Enhancing Mechanical Properties of Polypropylene Composites Reinforced with Date Palm Fiber Using Maleic Anhydride Grafted Polypropylene as a Compatibilizer

Document Type : Research Article

Authors

1 Faculty of Mechanical Engineering, Semnan University, Semnan, 35131-19111, Iran

2 Faculty of Mechanical Engineering, Velayat University, Iranshahr, 99111-31311, Iran

Abstract

This study investigates the effects of incorporating date palm fiber (DPF), polypropylene grafted maleic anhydride (PP-g-MA), and impact-modifying masterbatch on the tensile properties of polypropylene (PP) composites. Using a design of experiments (DOE) approach and analysis of variance (ANOVA), the interactions between these components were analyzed. The tensile strength of the composites increased by up to 21.08% compared to pure PP, reaching 19.6 MPa, while the elastic modulus improved by 54.78%, reaching 2.43 GPa, at 20 wt.% DPF and 5 wt.% PP-g-MA. Although the masterbatch enhanced impact resistance, its higher concentrations reduced tensile strength by up to 31.97% compared to formulations with minimal masterbatch content. The optimal composition—20 wt.% DPF, 5 wt.% PP-g-MA, and 1 wt.% masterbatch—exhibited the best overall mechanical performance, balancing tensile strength, elastic modulus, and impact resistance. This study highlights the synergistic effects of natural fibers and polymer compatibilizers, providing a pathway for the development of sustainable, high-performance bio-composites.

Keywords

Main Subjects


  1. Boruvka M., Behalek L., Lenfeld P., Ngaowthong C., Pechociakova M., 2019. Structure-related properties of bionanocomposites based on poly(lactic acid), cellulose nanocrystals and organic impact modifier. Materials Technology, 34(3),143-156. doi:10.1080/10667857.2018.1540332
  2. Patil A., Patel A., Purohit R., 2017. An overview of Polymeric Materials for Automotive Applications. Materials Today: Proceedings, 4(2), 3807-3815. doi:10.1016/j.matpr.2017.02.278
  3. Abdelwahab MA., Rodriguez-Uribe A., Misra M., Mohanty AK., 2019. Injection molded novel biocomposites from polypropylene and sustainable biocarbon. Molecules, 24(22). doi:10.3390/molecules24224026
  4. Guezzout Z., Boublia A., Haddaoui N., 2023. Enhancing thermal and mechanical properties of polypropylene-nitrile butadiene rubber nanocomposites through graphene oxide functionalization. Journal of Polymer Research, 30(6),207. doi:10.1007/s10965-023-03585-x
  5. Maurya AK., Manik G., 2023. Advances towards development of industrially relevant short natural fiber reinforced and hybridized polypropylene composites for various industrial applications: a review. Journal of Polymer Research, 30(1). doi:10.1007/s10965-022-03413-8
  6. Hossain M.T., Shahid M.A., Mahmud N., Darda M.A., Samad A.B., 2024. Techniques, applications, and prospects of recycled polyethylene terephthalate bottle: A review. Journal of Thermoplastic Composite Materials, 37(3),1268-1286. doi:10.1177/08927057231190065
  7. Kuo CFJ., Huang CC., Ting CH., Dong MY., Lan WL., 2019. Research and development of a composite with transparent polypropene fiber Part I: a study of combining the Taguchi method with the analytic hierarchy process for masterbatch modification and toughening to enhance characteristics. Textile Research Journal, 89(3),389-400. doi:10.1177/0040517517748491
  8. AL-Oqla FM., Thakur VK., 2022. Toward chemically treated low-cost lignocellulosic parsley waste/polypropylene bio-composites for resourceful sustainable bio-products. International Journal of Environmental Science and Technology, 19(7),6681-6690. doi:10.1007/s13762-021-03601-x
  9. Zaman, H.U. and Khan, R.A., 2022. Effect of fiber surface modifications on the properties of snake grass fiber reinforced polypropylene bio-composites. Journal of Adhesion Science and Technology, 36(13),1439-1457. doi:10.1080/01694243.2021.1970397
  10. Bhuiyan, M.R., Darda, M.A., Ali, A., Talha, A.R., Hossain, M.F., Mohebbullah, M. and Islam, M.A., 2023. Heat insulating jute-reinforced recycled polyethylene and polypropylene bio-composites for energy conservation in buildings. Materials Today Communications, 37, p. 106948. doi:10.1016/j.mtcomm.2023.106948
  11. Santosh M.S., Purushotham S., Gopinathan P., et al., 2023. Natural sub-bituminous coal as filler enhances mechanical, insulation and flame retardant properties of coir–polypropylene bio-composites. Environ Geochem Health, 45(10), pp. 6955-6965. doi:10.1007/s10653-023-01489-9
  12. Yaghoobi, H. and Fereidoon, A., 2019. Preparation and characterization of short kenaf fiber-based biocomposites reinforced with multi-walled carbon nanotubes. Composites Part B: Engineering, 162, 314-322. doi:10.1016/j.compositesb.2018.11.015
  13. Ghori W., Saba N., Jawaid M., Asim M., 2018. A review on date palm (phoenix dactylifera) fibers and its polymer composites. In: IOP Conference Series: Materials Science and Engineering. doi:10.1088/1757-899X/368/1/012009
  14. Ibrahim Y.E., Adamu M., Marouf M.L., Ahmed O.S., Drmosh Q.A., Malik M.A., 2022. Mechanical Performance of Date-Palm-Fiber-Reinforced Concrete Containing Silica Fume. Buildings, 12(10), p.1642. doi:10.3390/buildings12101642
  15. Al-Oqla F.M., Alothman O.Y., Jawaid M., Sapuan S.M., Es-Saheb M.H., 2014. Processing and properties of date palm fibers and its composites. In Biomass and Bioenergy: Processing and Properties, Vol 9783319076, pp. 1-25. doi:10.1007/978-3-319-07641-6_1
  16. Kashizadeh R., Esfandeh M., Rezadoust A.M., Sahraeian R., 2019. Physico-mechanical and thermal properties of date palm fiber/phenolic resin composites. Polymer Composites, 40(9), pp. 3657-3665. doi:10.1002/pc.25228
  17. Djoudi T., Hecini M., Scida D., Djebloun Y., Djemai H., 2021. Physico-Mechanical Characterization of Composite Materials Based on Date Palm Tree Fibers. Journal of Natural Fibers, 18(6),789-802. doi:10.1080/15440478.2019.1658251
  18. Raghavendra S., Sivaram, N.M., Sadik, T. and Prabhakara, S.S., 2018. Mechanical Properties of Hybrid Composites with Date Palm Fibre Reinforcement. Advances in Materials, 7(3), pp. 78-81. doi:10.11648/j.am.20180703.14
  19. Yaghoobi H., Fereidoon A., 2018. Modeling and optimization of tensile strength and modulus of polypropylene/kenaf fiber biocomposites using Box–Behnken response surface method. Polymer Composites, 39, pp. E463-E479. doi:10.1002/pc.24596
  20. Chabira A.S., Bouremel C., Sakri A., Boutarfaia A., 2022. Synthesis and characterization of biocomposites based polypropylene/thermoplastic starch-reinforced with natural stipa tenacissima fibers and PP-g-MA. Metallurgical and Materials Engineering, 28(3), pp.487-501. doi:10.30544/858
  21. Mengual A., Juárez D., Balart R., Ferrándiz S., 2017. PE-g-MA, PP-g-MA and SEBS-g-MA compatibilizers used in material blends. Procedia Manufacturing, 13, pp. 321-326. doi:10.1016/j.promfg.2017.09.083
  22. Noureddine M., 2019. Study of composite-based natural fibers and renewable polymers, using bacteria to ameliorate the fiber/matrix interface. Journal of Composite Materials, 53(4), pp.455-461. doi:10.1177/0021998318785965
  23. Arbi, Y.S.E.M., Mahmoudi N., Djebli A., 2023. Manufacturing and testing of waste PET reinforced with sand bricks Journal of Composite Materials, 57(16), pp. 2513-2526. doi:10.1177/00219983231175203
  24. Arbi, Y.S.E.M., Bentahar, M. and Mahmoudi, N., 2024. Characterization of high-performance composite bricks fabricated from recycled HDPE/PS blends and brick powder. Materials Research Express, 11(12), p.125302. doi:10.1088/2053-1591/ad97a5
  25. Chaiwutthinan P., Suwannachot S., Larpkasemsuk A., 2018. Recycled poly (ethylene terephthalate)/polypropylene / wollastonite composites using PP-g-MA as compatibilizer: Mechanical, thermal and morphological properties. Journal of Metals, Materials and Minerals, 28(2),115-123.
  26. Jaunslavietis J., Ozolins J., Kalnins M., et al., 2022. A Study on Waste Paper Reinforced Recycled Polypropylene Biocomposite. Materials Science Forum, 1071, pp. 109-116. doi:10.4028/p-hy2kd0
  27. Andrzejewski J., Barczewski M., Szostak M., 2019. Injection molding of highly filled polypropylene-based biocomposites. Buckwheat husk and wood flour filler: A comparison of agricultural and wood industry waste utilization. Polymers (Basel), 11(11), p. 1881. doi:10.3390/polym11111881
  28. Mustaffa Z., Ragunathan S., Othman N.S., et al., 2018. Fabrication and Properties of Polypropylene and Kenaf Fiber Composite. In: IOP Conference Series: Materials Science and Engineering, doi:10.1088/1757-899X/429/1/012016
  29. Nassar, M.M.A., Alzebdeh, K.I., Al-Hinai, N. and Al Safy, M., 2024. Enhancing mechanical performance of polypropylene bio-based composites using chemically treated date palm filler. Industrial Crops and Products, 220, p. 119237. doi:10.1016/j.indcrop.2024.119237
  30. Hossein Alizadeh, M., Kamali Dolatabadi, M., Shaikhzadeh Najar, S. and Eslami-Farsani, R., 2022. Energy absorption of the Kevlar®/PP hybrid composite: fabric to composite optimization. The Journal of The Textile Institute, 113(6), pp. 1018-1026. doi:10.1080/00405000.2021.1914408
  31. Eslami-Farsani, R., 2015. Effect of fiber treatment on the mechanical properties of date palm fiber reinforced PP/EPDM composites. Advanced Composite Materials, 24(1),27-40. doi:10.1080/09243046.2013.871177
  32. Khalili S.M.R., Farsani R.E., Rafiezadeh S., 2011. An experimental study on the behavior of PP/EPDM/JUTE composites in impact, tensile and bending loadings. Journal of Reinforced Plastics and Composites, 30(16),1341-1347. doi:10.1177/0731684411411746
  33. Hadi M.A.H.A., Rahim N.A.A., Leng T.P., Wei C.K., Hong V.C., Chun W.W., 2023. Mechanical properties of rCB-pigment masterbatch in rLDPE: The effect of processing aids and water absorption test. e-Polymers, 23(1), p.20230041. doi:10.1515/epoly-2023-0041
  34. Tekay E., Nugay N., Nugay T., Şen S., 2019. Revolution/rotation-type mixing-assisted masterbatch process for polypropylene-based high-impact ternary nanocomposites. Polymer Composites, 40(1),24-36. doi:10.1002/pc.24592
  35. Al-Maqdasi Z., Gong G., Nyström B., Emami N., Joffe R., 2020. Characterization of wood and Graphene Nanoplatelets (GNPs) reinforced polymer composites. Materials, 13(9), 2089. doi:10.3390/ma13092089
  36. ASTM International, 2014. ASTM D638 (Type IV), Standard Test Method for Tensile Properties of Plastics. https://standards.iteh.ai/catalog/standards/sist/6f5197ee-c698-4471-b015-c71bed10170c/astm-d638-01
  37. Santiagoo, R., Ismail, H. and Hussin, K., 2012. Effects of acetic anhydride on the properties of polypropylene (PP)/recycled acrylonitrile butadiene (NBRr)/rice husk powder (RHP) composites. Polymer-Plastics Technology and Engineering, 51(15), pp. 1505-1512. doi:10.1080/03602559.2012.698685
  38. Andrzejewski, J., Barczewski, M., Szostak, M., 2019. Injection molding of highly filled polypropylene-based biocomposites. Buckwheat husk and wood flour filler: A comparison of agricultural and wood industry waste utilization. Polymers, 11(11), p.1881. doi:10.3390/polym11111881
  39. Santiagoo R., Affandi R.D., Noraishah S., Ismail H., Hussin K., 2016. The compatibilizing effect of polypropylene maleic anhydride (PPMAH) on polypropylene (PP)/acrylonitrile butadiene rubber (NBR)/palm kernel shell (PKS) composites. ARPN Journal of Engineering and Applied Sciences, 11(3),1666-1672.
  40. Wang, N., Zhang, J., Fang, Q. and Hui, D., 2013. Influence of mesoporous fillers with PP-g-MA on flammability and tensile behavior of polypropylene composites. Composites Part B: Engineering, 44(1), pp. 467-471. doi:10.1016/j.compositesb.2012.04.006