Composite sandwich structures are becoming more and more popular in the sports, automotive, and aerospace sectors because of their excellent strength-to-weight ratio. However, more research is required to fully understand their stiffness properties and the accuracy of predictive modeling. By simulating and examining two different sandwich structures made of Carbon fiber face sheets and Kevlar honeycomb core material represented as an equivalent solid, this study fills this gap. The Gibson and Ashby model has been adopted to find the equivalent orthotropic properties of the core because this model provides a balance between precision, computational efficiency, and suitability for honeycomb cores, guaranteeing accurate stiffness predictions and facilitating simple engineering design implementation. Experimental stiffness values of 529.74 N/mm and 479.98 N/mm for the two configurations are obtained by performing a “Three Point Bend Test” on the manufactured panels. With an accuracy deviation of about 0.84%, the numerical model predictions closely resemble the experimental findings, demonstrating the model’s dependability in representing the material’s static behavior. The sandwich structure demonstrates a stiffness of about 565 N/mm, suitable for high-load applications in aerospace and automotive sectors. Numerical modeling effectively validates the experimental results by accurately predicting the stiffness of Kevlar honeycomb core sandwich panels.
Kalpak, S., Nagesh, S. & Manoj, D., 2017. A comparative study of hot rolled section (HRS) and cold formed section under combined bending and shear using ANSYS.16. International Journal of Scientific Research and Development, 5(2), pp.1399–1403.
Arbaoui, J., Schmitt, Y. & Royer, F., 2014. Effect of core thickness and intermediate layers on mechanical properties of polypropylene honeycomb multi-layer sandwich structures. Archives of Metallurgy and Materials, 59(1), pp.11–16. doi:10.2478/amm-2014-0002.
Khan, M.A. et al., 2017. Experimental and numerical analysis of flexural and impact behaviour of glass/pp sandwich panel for automotive structural applications. Advanced Composite Materials. doi:10.1080/09243046.2017.1396199.
Ijaz, H. et al., 2017. Finite element analysis of bend test of sandwich structures using strain energy based homogenization method. Advances in Materials Science and Engineering, p.8670207. doi:10.1155/2017/8670207.
Gornet, L., Marguet, S. & Marckmann, G., 2006. Finite element modeling of Nomex® honeycomb cores: Failure and effective elastic properties. International Journal of Computational Materials Science and Continuum Technology, 4(2), pp.63–74. DOI:10.3970/cmc.2006.004.063.
Ijaz, H. et al., 2014. Strain energy based homogenization method to find the equivalent orthotropic properties of sandwich structures. Sindh University Research Journal (Science Series), 46(1), pp.93–98.
Schwingshackl, C.W., Aglietti, G.S. & Cunningham, P.R., 2006. Determination of honeycomb material properties: Existing theories and an alternative dynamic approach. Journal of Aerospace Engineering, 19(3), pp.177–183.doi:10.1061/(ASCE)08931321(2006)19:3(177).
Chamis, C., Aiello, R. & Murthy, P., 1988. Fiber composite sandwich thermostructural behavior: Computational simulation. Journal of Composite Technology and Research, 10, pp.93–99.
Czechowski, L., Jankowski, J. & Kotełko, M., 2017. Experimental and numerical three-point bending test for sandwich beams. Journal of KONES Powertrain and Transport, 24(3), pp.53–62. doi:10.5604/01.3001.0010.3071.
Hussain, M., Khan, R. & Abbas, N., 2019. Experimental and computational studies on honeycomb sandwich structures under static and fatigue bending load. Journal of King Saud University - Science, 31, pp.222–229. doi:10.1016/j.jksus.2018.05.012.
Chauhan, S.S. & Bhaduri, S.C., 2020. Structural analysis of a four-bar linkage mechanism of prosthetic knee joint using finite element method. EVERGREEN – Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 7(2), pp.209–215.
Çınar, O., Erdal, M. & Kayran, A., 2017. Accurate equivalent models of sandwich laminates with honeycomb core and composite face sheets via optimization involving modal behavior. Journal of Sandwich Structures & Materials, 19(2), pp.139–166. doi:10.1177/1099636215613934.
Foo, C.C., Chai, G.B. & Seah, L.K., 2008. Mechanical properties of Nomex material and Nomex honeycomb structure. Composite Structures, 80(4), pp.588–594. doi:10.1016/j.compstruct.2006.07.010.
Roy, R. et al., 2012. Finite element modeling of Nomex® honeycomb core carbon/epoxy composite sandwich panels. Advanced Science Letters, 15(1), pp.257–264. doi:10.1166/asl.2012.4164.
Herranen, H. et al., 2012. Design and testing of sandwich structures with different core materials. Materials Science (Medžiagotyra), 18(1),pp.45–50. doi:10.5755/j01.ms.18.1.1340.
Ijaz, H. et al., 2017. Finite element analysis of bend test of sandwich structures using strain energy based homogenization method. Advances in Materials Science and Engineering. doi:10.1155/2017/8670207.
Hussain, M., Khan, R. & Abbas, N., 2017. Experimental and computational studies on honeycomb sandwich structures under static and fatigue bending load. Journal of King Saud University - Science, 31(2), pp.222–229. doi:10.1016/j.jksus.2018.05.012.
Yuan, J., Zhang, L. & Huo, Z., 2017. An equivalent modeling method for honeycomb sandwich structure based on orthogonal anisotropic solid element. International Journal of Aeronautical and Space Sciences, 21(4), pp.957–969. doi:10.1007/s42405-020-00259-6.
Kumar, A. & Supale, J.P., 2023. Manufacturing and structural analysis of a composite sandwich panel used for aircraft flooring. Energy and Environment Focus, 7(2), pp.129–136. doi:10.1166/eef.2023.1276.
Seemann, R. & Krause, D., 2017. Numerical modelling of Nomex honeycomb cores for detailed analyses of sandwich panel joints. In 11th World Congress on Computational Mechanics (WCCM XI).
Kumar, A., Chanda, A.K. & Angra, S., 2020. Analysis of the effects of varying core thicknesses of Kevlar honeycomb sandwich structures under different regimes of testing. Materials Today: Proceedings, 21, pp.1615–1623. doi:10.1016/j.matpr.2019.11.2.
Narasimhan, R.K. & Zeleniakiene, D., 2017. Modelling of honeycomb core sandwich panels with fiber reinforced plastic facesheets and analysing the mechanical properties. IOP Conference Series: Materials Science and Engineering, 111(1). doi:10.1088/1757-899X/111/1/012001.
Rupani, S.V., Jani, S.S. & Acharya, G.D., 2017. Design, modelling and manufacturing aspects of honeycomb sandwich structures: A review. International Journal of Scientific Development and Research. doi:10.1712/ijsdr.17013.
Kumar, A., Chanda, A.K. & Angra, S., 2021. Numerical modelling of a composite sandwich structure having non-metallic honeycomb core. EVERGREEN – Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 8(4), pp.759–767. doi:10.5109/4742119.
Gibson, L. & Ashby, M., 1997. Cellular solids: Structure and properties (Cambridge Solid State Science Series). Cambridge: Cambridge UniversityPress. doi:10.1017/CBO9781139878326.
Plascore, 2019. Honeycomb Data Sheets. [online] Available at: https://www.plascore.com/download/datasheets/honeycomb_data_sheets/PLA_PK2_2019.pdf [Accessed January 2023].
ASTM International, 2020. ASTM C393 / C393M-20. Standard test method for core shear properties of sandwich constructions by beam flexure. West Conshohocken, PA: ASTM International. Available at: www.astm.org.
Kumar, A., Dev, K. & Dahiya, A., 2023. Fabrication and mechanical characterization of pomegranate peel powder mixed epoxy. EVERGREEN, 10(4), pp.2173–2179. doi:10.5109/7160892.
Kumar, A., Chanda, A.K. & Angra, S., 2021. Optimization of stiffness properties of composite sandwich using hybrid taguchi-gra-pca. EVERGREEN, 8(2), pp.310–317. doi:10.5109/4480708.
Gupta, M.K., Singhal, V. & Rajput, N.S., 2022. Applications and challenges of carbon-fibers reinforced composites: a review. EVERGREEN, 9(3), pp.682–693. doi:10.5109/4843099.
Taghipoor, H. & Ghiaskar, A., 2024. Optimized enhanced energy absorption in polymer nanocomposites reinforced with nano-clay, nano-silica, and diethylenetriamine. Scientific Reports, 14. doi:10.1038/s41598-024-77960-z.
Ghiaskar, A. & Nouri, M.D., 2023. Investigating fracture behavior and energy absorption of flexible hybrid biocomposites with soft–hard rubber/biofiller layers and fabric impregnated with matrix under high-velocity impact. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45, p.585. doi:10.1007/s40430-023-04507-0.
Kumar, A. , Raghav, S. , Supale, J. P. and Datar, G. S. (2026). Modeling and Experimental Validation of Carbon Fiber-Kevlar Honeycomb Core Sandwich Structure. Mechanics of Advanced Composite Structures, 13(1), 69-82. doi: 10.22075/macs.2025.36296.1782
MLA
Kumar, A. , , Raghav, S. , , Supale, J. P. , and Datar, G. S. . "Modeling and Experimental Validation of Carbon Fiber-Kevlar Honeycomb Core Sandwich Structure", Mechanics of Advanced Composite Structures, 13, 1, 2026, 69-82. doi: 10.22075/macs.2025.36296.1782
HARVARD
Kumar, A., Raghav, S., Supale, J. P., Datar, G. S. (2026). 'Modeling and Experimental Validation of Carbon Fiber-Kevlar Honeycomb Core Sandwich Structure', Mechanics of Advanced Composite Structures, 13(1), pp. 69-82. doi: 10.22075/macs.2025.36296.1782
CHICAGO
A. Kumar , S. Raghav , J. P. Supale and G. S. Datar, "Modeling and Experimental Validation of Carbon Fiber-Kevlar Honeycomb Core Sandwich Structure," Mechanics of Advanced Composite Structures, 13 1 (2026): 69-82, doi: 10.22075/macs.2025.36296.1782
VANCOUVER
Kumar, A., Raghav, S., Supale, J. P., Datar, G. S. Modeling and Experimental Validation of Carbon Fiber-Kevlar Honeycomb Core Sandwich Structure. Mechanics of Advanced Composite Structures, 2026; 13(1): 69-82. doi: 10.22075/macs.2025.36296.1782