pressure torsion. Wear, 310(1), pp.83-89.
[36] Korznikova, G., Czeppe, T., Khalikova, G., Gunderov, D., Korznikova, E., Litynska-Dobrzynska, L. & Szlezynger, M., 2020. Microstructure and mechanical properties of cu-graphene composites produced by two high pressure torsion procedures. Materials Characterization, 161, pp.110122.
[37] Nie, Q., Chen, G., Wang, B., Yang, L., Zhang, J. & Tang, W., 2022. Effect of invar particle size on microstructures and properties of the cu/invar bi-metal matrix composites fabricated by sps. Journal of Alloys and Compounds, 891, pp.162055.
[38] Souza, R.M., Ordoñez, M.F.C., Mezghani, S., Crequy, S., Fukumasu, N.K., Machado, I.F. & El Mansori, M., 2020. Orthogonal cut of sps-sintered composites with ferrous matrix and femos particles: Numerical and experimental analysis. Tribology International, 149, pp.105750.
[39] Liu, R., Wang, W., Chen, H., Tan, M. & Zhang, Y., 2018. Microstructure evolution and mechanical properties of micro-/nano-bimodal size b4c particles reinforced aluminum matrix composites prepared by sps followed by her. Vacuum, 151, pp.39-50.
[40] Mohammadtaheri, M., Bozorg, M., Yazdani, A. & Salehi, M., 2022. Fabrication of ti–al2o3–ha composites by spark plasma sintering and its properties for medical applications. Journal of Materials Research, 37(16), pp.2571-2580.
[41] Zeng, W., Qin, W., Gu, C., Sun, H., Ma, Y. & Cao, X., 2019. Microstructure and properties of pure aluminum prepared by spark plasma sintering. Metallurgical Research & Technology, 116(3), pp.312.
[42] Rezaei, M., Albooyeh, A., Shayestefar, M. & Shiraghaei, H., 2020. Microstructural and mechanical properties of a novel al-based hybrid composite reinforced with metallic glass and ceramic particles. Materials Science and Engineering: A, 786, pp.139440.
[43] Kvashnin, V.I., Gerasimov, E.Y., Novoselov, A.N., Legan, M.A., Lukyanov, Y.L., Bataev, I.A., Emurlaev, K.I., Bokhonov, B.B. & Dudina, D.V., 2024. Structural characteristics and mechanical properties of partially reacted and non-reacted al–fe66cr10nb5b19 metallic glass composites. Vacuum, 224, pp.113201.
[44] Neamţu, B., Chicinaş, H., Marinca, T., Isnard, O., Chicinaş, I. & Popa, F., 2016. Synthesis of amorphous fe75si20− xmxb5 (m= ti, ta, zr) via wet mechanical alloying and its structural, thermal and magnetic characterisation. Advanced Powder Technology, 27(2), pp.461-470.
[45] Williamson, G. & Hall, W., 1953. X-ray line broadening from filed aluminium and wolfram. Acta metallurgica, 1(1), pp.22-31.
[46] Warren, B. 1969. X-ray diffraction, courier corporation. Reading, MA, Addison-Wesley Publishing Company.
[47] Zhao, Y., Liao, X., Jin, Z., Valiev, R. & Zhu, Y.T., 2004. Microstructures and mechanical properties of ultrafine grained 7075 al alloy processed by ecap and their evolutions during annealing. Acta Materialia, 52(15), pp.4589-4599.
[48] Sadeghi, B., Cavaliere, P. & Castro, M.M., 2024. Optimizing ball milling parameters for controlling the internal microstructure and tensile characteristics of a laminated carbon nanotube/aluminum-copper-magnesium composite. Journal of Alloys and Compounds, 984, pp.173927.
[49] Tzamtzis, S., Barekar, N., Babu, N.H., Patel, J., Dhindaw, B. & Fan, Z., 2009. Processing of advanced al/sic particulate metal matrix composites under intensive shearing–a novel rheo-process. Composites Part A: Applied Science and Manufacturing, 40(2), pp.144-151.
[50] Haslam, M.D. & Raeymaekers, B., 2013. A composite index to quantify dispersion of carbon nanotubes in polymer-based composite materials. Composites Part B: Engineering, 55, pp.16-21.
[51] Curtis, J.T. & Mcintosh, R.P., 1950. The interrelations of certain analytic and synthetic phytosociological characters. Ecology, 31(3), pp.434-455.
[52] Rezaei, M., Nazemnezhad, R. & Farahmandrad, S., 2023. Effects of the si element on the microstructure and mechanical properties of an al/fmg/sic hybrid composite. Materials Chemistry and Physics, 309, pp.128343.
[53] Ertugrul, O., He, T., Shahid, R.N. & Scudino, S., 2019. Effect of heat treatment on microstructure and mechanical properties of al 2024 matrix composites reinforced with ni60nb40 metallic glass particles. Journal of Alloys and Compounds, 808, pp.151732.
[54] Xie, M.S., Wang, Z., Zhang, G.Q., Yang, C., Zhang, W.W. & Prashanth, K.G., 2020. Microstructure and mechanical property of bimodal-size metallic glass particle-reinforced al alloy matrix composites. Journal of Alloys and Compounds, 814, pp.152317.
[55] Qin, S., Chen, C., Zhang, G., Wang, W. & Wang, Z., 1999. The effect of particle shape on ductility of sicp reinforced 6061 al matrix composites. Materials Science and Engineering: A, 272(2), pp.363-370.
[56] Abolkassem, S., Elsayed, A., Kariya, S., Umeda, J. & Kondoh, K., 2023. Influence of thermo-mechanical processing on microstructure and properties of bulk metallic glassy alloys-reinforced al matrix composites prepared by powder metallurgy. Journal of Materials Research and Technology, 27, pp.8197-8208.
[57] An, X., Li, F., Kan, L., Zhang, W., Wang, J., Jin, X., Wang, Y., Li, J., Zhu, H., Qi, W., Wei, W. & Sun, W., 2025. High entropy alloy particle reinforced 6061 aluminum matrix composites: An investigation of mechanical strength and thermoelectric properties. Journal of Alloys and Compounds, 1010, pp.177424.
[58] Sarkar, A., Bhowmik, A. & Suwas, S., 2009. Microstructural characterization of ultrafine-grain interstitial-free steel by x-ray diffraction line profile analysis. Applied Physics A, 94, pp.943-948.
[59] Miller, W. & Humphreys, F., 1991. Strengthening mechanisms in particulate metal matrix composites. Scripta metallurgica et materialia, 25 (1), pp.33-38.
[60] Guan, L., Cao, H., Su, Y., Zhang, D., Liu, K., Hua, A., Peng, Y., Zhao, H. & Ouyang, Q., 2024. Enhanced strength–ductility synergy of sic particles reinforced aluminum matrix composite via dual configuration design of reinforcement and matrix. Materials & Design, 245, pp.113186.