Influence of Process Parameters on the Mechanical Properties of Carbon Fibre Reinforced PETG

Document Type : Research Article

Authors

1 Department of Mechanical Engineering, Ramco Institute of Technology, Rajapalayam, 626 117, Tamil Nadu, India

2 Department of Mechanical Engineering, P.S.R. Engineering College, Sivakasi, 626140, Tamilnadu, India

Abstract

The research analyses the impact of different compositions of carbon fibre on mechanical and thermal attributes of Fused Filament Fabricated (FFF) Polyethylene Terephthalate Glycol (PETG) composites. Three different types of carbon fibre composite (10%, 20%, and 30% content) were manufactured for analysis against pure PETG material. The tests analysed the mechanical performance through compressive strength analysis, along with flexural strength measurements and measurements of hardness. The characterizing tests included Vicat Softening Temperature alongside Heat Deflection Temperature assessment. The research used ASTM standard testing methods to validate experimental measurements through finite element simulations using ANSYS Workbench ACP®. Integration of carbon fibre components improved the total mechanical behaviour of the PETG material. PETG without fibre demonstrated 53 MPa compressive strength, while 30% CF-PETG achieved 58 MPa compressive strength. The flexural strength measurements mirrored those changes, starting from 54 MPa and reaching 80 MPa across the same compositions. The Shore Hardness measurement (D) experienced an elevation as the carbon fibre concentration in materials grew from 71 to 77. Vicat Softening Temperature and Heat Deflection Temperature values improved alongside carbon fibre content increases. The experimental results matched closely with simulation outputs from the analysis, thus validating its accuracy. Research data shows that PETG materials improve their mechanical and thermal qualities when carbon fibre is incorporated, thereby creating promising prospects for specific applications needing advanced performance levels.

Keywords

Main Subjects


[1]   Alhat, S. M. and Yadav, M. H., 2020. Mechanical and electrical behavior of polyethylene terephthalate glycol (PETG) reinforced with multiwall carbon nanotubes (MWCNT) by using fused deposition modeling 3D printing Int. Res. J. Eng. Technol., 7(5), pp.1405-1413. Available: www.irjet.net
[2]   Vallejo, J., García-Plaza, E., Núñez, P. J., Chacón, J. M., Caminero, M. A. and Romero, A., 2023. Machinability analysis of carbon fibre reinforced PET-Glycol composites processed by additive manufacturing. Composites Part A: Applied Science and Manufacturing, 172, p.107561. doi: 10.1016/j.compositesa.2023.107561.
[3]   Srinidhi, M. S., Soundararajan, R., Satishkumar, K. S. and Suresh, S., 2021. Enhancing the FDM infill pattern outcomes of mechanical behavior for as-built and annealed PETG and CFPETG composites parts. Materials Today: Proceedings, 45, pp. 7208–7212, doi: 10.1016/j.matpr.2021.02.417.
[4]   Alarifi, I. M., 2023. Mechanical properties and numerical simulation of FDM 3D printed PETG/carbon composite unit structures. J. Mater. Res. Technol., 23, pp. 656–669. doi:10.1016/j.jmrt.2023.01.043.
[5]   Khan, I., et al., 2023. Parametric investigation and optimisation of mechanical properties of thick tri-material based composite of PLA–PETG–ABS 3D-printed using fused filament fabrication. Compos. Part C: Open Access, 12, 100392. doi:10.1016/j.jcomc.2023.100392.
[6]   Alarifi, I. M., 2023. PETG/carbon fiber composites with different structures produced by 3D printing. Polym. Test., 120, p.107949. doi:10.1016/j.polymertesting.2023.107949.
[7]   Li, Y. and Sharif-Khodaei, Z., 2024. A novel damage detection method for carbon fibre reinforced polymer structures based on distributed strain measurements with fibre optical sensor. Mech. Syst. Signal Process., 208, p.110954. doi:10.1016/j.ymssp.2023.110954.
[8]   Wan, X., et al., 2024. Elevating mechanical and biotribological properties of carbon fiber composites by constructing graphene–silicon nitride nanowires interlocking interfacial enhancement. J. Mater., 10(5), pp. 1080–1090. doi:10.1016/j.jmat.2023.11.009.
[9]   Popa, C. F., Marghitas, M. P., Galatanu, S. V. and Marsavina, L., 2022. Influence of thickness on the IZOD impact strength of FDM printed specimens from PLA and PETG. Procedia Struct. Integr., 41, pp. 557–563. doi:10.1016/j.prostr.2022.05.064.
[10] Kumar, M. A., Khan, M. S. and Mishra, S. B., 2020. Effect of machine parameters on strength and hardness of FDM printed carbon fiber reinforced PETG thermoplastics. Mater. Today: Proc., 27, pp. 975–983. doi:10.1016/j.matpr.2020.01.291.
[11] García, E., Núñez, P. J., Caminero, M. A., Chacón, J. M. and Kamarthi, S., 2022. Effects of carbon fibre reinforcement on the geometric properties of PETG-based filament using FFF additive manufacturing. Compos. Part B: Eng., 235, p.109766. doi:10.1016/j.compositesb.2022.109766.
[12] Yan, C., et al., 2024. PETG: Applications in modern medicine. Eng. Regen., 5(1), pp. 45–55. doi:10.1016/j.engreg.2023.11.001.
[13] Pheysey, J., De Cola, F., Pellegrino, A. and Martinez-Hergueta, F., 2024. Strain rate and temperature dependence of short/unidirectional carbon fibre PEEK hybrid composites. Compos. Part B: Eng., 268, 111080. doi:10.1016/j.compositesb.2023.111080.
[14] Valvez, S., Silva, A. P. and Reis, P. N. B., 2022. Compressive behaviour of 3D-printed PETG composites. Aerospace, 9(3), 124. doi:10.3390/aerospace9030124.
[15] Soleyman, E., et al., 2022. Assessment of controllable shape transformation, potential applications, and tensile shape memory properties of 3D printed PETG. J. Mater. Res. Technol., 18, pp. 4201–4215. doi:10.1016/j.jmrt.2022.04.076.
[16] Uzzell, J. P. N., Pickard, L. R., Hamerton, I. and Ivanov, D. S., 2024. Novel cellular coil design for improved temperature uniformity in inductive heating of carbon fibre composites. Mater. Des., 237, 112551. doi:10.1016/j.matdes.2023.112551.
[17] Yan, J., Demirci, E. and Gleadall, A., 2023. Are classical fibre composite models appropriate for material extrusion additive manufacturing? A thorough evaluation of analytical models. Addit. Manuf., 62, 103371. doi:10.1016/j.addma.2022.103371.
[18] Patel, K. S., Shah, D. B., Joshi, S. J., Aldawood, F. K. and Kchaou, M., 2024. Effect of process parameters on the mechanical performance of FDM printed carbon fiber reinforced PETG. J. Mater. Res. Technol., 30, pp. 8006–8018. doi:10.1016/j.jmrt.2024.05.184.
[19] Qu, P., et al., 2024. Additive manufacturing of hybrid continuous carbon/basalt fiber reinforced composites based on bi-matrix co-extrusion. J. Mater. Res. Technol., 30, pp. 8683–8704. doi:10.1016/j.jmrt.2024.05.241.
[20] Patel, K. S., Shah, D. B., Joshi, S. J. and Patel, K. M., 2023. Developments in 3D printing of carbon fiber reinforced polymer containing recycled plastic waste: A review. Clean. Mater., 9, 100207. doi:10.1016/j.clema.2023.100207.
[21] Prabhakaran, R., Pitchipoo, P., Rajakarunakaran, S. and Venkatesh, R., 2024. Experimental investigation and optimization of process parameters on digital light processing (DLP) 3D printing process based on Taguchi-grey relational analysis. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238(4), pp. 1884–1893. doi:10.1177/09544089241236267.
[22] Wang, W., Lin, Y., Hu, Y., Yang, L., Lin, D., Ma, J., Zhou, L., Liu, B., Cai, X., Yan, C. and Shi, Y., 2025. The effect of fatigue loading on the mechanical properties of additively manufactured continuous carbon fiber-reinforced composites. Compos. Commun., 53, p.102231. doi:10.1016/j.coco.2024.102231.
[23] Venkatesh, R., Kathiravan, S., Prabhakaran, R., Ramar, M., Britto, J. J. J. and Rajakarunakaran, S., 2022. Experimental investigation on machinability of additive manufactured PLA and PETG polymers under dry turning process. In: Recent Advances in Materials Technologies, Lecture Notes in Mechanical Engineering, pp. 553–561. doi:10.1007/978-981-19-3895-5_45.
[24] Prabhakaran, R., Britto, J. J. J., Venkatesh, R., Mukesh, G. and Mohamedabrar, I., 2022. Experimental investigation and identifying the suitable process parameters for additively manufactured PETG material by fused deposition modeling. In: Recent Advances in Materials Technologies, Lecture Notes in Mechanical Engineering, pp. 541–552. doi:10.1007/978-981-19-3895-5_44.
[25] Venkatesh, R., Prabhakaran, R., Jerold John Britto, J., Amudhan, K. and Karan Kumar, G., 2022. Evaluation of Hardness, Surface Roughness, and Impact Strength of Additive Manufactured Ultraviolet Resin-Based Polymer. In Recent Advances in Materials Technologies: Select Proceedings of ICEMT 2021, (pp. 267-274). Singapore: Springer Nature Singapore. doi:10.1007/978-981-19-3895-5_21.