[1] Bui, S. T., Luu, Q. K., Nguyen, D. Q., Le, N. D. M., Loianno, G., & Ho, V. A., 2022. Tombo Propeller: Bio-Inspired Deformable Structure toward Collision-Accommodated Control for Drones. ArXiv.com. doi: 10.48550/arXiv.2202.07177.
[2] Zhu, H. Y., Magsino, E. M., Hamim, S. M., Lin, C.-T., & Chen, H.-T., 2021. A Drone Nearly Hit Me! A Reflection on the Human Factors of Drone Collisions. Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. doi: 10.1145/3411763.3451614.
[3] Saroha, V., Pabla, B. S., & Bhogal, S. S., 2019. Characterization of ABS for Enhancement of Mechanical Properties. International Journal of Innovative Technology and Exploring Engineering, 8(10), pp. 2164–2167. doi: 10.35940/ijitee.j9379.0881019.
[4] Yuan, W., Teng, C., Zhao, Y., Huang, Q., Wang, X., Cai, K., Song, Q., Zhang, L., Zhu, J., Xu, L., Zhu, K., & Xiong, W., 2023. Efficient recycling of surface-plated metals from ABS plastic waste via ammonium persulfate system. Separation and Purification Technology, 326, pp. 124796. doi: 10.1016/j.seppur.2023.124796.
[5] Frounchi, M., Dadbin, S., Salehpour, Z., & Noferesti, M., 2006. Gas barrier properties of PP/EPDM blend nanocomposites. Journal of Membrane Science, 282(1), pp. 142–148. doi: 10.1016/j.memsci.2006.05.016.
[6] Martins, C. G., Larocca, N. M., Paul, D. R., & Pessan, L. A., 2009. Nanocomposites formed from polypropylene/EVA blends. Polymer, 50(7), pp. 1743–1754. doi: 10.1016/j.polymer.2009.01.059.
[7] Yang, B., Shi, J., Pramoda, K. P., & Goh, S. H., 2008. Enhancement of the mechanical properties of polypropylene using polypropylene grafted multiwalled carbon nanotubes. Deformation and Fracture of Composites: Analytical, Numerical and Experimental Techniques, with Regular Papers, 68(12), pp. 2490–2497. doi: 10.1016/j.compscitech.2008.05.001.
[8] Ellis, T. S., & D’Angelo, J. S., 2003. Thermal and mechanical properties of a polypropylene nanocomposite. Journal of Applied Polymer Science, 90(6), pp. 1639–1647. doi: 10.1002/app.12830.
[9] Kurien, R. A., Selvaraj, D. P., Sekar, M., Koshy, C. P. & Praveen, K. M., 2022. Comparative Mechanical, Tribological and Morphological Properties of Epoxy Resin Composites Reinforced With Multi-Walled Carbon Nanotubes. Arabian Journal for Science and Engineering, 47, pp. 8059-8067. doi: 10.1007/s13369-021-05984-y.
[10] Ibrahim, I. D., Jamiru, T., Sadiku, R. E., Kupolati, W. K., Agwuncha, S. C., &
Ekundayo, G., 2015. The use of polypropylene in bamboo fibre composites and their mechanical properties – A review. Journal of Reinforced Plastics and Composites, 34(16), pp. 1347–1356. doi: 10.1177/0731684415591302.
[11] Lee, S., Wang, S., Pharr, G. M., & Xu, H., 2007. Evaluation of interphase properties in a cellulose fiber reinforced polypropylene composite by nanoindentation and finite element analysis. Composites Part A: Applied Science and Manufacturing, 38(6), pp. 1517–1524. doi: 10.1016/ j.compositesa.2007.01.007.
[12] Van de Velde, K, & Kiekens, P., 2003. Effect of material and process parameters on the mechanical properties of unidirectional and multidirectional flax/polypropylene composites. Composite Structures, 62(3), pp. 443–448. doi: 10.1016/j.compstruct. 2003.09.018.
[13] Mohanty, S., Verma, S. K., Nayak, S. K., & Tripathy, S. S., 2004. Influence of fiber treatment on the performance of sisal–polypropylene composites. Journal of Applied Polymer Science, 94(3), pp.1336–1345. doi: 10.1002/app.21161.
[14] Kurien, R. A., Biju, A., Raj, A. K., Chacko, A., Joseph, B., Koshy, C. P. & Paul, C., 2023. Comparative Mechanical Properties of Duck Feather-Jute Fiber Reinforced Hybrid Composites. Transactions of the Indian Institute of Metals, 76, pp. 2575-2580. doi: 10.1007/s12666-023-03015-y.
[15] Rodríguez, E., Petrucci, R., Puglia, D., Kenny, J. M., & Vázquez, A., 2005. Characterization of Composites Based on Natural and Glass Fibers Obtained by Vacuum Infusion. Journal of Composite Materials, 39(3), pp. 265–282. doi: 10.1177/0021998305046450.
[16] Kurien, R. A., Selvaraj, D. P., Sekar, M. & Koshy, C. P., 2020. Green composite materials for green technology in the automotive industry. IOP Conference Series: Materials Science and Engineering, 872, pp. 012064. doi:10.1088/1757-899x/872/1/012064.
[17] Etcheverry, M., & Barbosa, S. E., 2012. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement. Materials, 5(12), pp. 1084–1113. doi: 10.3390/ma5061084.
[18] Arinze, R. U., Oramah, E., Chukwuma, E. C., Okoye, N. H., Eboatu, A. N., Udeozo, P. I., Chris-Okafor, P. U., & Ekwunife, M. C., 2023. Reinforcement of polypropylene with natural fibers: Mitigation of environmental pollution. Environmental Challenges, 11, pp. 100688. doi: 10.1016/j.envc.2023.100688.
[19] Kurien, R. A., Selvaraj, D. P., Sekar, M., Koshy, C. P., Paul, C., Palanisamy, S., Santulli, C. & Kumar, P., 2023. A comprehensive review on the mechanical, physical, and thermal properties of abaca fibre for their introduction into structural polymer composites. Cellulose, 30, pp. 8643-8664. doi: 10.1007/s10570-023-05441-z.
[20] Kurien, R. A., Selvaraj, D. P. & Koshy, C. P., 2021. Worn Surface Morphological Characterization of NaOH-Treated Chopped Abaca Fiber Reinforced Epoxy Composites. Journal of Bio- and Tribo-Corrosion, 7, pp. 31. doi: 10.1007/s40735-020-00467-3.
[21] Dhakal, H. N., Zhang, Z. Y., & Richardson, M. O. W., 2007. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology, 67(7), pp. 1674–1683. doi: 10.1016/j.compscitech.2006.06.019.
[22] Shah, N., Fehrenbach, J., & Ulven, C. A., 2019. Hybridization of Hemp Fiber and Recycled-Carbon Fiber in Polypropylene Composites. Sustainability, 11(11), pp. 3163. doi: 10.3390/su11113163.
[23] ASTM D638-14, 2015. Standard test method for tensile properties of plastics. ASTM International, West Conshohocken.
[24] ASTM D256-23, 2023. Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM International, West Conshohocken.
[25] Mahesh, V. & Mahesh, V., 2024. Development and Mechanical Characterization of Light Weight Fiber Metal Laminate using Jute, Kenaf and Aluminium. Mechanics of Advanced Composite Structures, 11, pp. 259-270. doi: 10.22075/macs.2023.30686.1506.
[26] Patil, P. H., Rahul, K., Shetty, P., Dias, V. J., Thara Resham, I. V, SHETTY, M. & Padmaraj N. H., 2024. Influence of process parameters on tribological behavior of Hemp powder reinforced epoxy composites. Cogent Engineering, 11, pp. 2322075. doi: 10.1080/23311916.2024.2322075.
[27] Botev, M., Betchev, H., Bikiaris, D., & Panayiotou, C., 1999. Mechanical properties and viscoelastic behavior of basalt fiberreinforced polypropylene. Journal of Applied Polymer Science, 74(3), pp. 523–531. doi: 10.1002/(SICI)10974628(19991017) 74:3%3C523::AIDAPP7%3E3.0.CO;2R.
[28] Várdai, R., Lummerstorfer, T., Pretschuh, C., Jerabek, M., Gahleitner, M., Faludi, G., Móczó, J., & Pukánszky, B., 2021. Impact modification of fiber reinforced polypropylene composites with flexible poly(ethylene terephthalate) fibers. Polymer International, 70(9), pp. 1367–1375. doi: 10.1002/pi.6210.
[29] Olonisakin ,K., Fan, M., Zhang, X., Li, R., WenSheng, L., Zhang ,W., & Yang, W., 2022. Key Improvements in Interfacial Adhesion and Dispersion of Fibers/Fillers in Polymer Matrix Composites; Focus on PLA Matrix Composites. Composite Interfaces, 29(10), pp. 1071–1120. doi: 10.1080/09276440.2021.1878441.