Mechanical Properties of Hemp Fiber-Reinforced Polypropylene Composites for Drone Propeller Guard Application

Document Type : Special Issue: Mechanics of Advanced Fiber Reinforced Composite Structures

Authors

1 Department of Production Engineering and Quality Management, Faculty of Industrial Technology, Rambhai Barni Rajabhat University, Chanthaburi, 22000, Thailand

2 Department of Aircraft Parts Manufacturing Technology, Faculty of Industrial Technology, Rambhai Barni Rajabhat University, Chanthaburi, 22000, Thailand

3 Department of Materials Engineering, Faculty of Engineering and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima, 30000, Thailand

4 Department of Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen, 40000, Thailand

Abstract

A propeller guard is an instrument that helps to avoid Unmanned Aerial Vehicles (UAVs) or drone damage. Commercially, they are made from an engineering plastic such as Acrylonitrile Butadiene Styrene (ABS). This work aims to introduce the hemp fiber-reinforced polypropylene composites as a new competitive material for propeller guards. In this study, polypropylene was thermally mixed with different ratios of hemp fibers by internal mixing at 190°C. Tensile and impact testing were carried out according to ASTM D638 and ASTM D256, respectively. The results showed that the high contents of hemp fibers can enhance the modulus of their composites. Polypropylene composite with 45 wt.% of hemp fibers obtained the highest modulus at 1169.4 MPa. Also, the impact resistances of these composites were higher while the fiber contents were increased. Furthermore, application in drone propeller guard was executed by SIMCENTER 3D software for proving their propeller protection performance of as-prepared composites. The results indicated that polypropylene and its hemp fibers-reinforced composites could be the materials for this drone propeller guard.

Keywords

Main Subjects


[1]    Bui, S. T., Luu, Q. K., Nguyen, D. Q., Le, N. D. M., Loianno, G., & Ho, V. A., 2022. Tombo Propeller: Bio-Inspired Deformable Structure toward Collision-Accommodated Control for Drones. ArXiv.com. doi: 10.48550/arXiv.2202.07177.
[2]    Zhu, H. Y., Magsino, E. M., Hamim, S. M., Lin, C.-T., & Chen, H.-T., 2021. A Drone Nearly Hit Me! A Reflection on the Human Factors of Drone Collisions. Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. doi: 10.1145/3411763.3451614.
[3]    Saroha, V., Pabla, B. S., & Bhogal, S. S., 2019. Characterization of ABS for Enhancement of Mechanical Properties. International Journal of Innovative Technology and Exploring Engineering, 8(10), pp. 2164–2167. doi: 10.35940/ijitee.j9379.0881019.
[4]    Yuan, W., Teng, C., Zhao, Y., Huang, Q., Wang, X., Cai, K., Song, Q., Zhang, L., Zhu, J., Xu, L., Zhu, K., & Xiong, W., 2023. Efficient recycling of surface-plated metals from ABS plastic waste via ammonium persulfate system. Separation and Purification Technology, 326, pp. 124796. doi: 10.1016/j.seppur.2023.124796.
[5]    Frounchi, M., Dadbin, S., Salehpour, Z., & Noferesti, M., 2006. Gas barrier properties of PP/EPDM blend nanocomposites. Journal of Membrane Science, 282(1), pp. 142–148. doi: 10.1016/j.memsci.2006.05.016.
[6]    Martins, C. G., Larocca, N. M., Paul, D. R., & Pessan, L. A., 2009. Nanocomposites formed from polypropylene/EVA blends. Polymer, 50(7), pp. 1743–1754. doi: 10.1016/j.polymer.2009.01.059.
[7]    Yang, B., Shi, J., Pramoda, K. P., & Goh, S. H., 2008. Enhancement of the mechanical properties of polypropylene using polypropylene grafted multiwalled carbon nanotubes. Deformation and Fracture of Composites: Analytical, Numerical and Experimental Techniques, with Regular Papers, 68(12), pp. 2490–2497. doi: 10.1016/j.compscitech.2008.05.001.
[8]    Ellis, T. S., & D’Angelo, J. S., 2003. Thermal and mechanical properties of a polypropylene nanocomposite. Journal of Applied Polymer Science, 90(6), pp. 1639–1647. doi: 10.1002/app.12830.
[9]    Kurien, R. A., Selvaraj, D. P., Sekar, M., Koshy, C. P. & Praveen, K. M., 2022. Comparative Mechanical, Tribological and Morphological Properties of Epoxy Resin Composites Reinforced With Multi-Walled Carbon Nanotubes. Arabian Journal for Science and Engineering, 47, pp. 8059-8067. doi: 10.1007/s13369-021-05984-y.
[10]    Ibrahim, I. D., Jamiru, T., Sadiku, R. E., Kupolati, W. K., Agwuncha, S. C., & 
Ekundayo, G., 2015. The use of polypropylene in bamboo fibre composites and their mechanical properties – A review. Journal of Reinforced Plastics and  Composites, 34(16), pp. 1347–1356. doi: 10.1177/0731684415591302.
[11]    Lee, S., Wang, S., Pharr, G. M., & Xu, H., 2007. Evaluation of interphase properties in a cellulose fiber reinforced polypropylene composite by nanoindentation and finite element analysis. Composites Part A: Applied Science and Manufacturing, 38(6), pp. 1517–1524. doi: 10.1016/ j.compositesa.2007.01.007.
[12]    Van de Velde, K, & Kiekens, P., 2003. Effect of material and process parameters on the mechanical properties of unidirectional and multidirectional flax/polypropylene composites. Composite Structures, 62(3), pp. 443–448. doi: 10.1016/j.compstruct. 2003.09.018.
[13]    Mohanty, S., Verma, S. K., Nayak, S. K., & Tripathy, S. S., 2004. Influence of fiber treatment on the performance of sisal–polypropylene composites. Journal of Applied Polymer Science, 94(3), pp.1336–1345. doi: 10.1002/app.21161.
[14]    Kurien, R. A., Biju, A., Raj, A. K., Chacko, A., Joseph, B., Koshy, C. P. & Paul, C., 2023. Comparative Mechanical Properties of Duck Feather-Jute Fiber Reinforced Hybrid Composites. Transactions of the Indian Institute of Metals, 76, pp. 2575-2580. doi: 10.1007/s12666-023-03015-y.
[15]    Rodríguez, E., Petrucci, R., Puglia, D., Kenny, J. M., & Vázquez, A., 2005. Characterization of Composites Based on Natural and Glass Fibers Obtained by Vacuum Infusion. Journal of Composite Materials, 39(3), pp. 265–282. doi: 10.1177/0021998305046450.
[16]    Kurien, R. A., Selvaraj, D. P., Sekar, M. & Koshy, C. P., 2020. Green composite materials for green technology in the automotive industry. IOP Conference Series: Materials Science and Engineering, 872, pp. 012064. doi:10.1088/1757-899x/872/1/012064.
[17]    Etcheverry, M., & Barbosa, S. E., 2012. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement. Materials, 5(12), pp. 1084–1113. doi: 10.3390/ma5061084.
[18]    Arinze, R. U., Oramah, E., Chukwuma, E. C., Okoye, N. H., Eboatu, A. N., Udeozo, P. I., Chris-Okafor, P. U., & Ekwunife, M. C., 2023. Reinforcement of polypropylene with natural fibers: Mitigation of environmental pollution. Environmental Challenges, 11, pp. 100688. doi: 10.1016/j.envc.2023.100688.
[19]    Kurien, R. A., Selvaraj, D. P., Sekar, M., Koshy, C. P., Paul, C., Palanisamy, S., Santulli, C. & Kumar, P., 2023. A comprehensive review on the mechanical, physical, and thermal properties of abaca fibre for their introduction into structural polymer composites. Cellulose, 30, pp. 8643-8664. doi: 10.1007/s10570-023-05441-z.
[20]    Kurien, R. A., Selvaraj, D. P. & Koshy, C. P., 2021. Worn Surface Morphological Characterization of NaOH-Treated Chopped Abaca Fiber Reinforced Epoxy Composites. Journal of Bio- and Tribo-Corrosion, 7, pp. 31. doi: 10.1007/s40735-020-00467-3.
[21]    Dhakal, H. N., Zhang, Z. Y., & Richardson, M. O. W., 2007. Effect of water absorption    on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology, 67(7), pp. 1674–1683. doi: 10.1016/j.compscitech.2006.06.019.
[22]    Shah, N., Fehrenbach, J., & Ulven, C. A., 2019. Hybridization of Hemp Fiber and Recycled-Carbon Fiber in Polypropylene Composites. Sustainability, 11(11), pp. 3163. doi: 10.3390/su11113163.
[23]    ASTM D638-14, 2015. Standard test method for tensile properties of plastics. ASTM International, West Conshohocken.
[24]    ASTM D256-23, 2023. Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM International, West Conshohocken.
[25]    Mahesh, V. & Mahesh, V., 2024. Development and Mechanical Characterization of Light Weight Fiber Metal Laminate using Jute, Kenaf and Aluminium. Mechanics of Advanced Composite Structures, 11, pp. 259-270. doi: 10.22075/macs.2023.30686.1506.
[26]    Patil, P. H., Rahul, K., Shetty, P., Dias, V. J., Thara Resham, I. V, SHETTY, M. & Padmaraj N. H., 2024. Influence of process parameters on tribological behavior of Hemp powder reinforced epoxy composites. Cogent Engineering, 11, pp. 2322075. doi: 10.1080/23311916.2024.2322075.
[27]    Botev, M., Betchev, H., Bikiaris, D., & Panayiotou, C., 1999. Mechanical properties and viscoelastic behavior of basalt fiberreinforced polypropylene. Journal of Applied Polymer Science, 74(3), pp. 523–531. doi: 10.1002/(SICI)10974628(19991017) 74:3%3C523::AIDAPP7%3E3.0.CO;2R.
[28]    Várdai, R., Lummerstorfer, T., Pretschuh, C., Jerabek, M., Gahleitner, M., Faludi, G., Móczó, J., & Pukánszky, B., 2021. Impact modification of fiber reinforced polypropylene composites with flexible poly(ethylene terephthalate) fibers. Polymer International, 70(9), pp. 1367–1375. doi: 10.1002/pi.6210.
[29]    Olonisakin ,K., Fan, M., Zhang, X., Li, R., WenSheng, L., Zhang ,W., & Yang, W., 2022. Key Improvements in Interfacial Adhesion and Dispersion of Fibers/Fillers in Polymer Matrix Composites; Focus on PLA Matrix Composites. Composite Interfaces, 29(10), pp. 1071–1120. doi: 10.1080/09276440.2021.1878441.
Volume 12, Issue 2 - Serial Number 25
Special Issue on Mechanics of Advanced Fiber-Reinforced Composite Structures: Celebrating the 50th Anniversary of Semnan University, Handled by the Esteemed Journal Editor, Prof. Dr. Mavinkere Rangappa Sanjay - In Progress
August 2025
Pages 271-277