[1] Erdoğan, A.A., Feyzullahoğlu, E., Fidan, S. and Sinmazçelik, T., 2020. Investigation of erosive wear behaviors of AA6082-T6 aluminum alloy. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(3), pp.520-530.
[2] Gohardani, O., 2011. Impact of erosion testing aspects on current and future flight conditions. Progress in Aerospace Sciences, 47(4), pp.280-303.
[3] Ramesh, C.S., Shreeshail, M.L., Gudi, H.R. and Zulfiqar, K., 2014. Air jet erosion wears behavior of Al6061-SiC-Carbon fibre hybrid composite. In Materials Science Forum, vol. 773, pp.547-554.
[4] Yadav, P.K. and Dixit, G., 2019. Investigation of erosion-corrosion of aluminum alloy composites: Influence of slurry composition and speed in a different mediums. Journal of King Saud University-Science, 31(4), pp.674-683.
[5] Mohan Raju, S., Ramesha, C.M., Anilkumar, T., Krishna, S., Appaiah, S. and Rajendra, P., 2023. A Study on Grain Refinement of Aluminum Alloys by Adding Grain Refiners and Severe Plastic Deformation: A Review. Engineering Headway, 1, pp.3-15.
[6] Martin, J.W., 1998. Precipitation Hardening, 2nd ed., Butterworth-Heinemann, Oxford, United Kingdom, pp.79-111.
[7] Zolotorevsky, V.S., Belov, N.A. and Glazoff, M.V., 2007. Casting Aluminum Alloys. Elsevier, pp.397-447.
[8] Kaufman, J.G. and Rooy, E.L., 2004. Aluminum Alloy Castings: Properties, Processes, and Applications. ASM International.
[9] Patchett, J.A., 1988. The kinetics of the peritectic reactions in aluminum-nickel alloys. A dissertation to The Graduate School of the University of Florida.
[10] Jaansalu, K.M. and Distrifcuüon, U., 1998. Phase Diagram Modelling: Nickel, Aluminum, Chromium System. Department of National Defence Canada, National Defence Headquarters, DCIEM Air Vehicle Research Detachment.
[11] Pagliarello, A.G., 2011. Effects of modified solution heat treatment on the mechanical properties and stress corrosion cracking susceptibility of aluminum alloy 7075. PhD diss., Carleton University.
[12] Starke Jr, E.A. and Staley, J.T., 1996. Application of modern aluminum alloys to aircraft. Progress in Aerospace Sciences, 32(2-3), pp.131-172.
[13] ASM Handbook, 1992. Alloys Phase Diagrams. The Materials Information Society, Materials Park, Ohio.
[14] Li, H.Y., Li, D.W., Zhu, Z.X., Chen, B.A., Xin, C., Yang, C.L., Zhang, H.Y. and Wei, K., 2016. Grain refinement mechanism of as-cast aluminum by hafnium. Transactions of Nonferrous Metals Society of China, 26(12), pp.3059-3069.
[15] Hallem, H., 2005. Precipitation behaviour and recrystallisation resistance in aluminum alloys with additions of hafnium, scandium and zirconium.
[16] Gao, Z., Li, H., Lai, Y., Ou, Y. and Li, D., 2013. Effects of minor Zr and Er on microstructure and mechanical properties of pure aluminum. Materials Science and Engineering: A, 580, pp.92-98.
[17] Ghorbani, F., Emamy, M. and Mirzadeh, H., 2021. Enhanced tensile properties of as-cast Mg-10Al magnesium alloy via strontium addition and hot working. Archives of Civil and Mechanical Engineering, 21(2), p.86. doi: 10.1007/s43452-021-00241-3.
[18] Dinnis, C.M., Dahle, A.K., Taylor, J.A. and Otte, M.O., 2004. The influence of strontium on porosity formation in Al-Si alloys. Metallurgical and Materials Transactions A, 35, pp.3531-3541.
[19] Sokolowski, J.H., Djurdjevic, M.B., Kierkus, C.A. and Northwood, D.O., 2001. Improvement of 319 aluminum alloy casting durability by high-temperature solution treatment. Journal of Materials Processing Technology, 109(1-2), pp.74-180.
[20] Öztürk, İ., Ağaoğlu, G.H., Erzi, E., Dispinar, D. and Orhan, G., 2018. Effects of strontium addition on the microstructure and corrosion behavior of A356 aluminum alloy. Journal of Alloys and Compounds, 763, pp.384-391.
[21] Closset, B., Dugas, H., Pekguleryuz, M. and Gruzleski, J.E., 1986. The aluminum-strontium phase diagram. Metallurgical Transactions A, 17, pp.1250-1253.
[22] Brook, G.B., 1998. Smithells Light Metals Handbook. Elsevier.
[23] Lumley, R., 2011. Fundamentals of Aluminum Metallurgy: Production, Processing and Applications. Woodhead Publishing Limited, pp.272.
[24] Zolotorevsky, V.S., Belov, N.A. and Glazoff, M.V., 2007. Casting Aluminum Alloys, vol. 12. Elsevier.
[25] Gao, Z., Li, H., Lai, Y., Ou, Y. and Li, D., 2013. Effects of minor Zr and Er on microstructure and mechanical properties of pure aluminum. Materials Science and Engineering: A, 580, pp.92-98.
[26] Taylor, A.O. and Doyle, N.J., 1972. Further studies on the nickel–aluminum system. I. β-NiAl and δ-Ni2Al3 phase fields. Journal of Applied Crystallography, 5(3), pp.201-209.
[27] Bradley, A.J. and Taylor, U.A., 1937. An X-ray analysis of the nickel-aluminum system. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 159(896), pp.56-72.
[28] Gunda, N.S.H., Michi, R.A., Chisholm, M.F., Shyam, A. and Shin, D., 2023. First-principles study of Al/Al3Ni interfaces. Computational Materials Science, 217, p.111896. doi: 10.1016/j.commatsci.2022.111896.
[29] ASM, 2001. Specialty Handbook: Aluminum and Aluminum Alloys, edited by J.R. Davis, ASM International, pp.351-416.
[30] Barron, R.F. and Barron, B.R., 2011. Design for Thermal Stresses. John Wiley & Sons.
[31] Mohanraju, S., Ramesha, C.M., Appaiah, S., Kumar, J. and Prasad, N.J.K., 2021. A study on the impact of coefficient of thermal expansion of thermo-mechanical stresses on structural components. Materials Today: Proceedings, 46, pp.2528-2533.
[32] Wang, H., Al-amir, Q.R., Jasim, D.J., Ayed, H., Mouldi, A., Deifalla, A. and Mahariq, I., 2024. Enhancing the heat transfer efficiency of an engine heat exchanger through the utilization of an innovative conical braided wire turbulator. Case Studies in Thermal Engineering, 61, p.104873.
[33] Zhou, X., Abed, A.M., Abdullaev, S., Lei, G., He, L., Li, X., Elmasry, Y. and Mahariq, I., 2024. Data-driven study/optimization of a solar power and cooling generation system in a transient operation mode and proposing a novel multi-turbine modification concept to reduce the sun's intermittent effect. Energy, 309, p.133043.
[34] Mohsin, B.B., Abbas, M., Asamoah, J.K.K., Rehman, M.J.U., Umer, M. and Mahariq, I., 2024. A Computational Framework of Marangoni Convective Flow of Trihybrid Nanofluid with Thermo-Bioconvection and Oxytactic Microorganisms Based on the Extended Version of Xue and Yamada-Ota Models.
[35] Fan, G., Paidar, M., Mehrez, S., Ojo, O.O., Liu, M., Dai, Y. and Mahariq, I., 2022. Influence of shoulder diameter on interfacial microstructure and mechanical behavior in dieless friction stir riveting of CP-Copper to 321 stainless steel. Vacuum, 197, p.110809.
[36] Abed, A.M., Chauhan, B.S., Ayed, H., Mouldi, A., Deifalla, A. and Mahariq, I., 2024. Thermodynamic, exergetic and environmental evaluation and optimization of a bio-fuel fired gas turbine incorporated with wind energy derived hydrogen injection. Case Studies in Thermal Engineering, 56, p.104238.
[37] Wang, N., You, K.Y., Mohanavel, V., Mehrez, S., Alamri, S., Nag, K. and Mahariq, I., 2023. Comprehensive study of electromagnetic wave absorption properties of GdMnO3-MoSe2 hybrid composites. Ceramics International, 49(6), pp.9191-9202.