Biodegradation, Mechanical and Physical Properties of Poly(butylene succinate) and Natural Rubber Compound Blend Filled with Activated Carbon from Coconut Fruit

Document Type : Research Article

Authors

1 Department of Materials and Medical Technology Engineering, Faculty of Engineering and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima, 30000, Thailand

2 Department of Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen, 40000, Thailand

3 Department of Aircraft Part Manufacturing Technology, Faculty of Industrial Technology, Rambhai Barni Rajabhat University, Chanthaburi, 22000, Thailand

4 School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand

Abstract

Activated carbon (AC) was synthesized from coconut fruit and used as a bio-filler in poly(butylene succinate) (PBS) and natural rubber compound (NRC) composites. The activation process used a potassium hydroxide (KOH) solution, followed by microwave irradiation. Two KOH concentrations (1 M and 3 M) were used, and the obtained AC was labeled AC 1 M KOH and AC 3 M KOH. The objective of this study was to examine the effects of AC type and content (0-6 phr) on the mechanical, physical, and biodegradation properties of PBS/NRC/AC composites. The results showed that AC contained 73-74 % carbon content. The AC 3 M KOH exhibited a higher surface area. The mechanical properties of PBS/NRC/AC composites, including flexural strength, impact strength, tensile strength, Young’s modulus, and elongation at fracture, tended to decrease with increasing amounts of AC. However, adding AC 3 M KOH had a more positive effect on these properties compared to AC 1 M KOH. The crystalline structure of PBS was not affected, while the melt flow index (MFI) of the composite tended to decrease with the addition of AC. The composite with 6 phr of AC 3 M KOH showed 22.4% CO₂ absorption, 35% degradation after 6 months, and 0.84% water absorption, all of which were higher than those observed for 6 phr of AC 1 M KOH. The surface morphology of PBS/NRC/AC composites had a rough appearance, with rubber particles and AC dispersed within the PBS matrix. The surface roughness intensified with increasing AC content.

Keywords

Main Subjects


  1. Tokiwa, Y., Calabia, B., Ugwu, C. and Aiba, S., 2009. Biodegradability of Plastics. International Journal of Molecular Sciences, 10, pp. 3722−3742. Doi:10.3390/ijms 10093722
  2. Faibunchan, P., Pichaiyut, S., Kummerlowe, C. Vennemann, N. and Nakason, C., 2020. Green biodegradable thermoplastic natural rubber based on epoxidized natural rubber and poly(butylene succinate) blends: Influence of blend proportions. Journal of Polymers and the Environment, 28(3), pp. 1050-1067. Doi:10.1007/s10924-020-01655-5
  3. Sasimowski, E., Majewski, L. and Grochowicz, M., 2023. Study on the biodegradation of poly(butylene succinate)/wheat bran biocomposites. Materials, 16(21), p. 6843. Doi:10.3390/ ma16216843
  4. Huang, Z., Qian, L., Yin, Q., Yu, N., Liu, T. and Tian, D., 2018. Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polymer Testing, 66, pp. 319–326. Doi:10.1016/ j.polymertesting.2018.02.003
  5. Zhao, J., Wang, X., Zeng, J., Yang, G., Shi F. and Yan, Q., 2005. Biodegradation of Poly(Butylene Succinate) in Compost. Journal of Applied Polymer Science, 97(6), pp. 2273–2278. Doi:10.1002/app.22009
  6. Samir, A., Ashour, F. H., Hakim, A. A. A. and Bassyouni, M., 2022. Recent advances in biodegradable polymers for sustainable applications. npj Materials Degradation, 6(1), p. 68. Doi:10.1038/s41529-022-00277-7
  7. Rong-or, C., Pongputthipat, W., Ruksakulpiwat, Y. and Chumsamrong, P., 2024. Soil burial degradation of bio-composite films from poly(lactic acid), natural rubber, and rice straw. Polymer bulletin. Doi:10.1007/s00289-024-05229-6
  8. Pongputthipat, W., Ruksakulpiwat, Y. and Chumsamrong, P., 2023. Development of biodegradable biocomposite films from poly(lactic acid), natural rubber and rice straw. Polymer bulletin, 80(9), pp. 10289-10307. Doi:10.1007/s00289-022-04560-0
  9. Umamaheswara, R., Venkatanarayana, B. and Suman, K. N. S., 2019. Enhancement of Mechanical Properties of PLA/PCL (80/20) Blend by Reinforcing with MMT Nanoclay. Materials Today, 18, pp. 85-97. Doi:10.1016/j.matpr.2019.06.280
  10. Lyu, J. S., Lee, J. and Han, J., 2019. Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Scientific Reports, 9(1), p. 20236. Doi:10.1038/s41598-019-56757-5
  11. Singsang, W., Rumjuan, P., Ausungnoen, Y., Charentanom, W., Srakaew, N. and Prasoetsopha, N., 2020. Mechanical Properties and Melt Flow Index of Poly (butylene succinate) Blended with a Small Amount of Natural Rubber IOP Conferences Series: Materials Science and Engineering, 965(1), p. 012026. Doi:10.1088/1757-899X/965/1/012026
  12. Faibunchan, P., Nakaramontri, Y., Chueangchayaphan, W., Pichaiyut, S., KummerlÖwe, C., Vennemann, N. and Nakason, C., 2018. Novel Biodegradable Thermoplastic Elastomer Based on Poly(butylene succinate) and Epoxidized Natural Rubber Simple Blends. Journal of Polymers and the Environment, 26, pp. 2867-2880. Doi:10.1007/s10924-017-1173-4
  13. Faibunchan, P., Pichaiyut, S., Chueangchayaphan, W., KummerlÖwe, C., Vennemann, N. and Nakason, C., 2019. Influence type of natural rubber on properties of green biodegradable thermoplastic natural rubber based on poly(butylene succinate). Polymers for Advanced Technologies, 30(4), pp. 1010-1026. Doi:10.1002/pat.4534
  14. Hemsri, S., Thongpin, C., Moradokpermpoon, N., Niramon, P. and Suppaso, M., 2015. Mechanical Properties and Thermal Stability of Poly(butylene succinate)/ Acrylonitrile Butadiene Rubber Blend. Macromolecular Symposia, 354(1), pp. 145-154. Doi:10.1002/masy.20140 0129
  15. Phiri, M. J., Mofokeng, J. P., Phiri, M. M., Mngomezulu, M. and Tywabi-Ngeva, Z., 2023. Chemical, thermal and morphological properties of polybutylene succinate-waste pineapple leaf fibres composites. Heliyon, 9(11), p. e21238. Doi:10.1016/j.heliyon.2023.e21238
  16. Calabia, B. P., Ninomiya, F., Yagi, H., Oishi, A., Taguchi, K., Kunioka, M. and Funabashi, M., 2013. Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent. Polymer, 5(1), pp. 128-141. Doi:3390/polym 5010128
  17. Prasoetopha, N., Thainoi, P., Jinnavat, R., Charerntanom, W., Hasook, A. and Singsang, W., 2020. Morphological and Mechanical Properties of Natural Rubber Compound/ Poly(butylene succinate) Blend. IOP Conferences Series: Materials Science and Engineering, 840(1), P. 012013. Doi: 10.1088/1757-899X/840/1/012013
  18. Lotfy, H. R. and Roubik, H., 2023, Water purification using activated carbon prepared from agriculture waste - overview of a recent development. Biomass Conversion and Biorefinery, 13(17), pp. 15577-15590. Doi:10.1007/s13399-021-01618-3
  19. Sujiono, E. H., Zabrian, D., Zurnansyah, Mulyati, Zharvan, V., Samnur, and Humairah, N. A., 2022. Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application. Results in Chemistry, 4, p. 100291. Doi:10.1016/ j.rechem.2022.100291
  20. Vasilyeva, G. K., Strijakova, E. R. and Shea, P. J., Use of activated carbon for soil bioremediation. Soil and Water Pollution Monitoring, Protection and Remediation, 69, pp. 309–322. Doi:10.1007/978-1-4020-4728-2_20 
  21. Gao, J., Liu, D., Xu, Y., Chen, J., Yang, Y., Xia, D., Ding, Y. and Xu, W., 2020. Effects of two types of activated carbon on the properties of vegetation concrete and Cynodon dactylon growth. Scientific Reports, 10(1), p. Doi:10.1038/s41598-020-71440-w
  22. Omokafe, S.M., Adeniyi, A. A., Igbafen, E. O., Oke, S. R. and Olubambi, P. A., 2020. Fabrication of Activated Carbon from Coconut Shells and its Electrochemical Properties for Supercapacitors. International Journal of Electrochemical Science, 15(11), pp 10854-10865. Doi:10.20964/2020.11.10
  23. Nandi, R., Jha, M. K., Guchhait, S. K., Sutradhar, D. and Yadav, S., 2023. Impact of KOH Activation on Rice Husk Derived Porous Activated Carbon for Carbon Capture at Flue Gas alike Temperatures with High CO2/N2 ACS Omega, 8(5), pp. 4802-4812. Doi:10.1021/acsomega. 2c06955
  24. Singsang, W., Suetrong, J., Choedsanthia, T., Srakaew, N., Jantrasee, S. and Prasoetsopha, N., 2021. Properties of Biodegradable Poly(butylene succinate) Filled with Activated Carbon Synthesized from Waste Coffee Grounds. Journal of Materials Science and Applied Energy, 10(3), pp. 87-95.
  25. Boonpoke, A., Chiarakorn, S., Laosiripojana, N., Towprayoon, S. and Chidthaisong, A., 2011. Synthesis of Activated Carbon and MCM-41 from Bagasse and Rice Husk and their Carbon Dioxide Adsorption Capacity. Journal of Sustainable Energy and Environment, 2, pp. 77-81.
  26. Feng, , Li, J., Wang, H. and Xu, Z., 2020. Biomass-Based Activated Carbon and Activators: Preparation of Activated Carbon from Corncob by Chemical Activation with Biomass Pyrolysis Liquids. ACS Omega, 5(37), pp. 24064-24072. Doi:10.1021/ acsomega.0c03494
  27. Molina-Sabio, M. and Rodrı́guez-Reinoso, F., 2004. Role of chemical activation in the development of carbon porosity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 241(1), 15-25. Doi:10.1016/j.colsurfa.2004.04.007
  28. Shen, Y. and Fu, Y., 2018. KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption. Materials Today Energy, 9, pp. 397-405. Doi:10.1016/j.mtener.2018.07.005
  29. Deng, H., Li, G., Yang, H., Tang, J. and Tang, J., 2010. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 Chemical Engineering Journal, 163(3), pp. 373-381. Doi:10.1016/j.cej.2010.08.019
  30. Foo, K.Y. and Hameed B.H., 2012. Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 Bioresource Technology, 104, p. 679-686. Doi:10.1016/j.biortech.2011.10.005
  31. Shifa, S. S., Hasan Kanok, M. M., Haque, M. S., Sultan, T., Pritha, K. F., Mubasshira, Al Yeamin, M. and Dipta, S. D., 2024. Influence of heat treatment and water absorption on mechanical properties of cotton-glass fiber reinforced epoxy hybrid composites: An eco-friendly approach for industrial materials. Hybrid Advances, 5, p. 100181. Doi:10.1016/j.hybadv.2024.100181
  32. Somdee, P., Prasoetsopha, N., Detsunhnoen, S., Matnok, S. and Ansari, M. A., 2024. Enhancing Natural Rubber Composites with Spent Coffee Ground: Physical Properties, Odor Absorption, and Processing. Starch – Stärke, p. 2300300. Doi: 10.1002/star.202300300
  33. Khoshraftar, Z. and Ghaemi, A., 2022. Presence of activated carbon particles from waste walnut shell as a biosorbent in monoethanolamine (MEA) solution to enhance carbon dioxide absorption. Heliyon, 8(1), p. e08689. Doi:10.1016/ j.heliyon.2021.e08689
  34. Siakeng, R., Jawaid, M., Asim, M. and Siengchin, S., 2020. Accelerated Weathering and Soil Burial Effect on Biodegradability, Colour and Textureof Coir/Pineapple Leaf Fibres/PLA Biocomposites. Polymers (Basel), 12(2), 458. Doi:10.3390/ polym12020458
  35. Peñas, M. M., Criado-Gonzalez, M., Martínez de Ilarduya, A., Flores, A., Raquez, J.-M., Mincheva, R., Müller, A. J. and Hernández, R., 2023. Tunable enzymatic biodegradation of poly(butylene succinate): biobased coatings and self-degradable films. Polymer Degradation and Stability, 211, p. 110341. Doi:10.1016/j.polymdegradstab.2023.110341
  36. Zhang, L., Tu, L., Liang, Y., Chen, Q., Li, Z., Li, C., Wang, Z. and Li, W., 2018. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Advances, 8(74), pp. 42280-47291. Doi: 10.1039/c8ra08990f
  37. Zhang, Y., Zhao, Y.-P., Qiu, L.-L., Xiao, J., Wu, F.-P., Bai, Y.-H. and Liu, F.-J., 2022. Insights into the KOH activation parameters in the preparation of corncob-based microporous carbon for high-performance supercapacitors. Diamond and Related Materials, 129, 109331. Doi: 10.1016/j.diamond.2022.109331
  38. Ismail, S.N.S., Ibrahim, N.N.I.N., Rasli, S.N., Majid, N.A., Wahab, N.M.A., Jamal, S.N., Zakaria, S. and Nazir, K., 2022. Reinforcement of Charcoal Activated Carbon (CAC) in Natural Rubber (NR) Compound: in Comparison with Carbon Black. ASEAN Engineering Journal, 12(2), 161-167. Doi:10.11113/aej.v12.17224
  39. Nasri, K., Toubal, L., Loranger, É. And Koffi, D., 2022. Influence of UV irradiation on mechanical properties and drop-weight impact performance of polypropylene biocomposites reinforced with short flax and pine fibers. Composites Part C: Open Access, 9, p. 100296. Doi: 10.1016/j.jcomc.2022.100296
  40. Veranitisagul, C., Wattanathana, W., Wannapaiboon, S., Hanlumyuang, Y., Sukthavorn, K., Nootsuwan, N., Chotiwan, S., Phuthong, W., Jongrungruangchok, S. and Laobuthee, A., 2019. Antimicrobial, Conductive, and Mechanical Properties of AgCB/PBS Composite System. Journal of Chemistry, 2019(1), 3487529. Doi: 10.1155/2019/3487529
  41. Luo, X., Li, J., Feng, J., Yang, T. and Lin, X., 2014. Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. Materials and Design, 57, pp. 195-200. Doi:10.1016/j.matdes.2013.12.056
  42. Li, J., Luo, X. and Lin, X., 2013. Preparation and characterization of hollow glass microsphere reinforced poly(butylene succinate) composites. Materials & Design (1980-2015), 46, pp. 902–909. Doi:10.1016/j.matdes.2012.11.054
  43. Noh, S., Kim, D., Jeong, G., Koo, J.M. and Koo, J., 2024. Highly dispersed biochar as a sustainable filler for enhancing mechanical performance and biodegradation of polybutylene succinate. Journal of Applied Polymer Science, 141(25), e55539. Doi:10.1002/app.55539
  44. Cappello, M., Rossi, D., Filippi, S., Cinelli, P. and Seggiani, M., 2023. Wood Residue-Derived Biochar as a Low-Cost, Lubricating Filler in Poly(butylene succinate-co-adipate) Biocomposites. Materials, 16(2), 570. Doi:10.3390/ma16020570
  45. Várdai, R., Lummerstorfer, T., Pretschuh, C., Jerabek, M., Gahleitner, M., Faludi, G., Móczó, J. and Pukánszky, B., 2021. Impact modification of fiber reinforced polypropylene composites with flexible poly(ethylene terephthalate) fibers. Polymer International, 70(9), pp. 1367-1375. Doi:10.1002/pi.6210
  46. Ge, F., Wang, X. and Ran, X., 2017. Properties of biodegradable poly(butylene succinate) (PBS)composites with carbon black. Polymer Science, Series A, 59(3), pp. 416 – 424. Doi:10.1134/S0965545X17030051
  47. Zulkifli, Z., Daud, Y. M., Zainal, F. F. Abu Hashim, M. F. and Aygörmez, Y., 2023. Effect of Composition on Melt Flow and Density of Polypropylene Copolymer/Kaolin Geo-Filler Composites. Archives of Metallurgy and Materials, 68(1), pp. 369-373. Doi:10.24425/amm.2023.141513
  48. Papadopoulou, K., Klonos, P., Kyritsis, A., Masek, O., Wurzer, C., Tsachouridis, K., Anastasiou, A. and Bikiaris, D., 2023. Synthesis and Study of Fully Biodegradable Composites Based on Poly(butylene succinate) and Biochar. Polymers, 15, 1049. Doi:10.3390/polym15041049
  49. Zare, Y., 2016. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Composites Part A: Applied Science and Manufacturing, 84, pp. 158-164. Doi:10.1016/j.compositesa.2016.01.020
  50. Mohammed Ali, A.S., Hegab, H.M., Almarzooqi, F., Jaoude, M.A., Hasan, S.W. and Banat, F., 2024. Carbon composites for efficient solar-driven atmospheric water harvesting. Journal of Environmental Chemical Engineering, 12(5), 113319. Doi.10.1016/j.jece.2024.113319
  51. Mrad, H., Alix, S., Migneault, S., Koubaa, A. and Perré, P., 2018. Numerical and experimental assessment of water absorption of wood-polymer composites. Measurement, 115, pp. 197-203. Doi:10.1016/j.measurement.2017.10.011
  52. Islam, M. S., Nassar, M., Elsayed, M. A., Jameel, D. B., Ahmad, T. T. and Rahman, M. M., 2023. In Vitro Optical and Physical Stability of Resin Composite Materials with Different Filler Characteristics. Polymers, 15(9), p. 2121.
  53. Okolie, O., Kumar, A., Edwards, C., Lawton, L. A., Oke, A., McDonald, S., Thakur, V. K. and Njuguna, J., 2023. Bio-Based Sustainable Polymers and Materials: From Processing to Biodegradation. Journal of Composites Science, 7(6), p. 213.
  54. Meereboer, K. W., Misra, M. and Mohanty, A. K., 2020. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry, 22(17), pp. 5519-5558. Doi:10.1039/D0GC01647K