[1] Vlot, A. and Gunnink, J.W. eds., 2011. Fibre metal laminates: an introduction. Springer Science & Business Media.
[2] Giasin, K., Hawxwell, J., Sinke, J., Dhakal, H., Köklü, U. and Brousseau, E., 2020. The effect of cutting tool coating on the form and dimensional errors of machined holes in GLARE® fibre metal laminates. The International Journal of Advanced Manufacturing Technology, 107, pp. 2817-2832.
[3] Giasin, K., 2018. The effect of drilling parameters, cooling technology, and fiber orientation on hole perpendicularity error in fiber metal laminates. The International Journal of Advanced Manufacturing Technology, 97, pp. 4081-4099.
[4] Giasin, K. and Ayvar-Soberanis, S., 2017. Microstructural investigation of drilling-induced damage in fibre metal laminates constituents. Composites Part A: Applied Science and Manufacturing, 97, pp. 166-178.
[5] Giasin, K. and Ayvar-Soberanis, S., 2017. An Investigation of burrs, chip formation, hole size, circularity and delamination during drilling operation of GLARE using ANOVA. Composite Structures, 159, pp. 745-760.
[6] Brinksmeier, E., Fangmann, S. and Rentsch, R., 2011. Drilling of composites and resulting surface integrity. CIRP annals, 60(1), pp. 57-60.
[7] Voss, R., Henerichs, M. and Kuster, F., 2016. Comparison of conventional drilling and orbital drilling in machining carbon fibre reinforced plastics (CFRP). Cirp Annals, 65(1), pp. 137-140.
[8] Geier, N. and Szalay, T., 2017. Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP). Measurement, 110, pp. 319-334.
[9] Wang, G.D., Melly, S.K. and Li, N., 2018. Experimental studies on a two-step technique to reduce delamination damage during milling of large diameter holes in CFRP/Al stack. Composite Structures, 188, pp. 330-339.
[10] Qin, X., Wang, B., Wang, G., Li, H., Jiang, Y. and Zhang, X., 2014. Delamination analysis of the helical milling of carbon fiber-reinforced plastics by using the artificial neural network model. Journal of Mechanical Science and Technology, 28, pp. 713-719.
[11] Sadek, A., Meshreki, M. and Attia, M.H., 2012. Characterization and optimization of orbital drilling of woven carbon fiber reinforced epoxy laminates. CIRP annals, 61(1), pp. 123-126.
[12] Chen, Q.L., Chen, X.M., Duan, Z.H. and Cun, W.Y., 2015. Research on helical milling specialized tools based on the chip-splitting mechanism. Advanced Materials Research, 1061, pp. 497-506.
[13] Tyczyński, P., Lemańczyk, J., Ostrowski, R. and Ewa S´ liwa, R., 2014. Drilling of CFRP, GFRP, glare type composites. Aircraft Engineering and Aerospace Technology: An International Journal, 86(4), pp. 312-322.
[14] Giasin, K., Ayvar-Soberanis, S., French, T. and Phadnis, V., 2017. 3D finite element modelling of cutting forces in drilling fibre metal laminates and experimental hole quality analysis. Applied Composite Materials, 24, pp. 113-137.
[15] Giasin, K., Gorey, G., Byrne, C., Sinke, J. and Brousseau, E., 2019. Effect of machining parameters and cutting tool coating on hole quality in dry drilling of fiber metal laminates. Composite structures, 212, pp. 159-174.
[16] Hemant, K., Kona, A. and Bolar, G., 2020. Experimental investigation into helical hole milling of fiber metal laminates. Materials Today: Proceedings, 27, pp. 208-216.
[17] Giasin, K., Dad, A., Brousseau, E., Pimenov, D., Mia, M., Morkavuk, S. and Koklu, U., 2021. The effects of through tool cryogenic machining on the hole quality in GLARE® fibre metal laminates. Journal of Manufacturing Processes, 64, pp. 996-1012.
[18] Köklü, U., Demir, O., Avcı, A. and Etyemez, A., 2017. Drilling performance of functionally graded composite: Comparison with glass and carbon/epoxy composites. Journal of Mechanical Science and Technology, 31, pp. 4703-4709.
[19] Koklu, U., Morkavuk, S., Featherston, C., Haddad, M., Sanders, D., Aamir, M., Pimenov, D.Y. and Giasin, K., 2021. The effect of cryogenic machining of S2 glass fibre composite on the hole form and dimensional tolerances. The International Journal of Advanced Manufacturing Technology, 115(1), pp. 125-140.
[20] Beck, M.E.N., 2003. Performance Validation of Thin-film Sulfuric Acid Anodizatio n (TFSAA) on Aluminum Alloys. Naval Air Systems Command (NAVAIR).
[21] Park, S.Y., Choi, W.J., Choi, H.S., Kwon, H. and Kim, S.H., 2010. Recent trends in surface treatment technologies for airframe adhesive bonding processing: a review (1995–2008). The Journal of Adhesion, 86(2), pp. 192-221.
[22] Hartman, D.R., Greenwood, M.E. and Miller, D.M., 1994. High strength glass fibers. Moving Forward With 50 Years of Leadership in Advanced Materials., 39, pp. 521-533.