[1] Azaizia, Z., Kooli, S., Hamdi, I., Elkhal, W. and Guizani, A.A., 2020. Experimental study of a new mixed-mode solar greenhouse drying system with and without thermal energy storage for pepper. Renewable Energy, 145, pp.1972-1984.
[2] Gorjian, S., Hosseingholilou, B., Jathar, L.D., Samadi, H., Samanta, S., Sagade, A.A., Kant, K. and Sathyamurthy, R., 2021. Recent advancements in technical design and thermal performance enhancement of solar greenhouse dryers. Sustainability, 13(13), p.7025.
[3] Sridhar, K. and Charles, A.L., 2022. Mathematical modeling to describe drying behavior of Kyoto (Vitis labruscana) skin waste: drying kinetics and quality attributes. Processes, 10(10), p.2092.
[4] Elavarasan, E., Kumar, Y., Mouresh, R. and Natarajan, S.K., 2022. Experimental investigation of drying tomato in a double slope solar dryer under natural convection. In Advances in Mechanical and Materials Technology: Select Proceedings of EMSME 2020 (pp. 179-190). Springer Singapore.
[5] Capossio, J.P., Fabani, M.P., Reyes-Urrutia, A., Torres-Sciancalepore, R., Deng, Y., Baeyens, J., Rodriguez, R. and Mazza, G., 2022. Sustainable solar drying of brewer’s spent grains: a comparison with conventional electric convective drying. Processes, 10(2), p.339.
[6] Saliby, A. and Kovács, B., 2023. Minimization of annual energy consumption by incorporating phase change materials into building components: A comprehensive review. Heat Transfer Research, 54(13).
[7] Saikia, D., Nayak, P.K., Krishnan, K.R., Kondareddy, R. and Lakshmi, D.V.N., 2022. Development of an indirect type solar dryer and experiments for estimation of drying parameters of Dhekia (Diplazium esculentum). Materials Today: Proceedings, 56, pp.774-780.
[8] Singh, D. and Mall, P., 2024. Experimental investigation of thermal performance of an indirect mode solar dryer with phase change material for banana slices. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), pp.15268-15285.
[9] Thirumalaivasan, N., Gopi, S., Karthik, K., Nangan, S., Kanagaraj, K. and Rajendran, S., 2024. Nano-PCM materials: Bridging the gap in energy storage under fluctuating environmental conditions. Process Safety and Environmental Protection.
[10] Wang, X., Li, W., Huang, Y., Zhang, S. and Wang, K., 2023. Study on shape-stabilised paraffin-ceramsite composites with stable strength as phase change material (PCM) for energy storage. Construction and Building Materials, 388, p.131678.
[11] Das, D., Gołąbiewska, A. and Rout, P.K., 2024. Geopolymer bricks: The next generation of construction materials for a sustainable environment. Construction and Building Materials, 445, p.137876.
[12] Chelluri, S. and Hossiney, N., 2024. Performance evaluation of ternary blended geopolymer binders comprising slag, fly ash and brick kiln rice husk ash. Case Studies in Construction Materials, 20, p.e02918.
[13] Debnath, K., Das, D. and Rout, P.K., 2022. Effect of mechanical milling of fly ash powder on compressive strength of geopolymer. Materials Today: Proceedings, 68, pp.242-249.
[14] Das, D. and Rout, P.K., 2021. Synthesis, characterization and properties of fly ash based geopolymer materials. Journal of Materials Engineering and performance, 30, pp.3213-3231.
[15] Oti, J., Adeleke, B.O., Mudiyanselage, P.R. and Kinuthia, J., 2024. A comprehensive performance evaluation of GGBS-based geopolymer concrete activated by a rice husk ash-synthesised sodium silicate solution and sodium hydroxide. Recycling, 9(2), p.23.
[16] Das, D. and Rout, P.K., 2023. A review of coal fly ash utilization to save the environment. Water, Air, & Soil Pollution, 234(2), p.128.
[17] Das, D. and Rout, P.K., 2021. Synthesis and characterization of fly ash and GBFS based geopolymer material. Biointerface Res Appl Chem, 11, pp.14506-14519.
[18] Barragán-Ramírez, R., González-Hernández, A., Bautista-Ruiz, J., Ospina, M. and Aperador Chaparro, W., 2024. Enhancing concrete durability and strength with fly ash, steel slag, and rice husk ash for marine environments. Materials, 17(12), p.3001.
[19] Das, D. and Rout, P.K., 2023. Synthesis of inorganic polymeric materials from industrial solid waste. Silicon, 15(4), pp.1771-1791.
[20] Bellum, R.R., Reddy, K.H.K., Reddy, G.C., Reddy, M.R.K. and Gamini, S., 2024. Influence of steel slag on strength and microstructural characteristics of fly ash-based geopolymer concrete. Multiscale and Multidisciplinary
Modeling, Experiments and Design, 7(6), pp.5499-5514.
https://doi.org/10.1007/s41939-024-00541-0
[21] Das, D., Das, A.P. and Rout, P.K., 2021. Effect of slag addition on compressive strength and microstructural features of fly ash based geopolymer. In Circular economy in the construction industry (pp. 61-68). CRC Press.
[22] Nanda, B., Mishra, J. and Patro, S.K., 2024. Synthesis of rice husk ash based alkaline activators for geopolymer binder systems: a review. Journal of Building Engineering, p.109694.
[23] Anju, M.J., Beulah, M. and Varghese, A., 2024. Review of Geopolymer Composites Synthesized Using Different Industrial By-products. International Journal of Pavement Research and Technology, pp.1-20.
[24] Rihan, M.A.M. and Abdalla Abdalla, T., 2024. Factors influencing compressive strength in fly ash-based geopolymer concrete: a comprehensive review. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48(6), pp.3853-3869.
[25] Das, D. and Rout, P.K., 2023. Coal fly ash utilization in India. In New Horizons for Industry 4.0 in Modern Business (pp. 233-251). Cham: Springer International Publishing.
[26] Das, D., 2024. Role of particle size on the mechanical and microstructural properties of fly ash-based geopolymer. Interactions, 245(1), p.277.
[27] Albitar, M., Visintin, P., Mohamed Ali, M.S. and Drechsler, M., 2015. Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash. KSCE Journal of Civil Engineering, 19, pp.1445-1455.
[28] Bai, Y., Guo, W., Wang, J., Xu, Z., Wang, S., Zhao, Q. and Zhou, J., 2022. Geopolymer bricks prepared by MSWI fly ash and other solid wastes: Moulding pressure and curing method optimisation. Chemosphere, 307, p.135987.
[29] Shi, H., Ma, H., Tian, L., Yang, J. and Yuan, J., 2020. Effect of microwave curing on metakaolin-quartz-based geopolymer bricks. Construction and Building Materials, 258, p.120354.
[30] Maaze, M.R. and Shrivastava, S., 2023. Design development of sustainable brick-waste geopolymer brick using full factorial design methodology. Construction and Building Materials, 370, p.130655.
[31] Ganesh, A.C. and Muthukannan, M., 2021. Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. Journal of Cleaner Production, 282, p.124543.
[32] Shanmugam, V., Rajendran, D.J.J., Babu, K., Rajendran, S., Veerasimman, A., Marimuthu, U., Singh, S., Das, O., Neisiany, R.E., Hedenqvist, M.S. and Berto, F., 2021. The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polymer testing, 93, p.106925.
[33] Partheeban, P., Jegadeesan, V., Manimuthu, S. and Gifta, C.C., 2024. Cleaner production of geopolymer bricks using Solar-LPG hybrid dryer. Journal of Cleaner Production, 442, p.141048.
[34] Bahrami, A., 2024. Sustainable structures and buildings (p. 122). Springer Nature.
[35] Owaid, H.M., Humad, A.M., Al-Gburi, M., Ghali, Z.A.S. and Sas, G., 2023. Utilization of nanoparticles and waste materials in cement mortars. Journal of the Mechanical Behavior of Materials, 32(1), p.20220289.
[36] Anuradha, R., Sreevidya, V., Venkatasubramani, R. and Rangan, B.V., 2012. Modified guidelines for geopolymer concrete mix design using Indian standard.
[37] Standard, I., 2009. Is 10262: Guidelines for concrete mix design proportioning. Indian Standard, New Delhi.
[38] Partheeban, P., Jegadeesan, V., Manimuthu, S. and Gifta, C.C., 2024. Cleaner production of geopolymer bricks using Solar-LPG hybrid dryer. Journal of Cleaner Production, 442, p.141048.
[39] Deb, P.S., Sarker, P.K. and Barbhuiya, S., 2015. Effects of nano-silica on the strength development of geopolymer cured at room temperature. Construction and building materials, 101, pp.675-683.
[40] Ashok Kumar, J., Muthuvel, S., Issac Selvaraj, R.V., Ramoni, M., Shanmugam, R. and Pandian, R.S., 2023. Mechanical Property Comparison of Geopolymer Brick Dried by Electrical and Passive Solar Devices with Phase Change Material (Paraffin Wax). Processes, 12(1), p.28.
[41] Hassani, A. and Kazemian, F., 2024. Investigating geopolymer mortar incorporating industrial waste using response surface methodology: A sustainable approach for construction materials. Case Studies in Construction Materials, 21, p.e03609.
[42] Kazemian, F. and Hassani, A., 2024. Exploring mechanical and fracture properties in geopolymer concrete with ternary precursor waste materials through laboratory investigations and statistical analysis. Journal of Building Engineering, 95, p.110294.